




Data contains value and knowledge



What is the purpose of 
big data systems?

To support analysis and 
knowledge discovery from very

large amounts of data



 But to extract the knowledge 
data needs to be

▪ Stored  emphasis on this class

▪Managed  emphasis on this class

▪ Analyzed  emphasis on this class

▪ Visualized

Data Analytics ≈ Data Mining ≈ Big Data ≈ 
Predictive Analytics ≈ Data Science



Growing market revenue of Big Data in billion U.S. 
dollars from the year 2011 to 2027

https://www.edureka.co/blog/what-is-big-data/



 This class stressed more on

▪ Big Data Analytics Architectures

▪ Storage Systems

▪ Distributed Computing Platforms

▪ Algorithms, Scalability Issues
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 How to process different types of data:

▪ Small/Large size data

▪ Structured/Semi-structured/No-structure data

▪ Batch/streaming data

 How to use different models of computation:

▪ Single machine in-memory 

▪ Distributed (MapReduce)

▪ Streams and online algorithms



 Hands-on experience working with systems 
and tools for storing and processing big data:

▪ MapReduce/Hadoop

▪ Hive/BigQuery

▪ Apache Spark

▪ OpenRefine

▪ …

 … and more

▪ python

▪ tf.idf, skip-grams, sentiment analysis, …



Need for data collection
Need for data storage
Need for data analysis
Need for data visualization (optionally)

Collection Storage Analysis Visualization

…but, more of an iterative process than a sequence





 Intuition
 Ad-hoc or based on few customers feedback
 Look at competition
 Try to be different
 Based on assumptions, that may be wrong
 Without knowing how to validate if it was 

the right decision



 Make decisions based on data not intuition
 More precise on what they want to achieve
 Measure and validate with data



DDO’s  
 collect data
 make decisions based on data, not intuition
 use data to drive applications

To be a DDO, you need an efficient way of 
storing and retrieving data



 A variety of solutions/technologies available
 There is no one solution/technology  that 

solves all possible data analytics problems
 Most solutions solve a range of problems, 

but are outstanding on a specific type

How to map problems to DDO solutions?
How to compare alternative DDO solutions? 

Need for a Reference Model



 Provides a framework for 

▪ understanding your needs

▪ comparing solutions

 Not complete, but gives an approach to 
understanding data analytics systems



Data
What characteristics should be considered 
with respect to data?

Processing

What characteristics should be considered 
with respect to processing?

Other dimensions (not covered): 
cost, implementation complexity
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Analytics solutions start with data ingestion

Data integration challenges:
volume (many similar integrations)
variety (many different integrations)
velocity (batch v.s real-time) 
(or all of the above)



● Prepare data before loading so that target system can 
spend cycles on reporting, query, etc.

● Requires transforms to know what reporting, query to 
enable



Maslow’s hierarchy of needs*

Data Quality, Structure, Data Ingest 
Data, Persistence, Architecture, ETL

Visualization, Query, OLAP

Aggregation, Join, Filtering, Indexing

Prediction,
Clustering,
Classification

Hierarchy of effective analytics

Real-time, streaming

Basic needs

Understanding 
needs

Predictive 
needs

* A theory in psychology proposed by Abraham Maslow in 1943. 
Needs lower down in the hierarchy must be satisfied before 
individuals can attend to needs higher up.



Things we check in single 
record sets and data streams.  
Fixes can be automatic and 
independent.

Things we check in architecture.  
Fixes can be costly!

Things we check across many data sets.  
Fixes may need extra intelligence.

Things we check in the organization.  
Fixes may be non-technical.





Observation
 It’s too expensive to clean all the data every way
 How do we decide what to clean?

We need a framework that helps to:
 Determine what issues might occur in the data
 Weight the criticality of the issues
 Profile the data to score quality

The framework allows:
 to approach quality as an ever-increasing standard
 To prioritize data cleaning activities
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Data Lake
 Many data sources
 Retain all data
 Allows for exploration
 Apply transform as 

needed
 Apply schema as 

needed

Data Warehouse
 Data Transformed to 

defined schema
 Loaded when usage 

identified
 Allows for quick 

response of defined 
queries



Master Data 
(Dimension Tables)

Transaction Data
(Fact table)

Analytics Data
(Cuboid)



Master Data 
(fact based, Immutable, Dimensions)

Transaction Data
(Log items)

Analytics Data
(Aggregates, Roll-ups)





Two kinds of database management systems

Relational Databases

▪ Presents via Declarative Query Languages

▪ Organize underlying storage row-wise 
▪ Sometimes column-wise

Columnar Databases
▪ Presents via API and Declarative Query Languages

▪ Organize underlying storage column-wise



Two approaches for distributed data storage

HDFS (Hadoop Distributed File System) 

