EECS4415: Big Data Systems

Course Review

Data contains value and knowledge

What is the purpose of big data systems?

To support analysis and knowledge discovery from very large amounts of data

Big Data Analytics

- But to extract the knowledge data needs to be

 - Visualized

Data Analytics ≈ Data Mining ≈ Big Data ≈ Predictive Analytics ≈ Data Science

Demand for Big Data Skills

Growing market revenue of Big Data in billion U.S. dollars from the year 2011 to 2027

This Class: EECS4415

- This class stressed more on
 - Big Data Analytics Architectures
 - Storage Systems
 - Distributed Computing Platforms
 - Algorithms, Scalability Issues

Course Intellectual Content

What have you learned?

How to process different types of data:

- Small/Large size data
- Structured/Semi-structured/No-structure data
- Batch/streaming data

How to use different models of computation:

- Single machine in-memory
- Distributed (MapReduce)
- Streams and online algorithms

What have you learned?

- Hands-on experience working with systems and tools for storing and processing big data:
 - MapReduce/Hadoop
 - Hive/BigQuery
 - Apache Spark
 - OpenRefine
- ... and more
 - python

tf.idf, skip-grams, sentiment analysis, ...

Elements of a BD Analytics project

Need for data collection Need for data storage Need for data analysis Need for data visualization (optionally)

...but, more of an iterative process than a sequence

Data Driven Organizations (DDOs)

How non-DDOs make decisions?

Intuition

- Ad-hoc or based on few customers feedback
- Look at competition
- Try to be different
- Based on assumptions, that may be wrong
- Without knowing how to validate if it was the right decision

What do DDO's do?

- Make decisions based on data not intuition
- More precise on what they want to achieve
- Measure and validate with data

How DDOs do it?

DDO's

- collect data
- make decisions based on data, not intuition
- use data to drive applications

To be a DDO, you need an efficient way of storing and retrieving data

Challenge

- A variety of solutions/technologies available
- There is no one solution/technology that solves all possible data analytics problems
- Most solutions solve a range of problems, but are outstanding on a specific type

How to map problems to DDO solutions? How to compare alternative DDO solutions?

Need for a Reference Model

Purpose of the Reference Model

- Provides a framework for
 - understanding your needs
 - comparing solutions
- Not complete, but gives an approach to understanding data analytics systems

Data

What characteristics should be considered with respect to data?

Processing

What characteristics should be considered with respect to **processing**?

Other dimensions (not covered): cost, implementation complexity

Big Data Technology & Analytics

Data Ingestion ETL, Distcp, Kafka, OpenRefine, 	Query & Exploration SQL, Search, Cypher,	Data Serving BI, Cubes, RDBMS, Key- value Stores, Tableau,
	Stream Processing Platforms Storm, Spark,	
	Batch Processing Platforms MapReduce, SparkSQL, BigQuery, Hive, Cypher,	
	Data Definition SQL DDL, Avro, Protobuf, CSV	
	Storage Systems HDFS, RDBMS, Column Stores, Graph Databases	
Computer Platforms		

Distributed Commodity, Clustered High-Performance, Single Node

Data Ingestion and Data Quality

Big Data Technology & Analytics

Query & Exploration SQL, Search, Cypher, ... Stream Processing Platforms Storm, Spark, .. Data Data Ingestion Serving **Batch Processing Platforms** BI, Cubes, ETL, Distcp, MapReduce, SparkSQL, BigQuery, Hive, Cypher, ... RDBMS, Key-Kafka, OpenRefine, value Stores, **Data Definition** Tableau, ... SQL DDL, Avro, Protobuf, CSV Storage Systems HDFS, RDBMS, Column Stores, Graph Databases

Computer Platforms Distributed Commodity, Clustered High-Performance, Single Node Analytics solutions start with data ingestion

Data integration challenges: volume (many similar integrations) variety (many different integrations) velocity (batch v.s real-time) (or all of the above)

ETL: Extract, Transform, Load

Requires transforms to know what reporting, query to enable

Needs of Data Analytics

* A theory in psychology proposed by Abraham **Maslow** in 1943. Needs lower down in the hierarchy must be satisfied before individuals can attend to needs higher up.

