EECS4415: (!ﬂ‘?m

Big Data Systems

Serving Data

Big Data Technology & Analytics

Query & Exploration
SQL, Search, Cypher, ...

Stream Processing Platforms
Data Storm, Spark, .. Data

Ingestion _ Serving
ETL, Distep, || Batch Processing Platforms Bl Cubes,

Kafka, MapReduce, SparkSQL, BigQuery, Hive, Cypher, ... RDBMS, Key-

OpenRefine, value Stores,
Data Definition Tableay, ...
SQL DDL, Avro, Protobuf, CSV

Storage Systems
HDFS, RDBMS, Column Stores, Graph Databases

Computer Platforms
Distributed Commodity, Clustered High-Performance, Single Node

Introduction

Purpose
To enable reporting

To power real-time analytics in services/applications
(recommendation, fraud det.)

Architectures for serving data depend on
The consuming system (technical, non technical)
The size of data (dashboards)

The number of consumers (concurrency)
Considerations

Human/Machine?
Scale?

Reporting

I t L4 []
e O rtl I I IS W B & o e £ R CF - Abc | (i~ | Normal sl LT
. - X
i _ || Credit Complaints By Product

J& Sheet 2 Product
Bank account or service [N
Consumer loan [l

accomplished by S

Money transfers ||

Other fin: ice |

Business Intelligence ... ==

Vertical Web Page o 500 1000 500 2000 2500 3000 3500 4000 4500

A Text Blank Number of Records

New objects Credit Complaints By State

Tiled Floating Number of Records
Layout a
Dashboard

i= Number of Records
Tiled ° g 60,628

Real-time analytics are .. Siohs o
accomplished by In- oo o vt e TG
application Analytics

_____)

wHaTsHoulD | | Like
READ NEXT? ‘—m 2/

Business Intelligence (Bl) Tools

How Does a Bl Tool Work?

Popular Tools

Data Sources Extract Data Data Bl Tool M IcrOStrategy
(Transform) Warehouse Modelling
Load Tableau
\ Pentaho
Cognos
" — \ > / Spotfire
/ . Do-It-Yourself
Bl tool HTM L5
d3 and friends

APl to get to data

OLAP/Data Cubes & Cuboids

Goals

Understand the concept of a cube
How are cubes computed
Pros and cons of cubes

The Business Problem

A manufacturing company wants to be able to

analyze and query information such as:

How much did individual factories manufacture each: day,
week, month?

How much was manufactured per: factory, state, country?
How much was manufactured across different product lines?

The Solution: Data Cubes

An efficient solution for
OLAP (online analytical
processing)

Computation and storage
intensive

different implementations and
optimizations

By type and year

By year
2009
2008 2011
2010 o2 Y Pe
\ﬁ Desktop
sum ———_
-——-__,.‘l Laptop
By year
bargr?d By brand
I and
Ul Dell type
Sony
Il =

By brand

Operations on Data Cubes

Slicing

Dicing

Drill down & Roll up
Pivoting

Slicing

Pick one value along one dimension
Creates a cube with one dimension less

2004
2006 7.
2005 /S s s
2004

P 7 Campingausristung

Campingausristung

Accessoires
Accessoires
Outdoor-Schutzausriistung
Outdoor-Schutzausristung

Golfausristung
Golfausristung

Bergsteigerausristung

Bergsteigerausriistung v

> Nordeuropa Sl'Jdeuropa>
Nordeuropa Stideuropa Mitteleuropa
Mitteleuropa

Dicing

Pick specific value along multiple dimensions
Creates a smaller cube (all dimensions)

2006
4
2020910V — 2006
rd V4 2005)(P4

2004 — e

Campingausristung
Accessoires
Accessoires

Outdoor-Schutzausriistung
Outdoor-Schutzausriistung

Golfausristung
Golfausristung

Nordeuropa Stdeuropa
Bergsteigerausristung v Mitteleuropa

Nordeuropa Siideuropa
Mitteleuropa

Drill down & Roll up

Change of level of granularity along a
dimension, for example product, time etc.

