

Data contains value and knowledge

What is the purpose of
big data systems?

To support analysis and
knowledge discovery from very

large amounts of data

 But to extract the knowledge
data needs to be

▪ Stored emphasis on this class

▪Managed emphasis on this class

▪ Analyzed emphasis on this class

▪ Visualized

Data Analytics ≈ Data Mining ≈ Big Data ≈
Predictive Analytics ≈ Data Science

Growing market revenue of Big Data in billion U.S.
dollars from the year 2011 to 2027

https://www.edureka.co/blog/what-is-big-data/

 This class stressed more on

▪ Big Data Analytics Architectures

▪ Storage Systems

▪ Distributed Computing Platforms

▪ Algorithms, Scalability Issues

Big Data
Systems

Visuali
zation
Tools

Distributed
Systems

Data
Mining &

ML

Explorat
ory Data
Analysis

Databases

 How to process different types of data:

▪ Small/Large size data

▪ Structured/Semi-structured/No-structure data

▪ Batch/streaming data

 How to use different models of computation:

▪ Single machine in-memory

▪ Distributed (MapReduce)

▪ Streams and online algorithms

 Hands-on experience working with systems
and tools for storing and processing big data:

▪ MapReduce/Hadoop

▪ Hive/BigQuery

▪ Apache Spark

▪ OpenRefine

▪ …

 … and more

▪ python

▪ tf.idf, skip-grams, sentiment analysis, …

Need for data collection
Need for data storage
Need for data analysis
Need for data visualization (optionally)

Collection Storage Analysis Visualization

…but, more of an iterative process than a sequence

 Intuition
 Ad-hoc or based on few customers feedback
 Look at competition
 Try to be different
 Based on assumptions, that may be wrong
 Without knowing how to validate if it was

the right decision

 Make decisions based on data not intuition
 More precise on what they want to achieve
 Measure and validate with data

DDO’s
 collect data
 make decisions based on data, not intuition
 use data to drive applications

To be a DDO, you need an efficient way of
storing and retrieving data

 A variety of solutions/technologies available
 There is no one solution/technology that

solves all possible data analytics problems
 Most solutions solve a range of problems,

but are outstanding on a specific type

How to map problems to DDO solutions?
How to compare alternative DDO solutions?

Need for a Reference Model

 Provides a framework for

▪ understanding your needs

▪ comparing solutions

 Not complete, but gives an approach to
understanding data analytics systems

Data
What characteristics should be considered
with respect to data?

Processing

What characteristics should be considered
with respect to processing?

Other dimensions (not covered):
cost, implementation complexity

Computer Platforms
Distributed Commodity, Clustered High-Performance, Single Node

Data
Ingestion
ETL, Distcp,
Kafka,
OpenRefine,
…

Data
Serving
BI, Cubes,
RDBMS, Key-
value Stores,
Tableau, …

Storage Systems
HDFS, RDBMS, Column Stores, Graph Databases

Data Definition
SQL DDL, Avro, Protobuf, CSV

Batch Processing Platforms
MapReduce, SparkSQL, BigQuery, Hive, Cypher, ...

Stream Processing Platforms
Storm, Spark, ..

Query & Exploration
SQL, Search, Cypher, …

Computer Platforms
Distributed Commodity, Clustered High-Performance, Single Node

Data
Ingestion
ETL, Distcp,
Kafka,
OpenRefine,
…

Data
Serving
BI, Cubes,
RDBMS, Key-
value Stores,
Tableau, …

Storage Systems
HDFS, RDBMS, Column Stores, Graph Databases

Data Definition
SQL DDL, Avro, Protobuf, CSV

Batch Processing Platforms
MapReduce, SparkSQL, BigQuery, Hive, Cypher, ...

Stream Processing Platforms
Storm, Spark, ..

Query & Exploration
SQL, Search, Cypher, …

Analytics solutions start with data ingestion

Data integration challenges:
volume (many similar integrations)
variety (many different integrations)
velocity (batch v.s real-time)
(or all of the above)

● Prepare data before loading so that target system can
spend cycles on reporting, query, etc.

