Making Big Data Processing
Simple with Spark

Matei Zaharia
December 17,2015 databriCkSm

What is Apache Spark’

Fast and general cluster computing engine that
generalizes the MapReduce model

Makes it easy and fast to process large datasets
 High-level APIs in Java, Scala, Python, R
« Unified engine that can capture many workloads

€databricks

A Unified Engine

Spark MLLib
Spark SQL Streaming machine

real-time learning

structured data

€databricks

A Large Community

Contributors / Month to Spark

120

Contributors
(00)
O

2010 2011 2012 2013 2014 2015
€databricks

Overview

Why a unified engine?
Spark programming model
Built-in libraries

Applications

€databricks

History: Cluster Computing

2004

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with

€databricks

MapReduce

A general engine for batch processing

We wrote the first version of the MapReduce library in
February of 2003, and made significant enhancements to
it in August of 2003, including the locality optimization,
dynamic load balancing of task execution across worker
machines, etc. Since that time, we have been pleasantly
surprised at how broadly applicable the MapReduce li-
brary has been for the kinds of problems we work on.
It has been used across a wide range of domains within
Google, including:

€databricks

Beyond MapReduce

MapReduce was great for batch processing, but
users quickly needed to do more:

« More complex, multi-pass algorithms
« More interactive ad-hoc queries
« More real-time stream processing

Result: specialized systems tor these workloads

€databricks

Big

Data Systerns Today

Pregel
s Giraph
Dremel pyil
MapReduce
Impala Presto
Storm S4 ...
General batch Specialized systems
processing for new workloads

€databricks

Problems with Specialized Systems

More systems to manage, tune, deploy

Can’t easily combine processing types
* Even though most applications need to do this!
« E.g. load data with SQL, then run machine learning

In many cases, data transfer between engines is a

dominant cost!

€databricks

MapReduce

General batch
processing

€databricks

Big Data Systems Today

P
rege Giraph

Dremel pyil
Impala Presto

Storm S4 ...

Specialized systems
for new workloads

szr‘/(\z

Unified engine

Overview

Why a unified engine?
Spark programming model
Built-in libraries

Applications

€databricks

Background

Recall 3 workloads were issues for MapReduce:
« More complex, multi-pass algorithms
« More interactive ad-hoc queries
« More real-time stream processing

While these look different, all 3 need one thing
that MapReduce lacks: efficient data sharing

€databricks

Data Sharing in MapReduce

HDFS HDFS HDFS HDFS

read write read write
C F— ; F—
‘|IIII%——ﬂlﬁﬁﬂﬂlf—*J'iiiiT—-ﬂlﬁﬁﬂllf——*liiiii——* C.

Input

result 1

result 2

result 3

Slow due to replication and disk I/O

Wh

at
We'd T ik
e

\\\\\\\\\\\\\\\\\\\\‘X
N

Input

on

e-ti

pr Im

oceSSnf
g

\\‘»*@\“\

\\\\\\\\\\\\\\\\\\\\\‘\\\\\\\\\\\\\\\\
\\\\\\\‘\\\\\\

gt

D.
Inswtribute
emowd

Input

€databr ,
0-1
00x
fas
te
rthan ™
WO
rk 3
nd di
ISk

Spark Programming Model

Resilient Distributed Datasets (RDDs)

» Collections of objects stored in RAM or disk across cluster
« Built via parallel transformations (map, filter, ...)
« Automatically rebuilt on failure

€databricks

Example: Log Mining

Load error messages from a log into memory, then
interactively search for various patterns

. . Bas Transformed RDD
lines = spark.textFile(“hdfs://...”) results

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t’)[2])

messages.cache()

messages.filter(lambda s: “MySQL” in s).count()

messages.filter(lambda s: “Redis™ in s).count()

[T k

Example: full-text search of Wikipedia

in 0.5 sec (vs 20s for on-disk data)