Data Quality as a Hierarchy

Types of Data Quality Problems

Quality Evaluation Framework

Observation

- It's too expensive to clean all the data every way
- How do we decide what to clean?

We need **a framework** that helps to:

- Determine what issues might occur in the data
- Weight the criticality of the issues
- Profile the data to score quality

The framework allows:

- to approach quality as an ever-increasing standard
- To prioritize data cleaning activities

Computing Platforms, Storage Systems, Data Definition

Big Data Technology & Analytics

Query & Exploration SQL, Search, Cypher, ... Stream Processing Platforms Storm, Spark, .. Data Data Ingestion Serving **Batch Processing Platforms** BI, Cubes, ETL, Distcp, MapReduce, SparkSQL, BigQuery, Hive, Cypher, ... RDBMS, Key-Kafka, OpenRefine, value Stores, **Data Definition** Tableau, ... SQL DDL, Avro, Protobuf, CSV Storage Systems HDFS, RDBMS, Column Stores, Graph Databases

Computing Platforms Distributed Commodity, Clustered High-Performance, Single Node

. . .

Computing Platforms

Data Storage: Data Warehouse vs Data Lakes

Data Warehouse vs Data Lake

Data Warehouse

- Data Transformed to defined schema
- Loaded when usage identified
- Allows for quick response of defined queries

Data Lake

- Many data sources
- Retain all data
- Allows for exploration
- Apply transform as needed
- Apply schema as needed

Data Warehouse Model

Storage Systems

DBMS: Relational and Columnar

Two kinds of *database management systems*

Relational Databases

- Presents via Declarative Query Languages
- Organize underlying storage row-wise
 - Sometimes column-wise

Columnar Databases

- Presents via API and Declarative Query Languages
- Organize underlying storage column-wise
NoSQL and HDFS

Two approaches for *distributed data storage*

HDFS (Hadoop Distributed File System)

- Presents like a local filesystem
- Distribution mechanics handled automatically

NoSQL Databases (Key/Value Stores)

- Typically store records as "key-value pairs"
- Distribution mechanics tied to record keys

OS and SDS Storage

Two more concepts

- Object Storage (OS): as a new abstraction for storing data
- Software Defined Storage (SDS): An architecture that enables cost effective, scalable, highly available (HA) storage systems

Combining OS and SDS provides an efficient solution for certain data applications

CAP Theorem

It is impossible for a distributed data store to simultaneously provide more than two out of the following three guarantees

Consistency: Every read receives the most recent write or an error

Availability: Every request receives a (non-error) response – without guarantee that it contains the most recent write

Partition tolerance: The system continues to operate despite an arbitrary number of messages being dropped (or delayed) by the network between nodes

CAP Theorem (Simplified)

Moving Large Data Considerations

Moving Large Data

- If data is distributed how can you leverage parallelism?
- What kind of source and sink is involved?
- How do you use network bandwidth efficiently?
- How to handle different formats and structures?
- Large files take a long-time, how are failures handled?

As a data scientist you need to understand how to think about data transfer and movement

ΤοοΙ	What
Sqoop	RDBMS, BDW to Hadoop
distcp2	HDFS to HDFS copy
Rsync	FS to FS copy, FS to FS synchronization

SQL DDL, Avro, Protobuf, CSV

Data Definition

When is Schema Applied?

- Schemas represent the logical view of data
- We can apply them
 - When data is written (schema-on-write)
 - When data is read (schema-on-read)
- The application of schema comes with trade-offs

BigTable: a Hybrid Approach

Column-Family Database

- Organize data into a hierarchy
 - Columns → record details
 - Column families → groups of columns
- Column families are schema-on-write
- Columns are schema-on-read
 - Can add columns, interpret bytes variably
- Examples:
 - Apache HBase
 - Apache Cassandra

Big Data Architectures

Difference in Approach

Notice the difference!