● Requires transforms to know what reporting, query to
enable

Maslow’s hierarchy of needs*

Data Quality, Structure, Data Ingest
Data, Persistence, Architecture, ETL

Visualization, Query, OLAP

Aggregation, Join, Filtering, Indexing

Prediction,
Clustering,
Classification

Hierarchy of effective analytics

Real-time, streaming

Basic needs

Understanding
needs

Predictive
needs

* A theory in psychology proposed by Abraham Maslow in 1943.
Needs lower down in the hierarchy must be satisfied before
individuals can attend to needs higher up.

Things we check in single
record sets and data streams.
Fixes can be automatic and
independent.

Things we check in architecture.
Fixes can be costly!

Things we check across many data sets.
Fixes may need extra intelligence.

Things we check in the organization.
Fixes may be non-technical.

Observation
 It’s too expensive to clean all the data every way
 How do we decide what to clean?

We need a framework that helps to:
 Determine what issues might occur in the data
 Weight the criticality of the issues
 Profile the data to score quality

The framework allows:
 to approach quality as an ever-increasing standard
 To prioritize data cleaning activities

Computing Platforms
Distributed Commodity, Clustered High-Performance, Single Node

Data
Ingestion
ETL, Distcp,
Kafka,
OpenRefine,
…

Data
Serving
BI, Cubes,
RDBMS, Key-
value Stores,
Tableau, …

Storage Systems
HDFS, RDBMS, Column Stores, Graph Databases

Data Definition
SQL DDL, Avro, Protobuf, CSV

Batch Processing Platforms
MapReduce, SparkSQL, BigQuery, Hive, Cypher, ...

Stream Processing Platforms
Storm, Spark, ..

Query & Exploration
SQL, Search, Cypher, …

Computing

Single Node
Computing

Distributed
Computing

Grid
Computing

Cluster
Computing

Parallel
Computing

CPU GPU

Data Lake
 Many data sources
 Retain all data
 Allows for exploration
 Apply transform as

needed
 Apply schema as

needed

Data Warehouse
 Data Transformed to

defined schema
 Loaded when usage

identified
 Allows for quick

response of defined
queries

Master Data
(Dimension Tables)

Transaction Data
(Fact table)

Analytics Data
(Cuboid)

Master Data
(fact based, Immutable, Dimensions)

Transaction Data
(Log items)

Analytics Data
(Aggregates, Roll-ups)

Two kinds of database management systems

Relational Databases

▪ Presents via Declarative Query Languages

▪ Organize underlying storage row-wise
▪ Sometimes column-wise

Columnar Databases
▪ Presents via API and Declarative Query Languages

▪ Organize underlying storage column-wise

Two approaches for distributed data storage

HDFS (Hadoop Distributed File System)

▪ Presents like a local filesystem

▪ Distribution mechanics handled automatically

NoSQL Databases (Key/Value Stores)

▪ Typically store records as “key-value pairs”

▪ Distribution mechanics tied to record keys

Two more concepts

 Object Storage (OS): as a new abstraction for
storing data

 Software Defined Storage (SDS): An
architecture that enables cost effective,
scalable, highly available (HA) storage systems

Combining OS and SDS provides an efficient
solution for certain data applications

Consistency: Every read receives the most recent write or an error
Availability: Every request receives a (non-error) response – without guarantee that it contains the
most recent write
Partition tolerance: The system continues to operate despite an arbitrary number of messages being
dropped (or delayed) by the network between nodes

It is impossible for a distributed data store to simultaneously
provide more than two out of the following three guarantees

 If data is distributed how can you leverage
parallelism?

 What kind of source and sink is involved?
 How do you use network bandwidth efficiently?
 How to handle different formats and structures?
 Large files take a long-time, how are failures

handled?

As a data scientist you need to understand how to think
about data transfer and movement

Tool What

Sqoop RDBMS, BDW to Hadoop

distcp2 HDFS to HDFS copy

Rsync FS to FS copy, FS to FS synchronization

SQL DDL, Avro, Protobuf, CSV

Schemas represent the logical view of data
We can apply them

▪ When data is written (schema-on-write)

▪ When data is read (schema-on-read)

The application of schema comes with trade-offs

Column-Family Database

▪ Organize data into a hierarchy
▪ Columns → record details

▪ Column families → groups of columns

▪ Column families are schema-on-write

▪ Columns are schema-on-read
▪ Can add columns, interpret bytes variably

Examples:

▪ Apache HBase

▪ Apache Cassandra

Notice the difference!