▪ Presents like a local filesystem 

▪ Distribution mechanics handled automatically

NoSQL Databases (Key/Value Stores) 

▪ Typically store records as “key-value pairs”

▪ Distribution mechanics tied to record keys



Two more concepts

 Object Storage (OS): as a new abstraction for 
storing data

 Software Defined Storage (SDS): An 
architecture that enables cost effective, 
scalable, highly available (HA) storage systems

Combining OS and SDS provides an efficient 
solution for certain data applications



Consistency: Every read receives the most recent write or an error
Availability: Every request receives a (non-error) response – without guarantee that it contains the 
most recent write
Partition tolerance: The system continues to operate despite an arbitrary number of messages being 
dropped (or delayed) by the network between nodes

It is impossible for a distributed data store to simultaneously 
provide more than two out of the following three guarantees







 If data is distributed how can you leverage 
parallelism?

 What kind of source and sink is involved?
 How do you use network bandwidth efficiently?
 How to handle different formats and structures?
 Large files take a long-time, how are failures 

handled?

As a data scientist you need to understand how to think 
about data transfer and movement



Tool What

Sqoop RDBMS, BDW to Hadoop

distcp2 HDFS to HDFS copy

Rsync FS to FS copy, FS to FS synchronization



SQL DDL, Avro, Protobuf, CSV



Schemas represent the logical view of data
We can apply them

▪ When data is written (schema-on-write)

▪ When data is read (schema-on-read)

The application of schema comes with trade-offs



Column-Family Database

▪ Organize data into a hierarchy
▪ Columns → record details

▪ Column families → groups of columns

▪ Column families are schema-on-write

▪ Columns are schema-on-read
▪ Can add columns, interpret bytes variably

Examples: 

▪ Apache HBase

▪ Apache Cassandra





Notice the difference!



Example: 
Lambda Architecture

Other examples: 
Kappa Architecture
Netflix Architecture
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 Batch Processing

▪ Google GFS/MapReduce (2003)

▪ Apache Hadoop HDFS/MapReduce (2004)

 SQL

▪ BigQuery (based on Google Dremel, 2010)

▪ Apache Hive (HiveQL) (2012)

 Streaming Data

▪ Apache Storm (2011) / Twitter Huron (2015)

 Unified Engine (Streaming, SQL, Batch, ML)

▪ Apache Spark (2012)





Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch

1 Gbps between any 
pair of nodes in a rack

2-10 Gbps backbone 
between racks

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO

http://bit.ly/Shh0RO




 Large-scale computing for data analytics 
problems on commodity hardware

 Challenges:

▪ How can we store large data?

▪ How can we distribute computation?

▪ How can we make it easy to write distributed 
programs?

▪ How can we manage machine failures?



 Key Ideas:

▪ Store files multiple times for reliability

▪ Bring computation close to the data

 Storage Infrastructure: Distributed File system

▪ Google: GFS. Hadoop: HDFS

 Programming Model: Map-Reduce

▪ Google’s computational/data manipulation model

▪ Elegant way to work with big data



 Reliable distributed file system
 Data kept in “chunks” spread across machines
 Each chunk replicated on different machines 

▪ Seamless recovery from disk or machine failure

C0 C1

C2C5

Chunk server 1

D1

C5

Chunk server 3

C1

C3C5

Chunk server 2

…
C2D0

D0

Bring computation directly to the data!

C0 C5

Chunk server N

C2
D0

Chunk servers also serve as compute servers



 Sequentially read a lot of data
 Map: Extract something you care about
 Group by key: Sort and Shuffle
 Reduce: Aggregate, summarize, filter or 

transform
 Write the result

Outline stays the same, Map and Reduce 
steps change to fit the problem



 Input: a set of key-value pairs
 Programmer specifies two methods:

▪ Map(k, v) → <k’, v’>*

▪ Takes a key-value pair and outputs a set of key-value pairs
▪ E.g., key is the filename, value is a single line in the file

▪ There is one Map call for every (k,v) pair

▪ Reduce(k’, <v’>*) → <k’, v’’>*

▪ All values v’ with same key k’ are reduced together 
and processed in v’ order

▪ There is one Reduce function call per unique key k’



Map-Reduce environment takes care of:
 Partitioning the input data
 Scheduling the program’s execution across a 

set of machines
 Performing the group by key step
 Handling machine failures
 Managing required inter-machine 

communication



 Batch Processing

▪ Google GFS/MapReduce (2003)

▪ Apache Hadoop HDFS/MapReduce (2004)

 SQL

▪ BigQuery (based on Google Dremel, 2010)