Big Data Analytics Architecture

Example: Lambda Architecture

Other examples: Kappa Architecture Netflix Architecture

Processing Platforms

Big Data Technology & Analytics

Query & Exploration SQL, Search, Cypher, ... Stream Processing Platforms Storm, Spark, ... Data Ingestion **Batch Processing Platforms** ETL, Distcp, MapReduce, SparkSQL, BigQuery, Hive, Cypher, ... OpenRefine, **Data Definition** SQL DDL, Avro, Protobuf, CSV

Storage Systems HDFS, RDBMS, Column Stores, Graph Databases

Computing Platforms Distributed Commodity, Clustered High-Performance, Single Node

Data

Kafka,

Serving BI, Cubes, RDBMS, Keyvalue Stores, Tableau, ...

Processing Platforms

- Batch Processing
 - Google GFS/MapReduce (2003)
 - Apache Hadoop HDFS/MapReduce (2004)

SQL

- BigQuery (based on Google Dremel, 2010)
- Apache Hive (HiveQL) (2012)
- Streaming Data
 - Apache Storm (2011) / Twitter Huron (2015)
- Unified Engine (Streaming, SQL, Batch, ML)
 - Apache Spark (2012)

Map-Reduce and the New Software Stack

Cluster Architecture

Each rack contains 16-64 nodes

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO

Large-scale Computing

- Large-scale computing for data analytics problems on commodity hardware
- Challenges:
 - How can we store large data?
 - How can we distribute computation?
 - How can we make it easy to write distributed programs?
 - How can we manage machine failures?

Idea and Solution

Key Ideas:

- Store files multiple times for reliability
- Bring computation close to the data

Storage Infrastructure: Distributed File system

- Google: GFS. Hadoop: HDFS
- Programming Model: Map-Reduce
 - Google's computational/data manipulation model
 - Elegant way to work with big data

Distributed File System

- Reliable distributed file system
- Data kept in "chunks" spread across machines
- Each chunk replicated on different machines
 - Seamless recovery from disk or machine failure

Bring computation directly to the data!

Chunk servers also serve as compute servers

MapReduce: Overview

- Sequentially read a lot of data
- Map: Extract something you care about
- Group by key: Sort and Shuffle
- Reduce: Aggregate, summarize, filter or transform
- Write the result

Outline stays the same, **Map** and **Reduce** steps change to fit the problem

More Specifically

- Input: a set of key-value pairs
- Programmer specifies two methods:
 - Map(k, v) $\rightarrow \langle k', v' \rangle^*$
 - Takes a key-value pair and outputs a set of key-value pairs
 - E.g., key is the filename, value is a single line in the file
 - There is one Map call for every (k,v) pair
 - Reduce(k', <v'>*) → <k', v''>*
 - All values v' with same key k' are reduced together and processed in v' order
 - There is one Reduce function call per unique key k'

Map-Reduce: Environment

Map-Reduce environment takes care of:

- Partitioning the input data
- Scheduling the program's execution across a set of machines
- Performing the group by key step
- Handling machine failures
- Managing required inter-machine communication

Processing Platforms

- Batch Processing
 - Google GFS/MapReduce (2003)
 - Apache Hadoop HDFS/MapReduce (2004)

SQL

- BigQuery (based on Google Dremel, 2010)
- Apache Hive (HiveQL) (2012)
- Streaming Data
 - Apache Storm (2011) / Twitter Huron (2015)
- Unified Engine (Streaming, SQL, Batch, ML)
 - Apache Spark (2012)

Processing Platforms: Structured Data

Processing Structured Data

Distributed computation of **interactive queries** over structured data

Dremel/BigQuery

- Nested Columnar Storage
- Hierarchical Query Processing
- Dealing with disk failures and slow/straggling jobs

Tree architecture of Dremel

Processing Platforms: Streaming Data

Processing Streaming Data

Scalable analytics over streaming data

- Apache/Twitter Storm
 - Topology: Acyclic Graph
 - Spouts: Sources of Data
 - Bolts: Transformations
- Twitter Heron
 - Next generation of Storm
 - Faster
 - Backwards compatibility