Block 3
ssg

€databricks

Fault Tolerance

RDDs track lineage info to rebuild lost data

file.map(lambda rec: (rec.type, 1))
.reduceByKey(lambda x, y: x + y)
.filter(lambda (type, count): count > 10)

reduce filter

Input file

,,,,,
BN

i
&0
4 X
SRR
=i \
] ¥
S
3 S
\ it}
-1
ke 11
> i
< i
N
e
= v
RN
SIS
s
8 it
SIS
=]
=
= >
[\
) b
NG
RSN
=
SISIS

€databric

Fault Tolerance

RDDs track lineage info to rebuild lost data

file.map(lambda rec: (rec.type, 1))
.reduceByKey(lambda x, y: x + y)
.filter(lambda (type, count): count > 10)

reduce filter

Input file

=N

i iy
)
i
SR
=i i
b
2
\ i
=
ke]
_ i
"
= s
HEe
SIS
s
i
SIS
-~
\ ESE
SIS
= S
B
R\
-\
=1\ i
)
ISISh
.....)
=
SISIS

€databric

Example: Logistic Regression

4000
. 3500 110 s/ iteration
£ 3000 J/
()
.§ 2500
%0 2000 W Hadoop
c 1500 ® Spark
* 1000 \

500

- first iteration 80 s

furtheriterations 1s
1 5 10 20 30

Number of Iterations

€databricks

On-Disk Pertormance

Time tosort 100TB

2013 Record: 2100 machines cocccocccs
Hadoop

72 minutes

2014 Record: 207 machines
Spark

23 minutes

‘ databricksw Source: Daytona GraySort benchmark, sortbenchmark.org

Libraries Built on Spark

Spark MLLib
Spark SQL Streaming machine

real-time learning

structured data

€databricks

Combining Processing Types

// Load data using SQL
points = ctx.sqgl(“select Tatitude, longitude from tweets”)

// Train a machine learning model
model = KMeans.train(points, 10)

// Apply 1t to a stream
sc.twitterStream(...)

.map(lambda t: (model.predict(t.location), 1))
.reduceBywindow(“5s”, Tlambda a, b: a + b)

€databricks

Combining Processing Types

Separate systems:

HDFES = HDFS HDES % HDES HDES
read Y write read = write read

€databricks

Performance vs Specialized Systems

yieds
je1ydes

)

1noye

) ()) ()) ()
LO < ™M ™ —

(uilw) sawi| asuodsay

60

wedg

1S

o n o n o N O
M N N o~

(dpou/s/gn) indysnouy |

35

(Wawl)

(Msip) yleds
Uswl) e

vieds

SAIH

O) O - ()

(09S) awli] asuodsay

Streaming ML

SQL

€databricks

Some Recent Additions

DataFrame API (similar to R and Pandas)
 Easy programmatic way to work with structured data

R interface (SparkR)

Machine learning pipelines (like SciKit-learn)

€databricks

Overview

Why a unified engine?
Spark programming model
Built-in libraries

Applications

€databricks

Spark Community

Over 1000 deployments, clusters up to 8000 nodes

AHOO)! I\V =3 (inte) oo
YAHOO! «gpazn Al Z22 (inted Jgrion

@ edat oRACLE Y ebay

NBCUniversal """ €2 NETFLIX NTTDaTa

(RAERA R HHMI a ooy
.c||s.c|o: Janeliaﬁ 7673157”(’4 DATASTAHAX.?

. a .
€databricks M8 cloudera

gdatabricks Many talks online at spark-summit.org

Top Applications

Business Intelligence
Data Warehousing
Recommendation

Log Processing

User-Facing Services

Faud Detection / Security

€databricks

Spark Components Used

Spark SQL

DataFrames

of users use more
than one component

Spark Streaming

MLLib + GraphX

€databricks

Learn More

Get started on your laptop: spark.apache.org

Resources and MOOCs: sparkhub.databricks.com

Spark Summit: spark-summit.org

Spar‘lgZ

€databricks