Example:
Lambda Architecture

Other examples:
Kappa Architecture
Netflix Architecture

Computing Platforms
Distributed Commodity, Clustered High-Performance, Single Node

Data
Ingestion
ETL, Distcp,
Kafka,
OpenRefine,
…

Data
Serving
BI, Cubes,
RDBMS, Key-
value Stores,
Tableau, …

Storage Systems
HDFS, RDBMS, Column Stores, Graph Databases

Data Definition
SQL DDL, Avro, Protobuf, CSV

Batch Processing Platforms
MapReduce, SparkSQL, BigQuery, Hive, Cypher, ...

Stream Processing Platforms
Storm, Spark, ..

Query & Exploration
SQL, Search, Cypher, …

 Batch Processing

▪ Google GFS/MapReduce (2003)

▪ Apache Hadoop HDFS/MapReduce (2004)

 SQL

▪ BigQuery (based on Google Dremel, 2010)

▪ Apache Hive (HiveQL) (2012)

 Streaming Data

▪ Apache Storm (2011) / Twitter Huron (2015)

 Unified Engine (Streaming, SQL, Batch, ML)

▪ Apache Spark (2012)

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch

1 Gbps between any
pair of nodes in a rack

2-10 Gbps backbone
between racks

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO

http://bit.ly/Shh0RO

 Large-scale computing for data analytics
problems on commodity hardware

 Challenges:

▪ How can we store large data?

▪ How can we distribute computation?

▪ How can we make it easy to write distributed
programs?

▪ How can we manage machine failures?

 Key Ideas:

▪ Store files multiple times for reliability

▪ Bring computation close to the data

 Storage Infrastructure: Distributed File system

▪ Google: GFS. Hadoop: HDFS

 Programming Model: Map-Reduce

▪ Google’s computational/data manipulation model

▪ Elegant way to work with big data

 Reliable distributed file system
 Data kept in “chunks” spread across machines
 Each chunk replicated on different machines

▪ Seamless recovery from disk or machine failure

C0 C1

C2C5

Chunk server 1

D1

C5

Chunk server 3

C1

C3C5

Chunk server 2

…
C2D0

D0

Bring computation directly to the data!

C0 C5

Chunk server N

C2
D0

Chunk servers also serve as compute servers

 Sequentially read a lot of data
 Map: Extract something you care about
 Group by key: Sort and Shuffle
 Reduce: Aggregate, summarize, filter or

transform
 Write the result

Outline stays the same, Map and Reduce
steps change to fit the problem

 Input: a set of key-value pairs
 Programmer specifies two methods:

▪ Map(k, v) → <k’, v’>*

▪ Takes a key-value pair and outputs a set of key-value pairs
▪ E.g., key is the filename, value is a single line in the file

▪ There is one Map call for every (k,v) pair

▪ Reduce(k’, <v’>*) → <k’, v’’>*

▪ All values v’ with same key k’ are reduced together
and processed in v’ order

▪ There is one Reduce function call per unique key k’

Map-Reduce environment takes care of:
 Partitioning the input data
 Scheduling the program’s execution across a

set of machines
 Performing the group by key step
 Handling machine failures
 Managing required inter-machine

communication

 Batch Processing

▪ Google GFS/MapReduce (2003)

▪ Apache Hadoop HDFS/MapReduce (2004)

 SQL

▪ BigQuery (based on Google Dremel, 2010)

▪ Apache Hive (HiveQL) (2012)

 Streaming Data

▪ Apache Storm (2011) / Twitter Huron (2015)

 Unified Engine (Streaming, SQL, Batch, ML)

▪ Apache Spark (2012)

 Dremel/BigQuery

▪ Nested Columnar Storage

▪ Hierarchical Query
Processing

▪ Dealing with disk failures
and slow/straggling jobs

Distributed computation of interactive queries
over structured data

 Apache/Twitter Storm

▪ Topology: Acyclic Graph

▪ Spouts: Sources of Data

▪ Bolts: Transformations

 Twitter Heron

▪ Next generation of Storm

▪ Faster

▪ Backwards compatibility

Scalable analytics over streaming data

 Apache Spark: A Unified Engine

▪ Efficient Data Sharing

▪ Spark Programming Model: RDDs

▪ Resilient Distributed Datasets (RDDs)
▪ Collections of objects stored in RAM or disk across cluster