Campingausristung

Pivoting

“Rotation” of cube for presentation of different
views of the data

"8Ste;
Oy Clge
tdoor\ S, GO/fa ra"Srg
Cb(l(US’U Sl‘un
2005 > A Comy,. A STy, "8
Mpj, ¢ St
| 2z () €s,. . ~Un,
2004 4 v 4 ng""sfussf”es 8,
Campingausristung Ung
Accessoires - 2—006
Outdoor-Schutzausriistung 2005
2004
Golfausriistung
Nordeuropa Siideurop?

Bergsteigerausriistung v Mitteleuropa

Nordeuropa Stideuropa
Mitteleuropa

ROLAP / MOLAP

ROLAP MOLAP
Data stored in relational database Data stored in multidimensional array
Performance depends on Good performance
underlying query Pre-computed
Generally slower than MOLAP Proprietary query language and
Can be partially materialized and structures

partially based on dynamic
computation

e~~~ Relational Multidimensional ~ =

Data cubes and cuboids

A data cube can be viewed ViesseaaElbed, sl
] . with complete aggregate
dS d |attlce Of CUbOldS (all cities, all items, all years)

(PR) 0-D (apex) cuboid

1-I? cuboids

Per city, all items and all years 7(C
\

2-I» cubolds

Per city, per item items, all years 7(

3-Id (hase) cuboid

T
least generalized, each base value: { !
N [city, item, vear) V4

(Chicago, Peppers, 2025) | S ~_____--

The Technical Problem

Full cube computation of n-dimensional cube
requires 2" cuboids (exponential to the number
of dimensions) and is thus very expensive

Questions:

How can we reduce the cost of computing a cube?
What are the trade-offs?

Strategies to address scale issue

Only compute cuboids satisfying defined thresholds (iceberg
cuboids)

Compute cuboids for a fixed number of dimensions (cuboid
shells)

Compute cuboid shells with fixed granularity for each
dimension (shell fragments)

lceberqg cubes

An Iceberg-Cube contains only those cells of the data cube that meet an
aggregate condition. The aggregate condition could be, minimum support,
lower bound on average, min or max. The purpose of the Iceberg-Cube is to

identify and compute only those values that will most likely be required for
decision support queries.

COMPUTE CUBE sales_iceberg as

SELECT monthly, city, customer_grp, count(*)
FROM salesinfo

CUBE BY montbh, city, customer_group
HAVING count(*) >= min_sup
-- min_sup is min expected count

lceberqg cubes

Pros

Computation can be reduced
Storage can be reduced

Cons

Some queries cannot be
answered

Difficult to find/identify
the right threshold
Incremental update is
costly (requires
recomputation)

Cube Shell and Shell Fragments

Assumption: most queries are on a subset of
the dimensions d

Idea: compute a cube shell of all cuboids of k
dimension or less, where k<< d

Ex: Assume a 60 dimensions cube; compute all

cuboids with 3 or less dimensions. Would
require to compute 36,050 cuboids*

* (60 choose 3) + (60 choose 2) + (60 choose 1) << 260 = 1.1529215e+18

Shell Fragment

Cube Shells still very expensive, many cuboids
to calculate

Idea: Only a few dimensions are used in
practice; fix some dimensions (from drill
down)

Shell Fragments

Shell Fragment is a Shell Cuboid with fixed
dimensions

Compute fragments offline

Have a fragment-aware query engine, compute
full cubes online

Shell Fragments

Pros Cons
Can trade-off offline and ldentify the right
online processing fragments

Data cubes are very powerful for online

analytics processing
There are ROLAP, MOLAP & HOLAP methods

HOLAP stands for Hybrid OLAP
Computing cubes is of exponential complexity

There are various ways of reducing storage and
computation requirements

In-Application Analytics

What is “in-application analytics”

Present statistics, analytics

Recommend content items

Adapt features to behaviour

Detect patterns, recognize information, auto

label

Types -- Examples

Applications
Consumer B2B
Twitter ebay Marketing Advertising
shoppin
Uber PP

Facebook Sales Support

Feature Examples

Face detection (FB tag friends)

User Engagement (retweets, likes...)

Recommendations (books, friends, ...) LT

WHAT SHOULD |
READ NEXT?

Recommendations

Collaborative Filtering (CF)
Similar items/users @éougm . : /é
Recommend Item oD sintior S BOUOHL @

< 11\k LN

CF Challenges commend . &
Accuracy
Scalability
Sparsity

Cold-start

Serving at-Scale

Application Application Application Application

' ' ' !

