

Computer Platforms
Distributed Commodity, Clustered High-Performance, Single Node

Data
Ingestion
ETL, Distcp,
Kafka,
OpenRefine,
…

Data
Serving
BI, Cubes,
RDBMS, Key-
value Stores,
Tableau, …

Storage Systems
HDFS, RDBMS, Column Stores, Graph Databases

Data Definition
SQL DDL, Avro, Protobuf, CSV

Batch Processing Platforms
MapReduce, SparkSQL, BigQuery, Hive, Cypher, ...

Stream Processing Platforms
Storm, Spark, ..

Query & Exploration
SQL, Search, Cypher, …

 Purpose

 To enable reporting

 To power real-time analytics in services/applications
(recommendation, fraud det.)

 Architectures for serving data depend on

 The consuming system (technical, non technical)

 The size of data (dashboards)

 The number of consumers (concurrency)

 Considerations

 Human/Machine?

 Scale?

 Reporting is
accomplished by
Business Intelligence
(BI) tools

 Real-time analytics are
accomplished by In-
application Analytics

 Popular Tools
 MicroStrategy

 Tableau

 Pentaho

 Cognos

 Spotfire

 Do-It-Yourself
 HTML5

 d3 and friends

 API to get to data

Understand the concept of a cube
How are cubes computed
Pros and cons of cubes

A manufacturing company wants to be able to
analyze and query information such as:
 How much did individual factories manufacture each: day,

week, month?
 How much was manufactured per: factory, state, country?
 How much was manufactured across different product lines?

 An efficient solution for
OLAP (online analytical
processing)

 Computation and storage
intensive
 different implementations and

optimizations

 Slicing
 Dicing
 Drill down & Roll up
 Pivoting

Pick one value along one dimension
Creates a cube with one dimension less

Pick specific value along multiple dimensions
Creates a smaller cube (all dimensions)

Change of level of granularity along a
dimension, for example product, time etc.

“Rotation” of cube for presentation of different
views of the data

ROLAP
Data stored in relational database
 Performance depends on

underlying query
 Generally slower than MOLAP
 Can be partially materialized and

partially based on dynamic
computation

MOLAP
Data stored in multidimensional array
 Good performance
 Pre-computed
 Proprietary query language and

structures

A data cube can be viewed
as a lattice of cuboids

Most generalized, 1 value
with complete aggregate
(all cities, all items, all years)

least generalized, each base value:
(Chicago, Peppers, 2015)

Per city, all items and all years

Per city, per item items, all years

Full cube computation of n-dimensional cube
requires 2n cuboids (exponential to the number
of dimensions) and is thus very expensive

Questions:
 How can we reduce the cost of computing a cube?
 What are the trade-offs?

 Only compute cuboids satisfying defined thresholds (iceberg
cuboids)

 Compute cuboids for a fixed number of dimensions (cuboid
shells)

 Compute cuboid shells with fixed granularity for each
dimension (shell fragments)

An Iceberg-Cube contains only those cells of the data cube that meet an
aggregate condition. The aggregate condition could be, minimum support,
lower bound on average, min or max. The purpose of the Iceberg-Cube is to
identify and compute only those values that will most likely be required for
decision support queries.

COMPUTE CUBE sales_iceberg as
SELECT monthly, city, customer_grp, count(*)
FROM salesinfo
CUBE BY month, city, customer_group
HAVING count(*) >= min_sup
-- min_sup is min expected count

Pros
 Computation can be reduced
 Storage can be reduced

Cons
 Some queries cannot be

answered
 Difficult to find/identify

the right threshold
 Incremental update is

costly (requires
recomputation)

Assumption: most queries are on a subset of
the dimensions d

Idea: compute a cube shell of all cuboids of k
dimension or less, where k << d

Ex: Assume a 60 dimensions cube; compute all
cuboids with 3 or less dimensions. Would
require to compute 36,050 cuboids*

* (60 choose 3) + (60 choose 2) + (60 choose 1) << 260 = 1.1529215e+18

Cube Shells still very expensive, many cuboids
to calculate

Idea: Only a few dimensions are used in
practice; fix some dimensions (from drill
down)

Shell Fragment is a Shell Cuboid with fixed
dimensions

Compute fragments offline

Have a fragment-aware query engine, compute
full cubes online

Pros
 Can trade-off offline and

online processing

Cons
 Identify the right

fragments

 Data cubes are very powerful for online
analytics processing

 There are ROLAP, MOLAP & HOLAP methods

 HOLAP stands for Hybrid OLAP

 Computing cubes is of exponential complexity

 There are various ways of reducing storage and
computation requirements

 Present statistics, analytics
 Recommend content items
 Adapt features to behaviour
 Detect patterns, recognize information, auto

label

Applications

Consumer
B2B

Marketing

Sales Support

Advertising Twitter

Uber
Facebook

ebay

shopping

Face detection (FB tag friends)

User Engagement (retweets, likes...)

Recommendations (books, friends, …)

Collaborative Filtering (CF)
 Similar items/users
 Recommend Item

CF Challenges
Accuracy
Scalability
Sparsity
Cold-start

Analytics Processing:
produce analytical results that can be used by applications

Serving:
Make analytics result available for quick and easy access to
applications that are serving end users
(Information Retrieval System)

Application Application Application Application

Distributing (static) Content {CDN}

Distributing Applications

Caching Data

Distributed Data Storage

loadbalancing

loadbalancing

loadbalancing

Sharding or Partitioning

Thread Pool Thread Pool Thread Pool Thread Pool

Loadbalancing

Thread Pool Thread Pool Thread Pool Thread Pool

In-memory cache

With
Memcached

Without
Memcached

Loadbalancing

Loadbalancing

 Things that need
consideration
 When to expire

content

 What content to
cache

 Personalization
 Streaming data/Real-time updates

Databases
 MySQL, Oracle DB, Postgres
 MongoDB, HBase,

Cassandra

Caching
 memcached
 Redis

Load Balancing
 Various HW solutions
 HAProxy

CDNs
 Amazon CloudFront
 Azure CDN
 Akamai