▪ Built via parallel transformations (map, filter, …)

▪ Automatically rebuilt on failure

 Distributed Computation of

▪ complex, multi-pass algorithms

▪ interactive ad-hoc queries

▪ real-time stream processing

▪ ML models

Computer Platforms
Distributed Commodity, Clustered High-Performance, Single Node

Data
Ingestion
ETL, Distcp,
Kafka,
OpenRefine,
…

Data
Serving
BI, Cubes,
RDBMS, Key-
value Stores,
Tableau, …

Storage Systems
HDFS, RDBMS, Column Stores, Graph Databases

Data Definition
SQL DDL, Avro, Protobuf, CSV

Batch Processing Platforms
MapReduce, SparkSQL, BigQuery, Hive, Cypher, ...

Stream Processing Platforms
Storm, Spark, ..

Query & Exploration
SQL, Search, Cypher, …

 Reporting is
accomplished by
Business Intelligence
(BI) tools

 Real-time analytics are
accomplished by In-
application Analytics

 Popular Tools
▪ MicroStrategy

▪ Tableau

▪ Pentaho

▪ Cognos

▪ Spotfire

 Do-It-Yourself
▪ HTML5

▪ d3 and friends

▪ API to get to data

 An efficient solution for
OLAP (online analytical
processing)

 Operations
▪ Slicing

▪ Dicing

▪ Drill down / Roll Up

▪ Pivoting

 Computation and storage
intensive
▪ different implementations and

optimizations

ROLAP
Data stored in relational database
 Performance depends on

underlying query
 Generally slower than MOLAP
 Can be partially materialized and

partially based on dynamic
computation

MOLAP
Data stored in multidimensional array
 Good performance
 Pre-computed
 Proprietary query language and

structures

A data cube can be viewed
as a lattice of cuboids

Most generalized, 1 value
with complete aggregate
(all cities, all items, all years)

least generalized, each base value:
(Chicago, Peppers, 2015)

Per city, all items and all years

Per city, per item items, all years

Full cube computation of n-dimensional cube
requires 2n cuboids (exponential to the number
of dimensions) and is thus very expensive

Questions:
 How can we reduce the cost of computing a cube?
▪ iceberg cuboids

▪ cuboid shells

▪ shell fragments

 What are the trade-offs?
▪ Identify the right cuboids

▪ Some queries cannot be answered

▪ Costly updates

Face detection (FB tag friends)

User Engagement (retweets, likes...)

Recommendations (books, friends, …)

Analytics Processing:
produce analytical results that can be used by applications

Serving:
Make analytics result available for quick and easy access to
applications that are serving end users
(Information Retrieval System)

Application Application Application Application

Distributing (static) Content {CDN}

Distributing Applications

Caching Data

Distributed Data Storage

loadbalancing

loadbalancing

loadbalancing

 Final exam

▪ Fri, Jun 25, 2021 @ 9:00am

▪ Closed book

▪ Short answers, multiple choice, open answers

▪ Online (Zoom)

▪ Material

▪ Slides

▪ Required readings

▪ Tutorials

▪ Assignments

Interest in Data Science
Demonstrated interest in the general area of data science

Interest in Big Data Technologies
Demonstrated interest in big data systems & engineering

Interest in Big Data Analytics
Demonstrated interest in finding interesting patterns and
insights in large amounts of data

 EECS4414: Information Networks

▪ graph mining, network model, network analysis

▪ Probably offered next year (TBD)

 Data Mining Lab (http://dminer.eecs.yorku.ca)

▪ data mining

▪ graph mining

▪ big data analytics

▪ machine learning

▪ natural language processing (NLP)

▪ city science/IoT

http://dminer.eecs.yorku.ca/

(solid)

Math & Stat

(solid)

Programming

(interest in)

Data Mining & ML

You have worked
a lot…

…and (hopefully)
learned a lot!

Don’t forget to submit
your …

…course evaluation!

until Tue, Jun 22!

Happy Holiday

Thanks!
Contact:

Manos Papagelis, LAS 3050

papaggel@eecs.yorku.ca
www.eecs.yorku.ca/~papaggel/

mailto:papaggel@cse.yorku.ca
http://www.eecse.yorku.ca/~papaggel/