Serving:

Make analytics result available for quick and easy access to
applications that are serving end users

(Information Retrieval System)

e T T

Analytics Processing:
produce analytical results that can be used by applications

Scaling Principles

Distributing (static) Content {CDN}

loadbalancing

Distributing Applications

loadbalancing

Caching Data

loadbalancing

Distributed Data Storage

Distributed Data Storage/Serving

Sharding or Partitioning

Loadbalancing

Thread Pool Thread Pool Thread Pool Thread Pool

D EE E

Data Sharing (Horizontal Partit.)

Key Name Description Stock Price LastOrdered
ARCL | Arc welder | 250 Amps 8 119.00 | 25-Mow-2013
BRKS | Bracket 250mm 46 566 | 18-Now-2013
BRKS | Bracket A400mm 82 6.98 1-Jul-2013
HOS8 Hose 1/2" 27 2750 | 18-Aug-2013
WGT4| Widget Green 16 | 13.99 | 3-Feb-2013
WGTE| Widget Purple TG 1399 | 31-Mar-2013

I'4

Key Name Description Stock Price LastOrdered

ARCL | Arc welder | 250 Amps B

119,00 | 25-Mov-2013

| BRK& | Bracket 250mm 46
| BRKS | Bracket 400mm 82

£.98

5.66 | 18-Nov-2013 |
1-Jul-2013

M

Key Name Description Stock Price LastOrdered
HOSE Hose | 1/2" 27 | 27.50 | 18-Aug-2013
WGT4 | Widget Green 16 | 1399 | 3-Feb-2013

|\WGT6| Widget | Purple

| 76 | 1399 | 31-Mar-2013 |

Data Sharing (Vertical Partit.)

Key Mame Description Stock Price LastOrdered
ARCY | Arc welder | 250 Amps 8 119.00 | 25-Nov-2013
BRKB | Bracket 250mm 46 566 | 18-Nov-2013
BRKS | Bracket 400mm 82 6.98 1-Jul-2013

HOS8 Hose 1/2° 27 | 27.50 | 18-Aug-2013
WGET4| Widget Green 16 1399 | 3-Feb-2013

WGTE| Widget Purple 76 | 13.99 | 31-Mar-2013

I'4

Key Name Description Price
ARCL | Arc welder | 250 Amps | 119.00
BRKE | Bracket 250mm 5.66
BRKY | Bracket 400mm 6.98
HO58 Hose 1/2" 2750

\WGT4| Widget Green 13.99 |
WGTE| Widget Purple 13.99

M

Key Stock LastOrdered

ARC] a 25-MNov-2013
BRKE | 46 | 18-Mov-2013
BRKS | 82 1-Jul-2013

HOS8 | 27 | 18-Aug-2013
WGT4| 16 3-Feb-2013
WGTe| 76 | 31-Mar-2013

Data Caching

[In-memory cache]

Thread Pool Thread Pool Thread Pool Thread Pool

D EE E

Caching Layer

function get foo(int userid) {
= db_select("SELECT * FROM users WHERE userid = ?", userid);

. data =
WIthOUt return data;
Memcached

—

function get foo(int userid) {
/* first try the cache */
data = memcached fetch("userrow:'
if (!data) {
. /* not found : request database */
\A/Ith data = db_select("SELECT * FROM users WHERE userid = ?", userid);
/* then store in cache until next get #*/

M e mcaChed memcached add('"userrow:" + userid, data);
}

return data;

+ userid);

Distributing Applications

Content Delivery Network (CDN)

! H B B
ool :
?
: L -

%%5 %%1 %%5

(4

CDN Request, Edge Servers

First Request

GET /foo.png GET /foo.png

> > Things that need
f ? — ; consideration
o Edga Server R Origin Server When to expire
content
Second Request What content to

&/

GET /foo.png cache
h b
=
foo.png =

Edge Server Origin Server

Personalization
Streaming data/Real-time updates

Technologies

Databases Load Balancing
MySQL, Oracle DB, Postgres Various HW solutions
MongoDB, HBase, HAProxy
Cassandra

. DN
Caching CDNs
Amazon CloudFront
memcached
. Azure CDN
Redis

Akamai

Questions?