▪ Apache Hive (HiveQL) (2012)

 Streaming Data

▪ Apache Storm (2011) / Twitter Huron (2015)

 Unified Engine (Streaming, SQL, Batch, ML)

▪ Apache Spark (2012)





 Dremel/BigQuery

▪ Nested Columnar Storage

▪ Hierarchical Query 
Processing

▪ Dealing with disk failures 
and slow/straggling jobs

Distributed computation of interactive queries 
over structured data





 Apache/Twitter Storm

▪ Topology: Acyclic Graph

▪ Spouts: Sources of Data 

▪ Bolts: Transformations

 Twitter Heron

▪ Next generation of Storm

▪ Faster

▪ Backwards compatibility

Scalable analytics over streaming data





 Apache Spark: A Unified Engine

▪ Efficient Data Sharing 

▪ Spark Programming Model: RDDs

▪ Resilient Distributed Datasets (RDDs)
▪ Collections of objects stored in RAM or disk across cluster

▪ Built via parallel transformations (map, filter, …)

▪ Automatically rebuilt on failure

 Distributed Computation of

▪ complex, multi-pass algorithms

▪ interactive ad-hoc queries

▪ real-time stream processing

▪ ML models
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 Reporting is 
accomplished by 
Business Intelligence 
(BI) tools

 Real-time analytics are 
accomplished by In-
application Analytics





 Popular Tools
▪ MicroStrategy

▪ Tableau

▪ Pentaho

▪ Cognos

▪ Spotfire

 Do-It-Yourself
▪ HTML5

▪ d3 and friends

▪ API to get to data



 An efficient solution for 
OLAP (online analytical 
processing)

 Operations
▪ Slicing

▪ Dicing

▪ Drill down / Roll Up

▪ Pivoting

 Computation and storage 
intensive
▪ different implementations and 

optimizations



ROLAP
Data stored in relational database
 Performance depends on 

underlying query
 Generally slower than MOLAP
 Can be partially materialized and 

partially based on dynamic 
computation

MOLAP
Data stored in multidimensional array
 Good performance
 Pre-computed
 Proprietary query language and 

structures



A data cube can be viewed 
as a lattice of cuboids

Most generalized, 1 value 
with complete aggregate 
(all cities, all items, all years)

least generalized, each base value:
(Chicago, Peppers, 2015)

Per city, all items and all years

Per city, per item items, all years



Full cube computation of n-dimensional cube 
requires 2n cuboids (exponential to the number 
of dimensions) and is thus very expensive

Questions:
 How can we reduce the cost of computing a cube?
▪ iceberg cuboids

▪ cuboid shells

▪ shell fragments

 What are the trade-offs?
▪ Identify the right cuboids

▪ Some queries cannot be answered

▪ Costly updates





Face detection (FB tag friends)

User Engagement (retweets, likes...)

Recommendations (books, friends, …)





Analytics Processing: 
produce analytical results that can be used by applications

Serving: 
Make analytics result available for quick and easy access to 
applications that are serving end users 
(Information Retrieval System)

Application Application Application Application



Distributing (static) Content {CDN}

Distributing Applications

Caching Data

Distributed Data Storage

loadbalancing

loadbalancing

loadbalancing





 Final exam

▪ Fri, Jun 25, 2021 @ 9:00am

▪ Closed book

▪ Short answers, multiple choice, open answers

▪ Online (Zoom)

▪ Material

▪ Slides

▪ Required readings

▪ Tutorials

▪ Assignments



Interest in Data Science
Demonstrated interest in the general area of data science

Interest in Big Data Technologies
Demonstrated interest in big data systems & engineering

Interest in Big Data Analytics
Demonstrated interest in finding interesting patterns and 
insights in large amounts of data



 EECS4414: Information Networks

▪ graph mining, network model, network analysis

▪ Probably offered next year (TBD)

 Data Mining Lab (http://dminer.eecs.yorku.ca)

▪ data mining

▪ graph mining

▪ big data analytics

▪ machine learning

▪ natural language processing (NLP)

▪ city science/IoT

http://dminer.eecs.yorku.ca/


(solid)

Math & Stat

(solid)

Programming

(interest in)

Data Mining & ML



You have worked 
a lot…

…and (hopefully) 
learned a lot!



Don’t forget to submit 
your …

…course evaluation!

until Tue, Jun 22!



Happy Holiday



Thanks!
Contact:

Manos Papagelis, LAS 3050

papaggel@eecs.yorku.ca
www.eecs.yorku.ca/~papaggel/

mailto:papaggel@cse.yorku.ca
http://www.eecse.yorku.ca/~papaggel/