A Storm Topology

Processing Platforms: A Unified Engine

Processing Different Types of Data

Apache Spark: A Unified Engine

- Efficient Data Sharing
- Spark Programming Model: RDDs
- Resilient Distributed Datasets (RDDs)
 - Collections of objects stored in RAM or disk across cluster
 - Built via parallel transformations (map, filter, ...)
 - Automatically rebuilt on failure
- Distributed Computation of
 - complex, multi-pass algorithms
 - interactive ad-hoc queries
 - real-time stream processing
 - ML models

Data Serving

Big Data Technology & Analytics

Query & Exploration SQL, Search, Cypher, ... Stream Processing Platforms Storm, Spark, .. Data Data Ingestion Serving **Batch Processing Platforms** ETL, Distcp, BI, Cubes, MapReduce, SparkSQL, BigQuery, Hive, Cypher, ... RDBMS, Key-Kafka, OpenRefine, value Stores, **Data Definition** Tableau, ... SQL DDL, Avro, Protobuf, CSV Storage Systems HDFS, RDBMS, Column Stores, Graph Databases **Computer Platforms**

Distributed Commodity, Clustered High-Performance, Single Node

Data Serving

 Reporting is accomplished by
Business Intelligence (BI) tools

 Real-time analytics are accomplished by Inapplication Analytics

Business Intelligence (BI) Tools
How Does a BI Tool Work?

- Popular Tools
 - MicroStrategy
 - Tableau
 - Pentaho
 - Cognos
 - Spotfire
 - Do-It-Yourself
 - HTML5
 - d3 and friends
 - API to get to data

Data Cubes

- An efficient solution for OLAP (online analytical processing)
- Operations
 - Slicing
 - Dicing
 - Drill down / Roll Up
 - Pivoting
- Computation and storage intensive
 - different implementations and optimizations

ROLAP / MOLAP

ROLAP

Data stored in relational database

- Performance depends on underlying query
- Generally slower than MOLAP
- Can be partially materialized and partially based on dynamic computation

MOLAP

Data stored in multidimensional array

- Good performance
- Pre-computed
- Proprietary query language and structures

Data cubes and cuboids

The Technical Problem

Full cube computation of *n*-dimensional cube requires 2ⁿ cuboids (exponential to the number of dimensions) and is thus very expensive

Questions:

- How can we reduce the cost of computing a cube?
 - iceberg cuboids
 - cuboid shells
 - shell fragments
- What are the trade-offs?
 - Identify the right cuboids
 - Some queries cannot be answered
 - Costly updates

In-Application Analytics

In-application Analytics

Face detection (FB tag friends)

User Engagement (retweets, likes...)

Recommendations (books, friends, ...)

Serving at-Scale

Scaling Principles

Distributing (static) Content {CDN}

loadbalancing

Distributing Applications

loadbalancing

Caching Data

loadbalancing

Distributed Data Storage

What's Next?

What's Next?

Final exam

Fri, Jun 25, 2021 @ 9:00am

- Closed book
- Short answers, multiple choice, open answers
- Online (Zoom)
- Material
 - Slides
 - Required readings
 - Tutorials
 - Assignments

What you have achieved?

Interest in Data Science

Demonstrated interest in the general area of data science

Interest in Big Data Technologies

Demonstrated interest in big data systems & engineering

Interest in Big Data Analytics

Demonstrated interest in finding interesting patterns and insights in large amounts of data

What is Next?

EECS4414: Information Networks

- graph mining, network model, network analysis
- Probably offered next year (TBD)

Data Mining Lab (<u>http://dminer.eecs.yorku.ca</u>)

- data mining
- graph mining
- big data analytics
- machine learning
- natural language processing (NLP)
- city science/IoT

Working with Us?

(solid) Math & Stat (solid) Programming

(interest in) Data Mining & ML

You have worked a lot...

...and (hopefully) learned a lot!

Don't forget to submit your ...

...course evaluation!

until Tue, Jun 22!

Happy Holiday

Thanks!

Contact:

Manos Papagelis, LAS 3050 papaggel@eecs.yorku.ca www.eecs.yorku.ca/~papaggel/