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What is Apache Spark’

Fast and general cluster computing engine that
generalizes the MapReduce model

Makes it easy and fast to process large datasets
 High-level APIs in Java, Scala, Python, R
« Unified engine that can capture many workloads
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A Unified Engine

Spark MLLib
Spark SQL Streaming machine

real-time learning

structured data
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A Large Community

Contributors / Month to Spark
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Overview

Why a unified engine?
Spark programming model
Built-in libraries

Applications
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History: Cluster Computing

2004

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
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MapReduce

A general engine for batch processing

We wrote the first version of the MapReduce library in
February of 2003, and made significant enhancements to
it in August of 2003, including the locality optimization,
dynamic load balancing of task execution across worker
machines, etc. Since that time, we have been pleasantly
surprised at how broadly applicable the MapReduce li-
brary has been for the kinds of problems we work on.
It has been used across a wide range of domains within
Google, including:
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Beyond MapReduce

MapReduce was great for batch processing, but
users quickly needed to do more:

« More complex, multi-pass algorithms
« More interactive ad-hoc queries
« More real-time stream processing

Result: specialized systems tor these workloads
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Problems with Specialized Systems

More systems to manage, tune, deploy

Can’t easily combine processing types
* Even though most applications need to do this!
« E.g. load data with SQL, then run machine learning

In many cases, data transfer between engines is a

dominant cost!
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MapReduce

General batch
processing
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Spark programming model
Built-in libraries

Applications
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Background

Recall 3 workloads were issues for MapReduce:
« More complex, multi-pass algorithms
« More interactive ad-hoc queries
« More real-time stream processing

While these look different, all 3 need one thing
that MapReduce lacks: efficient data sharing
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Data Sharing in MapReduce

HDFS HDFS HDFS HDFS

read write read write
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Input

result 1

result 2

result 3

Slow due to replication and disk I/O
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Spark Programming Model

Resilient Distributed Datasets (RDDs)

» Collections of objects stored in RAM or disk across cluster
« Built via parallel transformations (map, filter, ...)
« Automatically rebuilt on failure
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Example: Log Mining

Load error messages from a log into memory, then
interactively search for various patterns

. . Bas  Transformed RDD
lines = spark.textFile(“hdfs://...”) results

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t’)[2])

messages.cache()

messages.filter(lambda s: “MySQL” in s).count()

messages.filter(lambda s: “Redis™ in s).count()

[T k

Example: full-text search of Wikipedia

in 0.5 sec (vs 20s for on-disk data)

Block 3
ssg
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Fault Tolerance

RDDs track lineage info to rebuild lost data

file.map(lambda rec: (rec.type, 1))
.reduceByKey(lambda x, y: x + y)
.filter(lambda (type, count): count > 10)

reduce filter

Input file
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Fault Tolerance

RDDs track lineage info to rebuild lost data

file.map(lambda rec: (rec.type, 1))
.reduceByKey(lambda x, y: x + y)
.filter(lambda (type, count): count > 10)

reduce filter

Input file
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Example: Logistic Regression
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On-Disk Pertormance

Time tosort 100TB

2013 Record: 2100 machines cocccocccs
Hadoop

72 minutes

2014 Record: 207 machines
Spark

23 minutes

‘ databricksw Source: Daytona GraySort benchmark, sortbenchmark.org



Libraries Built on Spark

Spark MLLib
Spark SQL Streaming machine

real-time learning

structured data
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Combining Processing Types

// Load data using SQL
points = ctx.sqgl(“select Tatitude, longitude from tweets”)

// Train a machine learning model
model = KMeans.train(points, 10)

// Apply 1t to a stream
sc.twitterStream(...)

.map(lambda t: (model.predict(t.location), 1))
.reduceBywindow(“5s”, Tlambda a, b: a + b)
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Combining Processing Types

Separate systems:

HDFES = HDFS HDES % HDES HDES
read Y write read = write read
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Performance vs Specialized Systems
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Some Recent Additions

DataFrame API (similar to R and Pandas)
 Easy programmatic way to work with structured data

R interface (SparkR)

Machine learning pipelines (like SciKit-learn)
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Spark Community

Over 1000 deployments, clusters up to 8000 nodes
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Top Applications

Business Intelligence
Data Warehousing
Recommendation

Log Processing

User-Facing Services

Faud Detection / Security
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Spark Components Used

Spark SQL

DataFrames

of users use more
than one component

Spark Streaming

MLLib + GraphX
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Learn More

Get started on your laptop: spark.apache.org

Resources and MOOCs: sparkhub.databricks.com

Spark Summit: spark-summit.org
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