SCALABLE STREAMING ANALYTICS

KARTHIK RAMASAMY

@KARTHIKZ

TALK OUTLINE

WHAT IS ANALYTICS? according to Wikipedia

DISCOVERY

COMMUNICATION

Provide insights in a meaningful way

Ability to identify patterns in data

UBE ANALYTICS

TYPES OF ANALYTICS varieties

PREDICTIVE ANALYTICS

DIMENSIONS OF ANALYTICS variants

STREAMING

Ability to analyze the data immediately after it is produced

INTERACTIVE

Ability to provide results instantly when a query is posed

BATCH

Ability to provide insights after several hours/days when a query is posed

STREAMING VS INTERACTIVE

INTERACTIVE ANALYTICS

STREAMING ANALYTICS

Real time alerts, Real time analytics Continuous visibility

Results

Data Storage Data Stream Processing

Queries

STREAMING SYSTEMS first generation – SQL based

NIAGARA Query Engine

Aurora Stream Processing Engine

Cayuga – Stateful Event Monitoring

Stanford Stream Data Manager

Borealis Distributed Stream Processing Engine

STREAMING SYSTEMS next generation - too many

S4 distributed stream platform

Samza

PULSAR

STORM

STORM OVERVIEW

WHAT IS STORM?

Streaming platform for analyzing realtime data as they arrive, so you can react to data as it happens.

HORIZONTAL SCALABILITY

ROBUST FAULT TOLERANCE

CONCISE **CODE-FOCUS ON LOGIC**

TOPOLOGY

Directed acyclic graph

SPOUTS

BOLTS

Examples – filtering/aggregation/join/arbitrary function

- Vertices = computation, and edges = streams of data tuples

- Sources of data tuples for the topology
- Examples Kafka/Kestrel/MySQL/Postgres

Process incoming tuples and emit outgoing tuples

SPOUT 1

SPOUT 2

WORD COUNT TOPOLOGY

Live stream of Tweets

TWEET SPOUT

PARSE TWEET BOLT

LOGICAL PLAN

WORD COUNT TOPOLOGY

TWEET SPOUT TASKS

PARSE TWEET BOLT TASKS

WORD COUNT BOLT TASKS

When a parse tweet bolt task emits a tuple which word count bolt task should it send to?

SHUFFLE GROUPING

STREAM GROUPINGS

WORD COUNT TOPOLOGY

SHUFFLE GROUPING

TWEET SPOUT TASKS

FIELDS GROUPING

PARSE TWEET BOLT TASKS

STORM INTERNALS

STORM ARCHITECTURE

TOPOLOGY SUBMISSION

SYNC CODE

SLAVE NODE

MASTER NODE

Nimbus

ASSIGNMENT MAPS

ZK CLUSTER

............

SUPERVISOR w1 w2 w3 w4

SLAVE NODE

STORM WORKER

JVM PROCESS

EXECUTOR

Large amount of data produced every day

Largest storm cluster

1 stage

Several topologies deployed

Several billion messages every day

8 stages

STORM ARCHITECTURE

TOPOLOGY **SUBMISSION**

Multiple Functionality Scheduling/Monitoring

SLAVE NODE

STORM WORKER

TASK2

TASK3

JVM PROCESS

OVERLOADED ZOOKEEPER Scaled up

ZK

STORM

Handled unto to 1200 workers per cluster

S1

OVERLOADED ZOOKEEPER Analyzing zookeeper traffic

67%

KAFKA SPOUT

33%

STORM RUNTIME

Workers write heart beats every 3 secs

Offset/partition is written every 2 secs

OVERLOADED ZOOKEEPER Heart beat daemons

STORM

EVOLUTION OR REVOLUTION? fix storm or develop a new system?

- FUNDAMENTAL ISSUES REQUIRE EXTENSIVE REWRITING
- Several queues for moving data
- Inflexible and requires longer development cycle

- **USE EXISTING OPEN SOURCE SOLUTIONS**
- Issues working at scale/lacks required performance
- Incompatible API and long migration process

HERON

*

Directed acyclic graph

No Clojure C++/JAVA/Python

- FULLY API COMPATIBLE WITH STORM
- Topologies, spouts and bolts

USE OF WELL KNOWN LANGUAGES

HERON ARCHITECTURE

TOPOLOGY SUBMISSION

Aurora ECS

YARN Mesos

Topology 1

Topology 2

Topology 3

Topology N

TOPOLOGY ARCHITECTURE

CONTAINER

Solely responsible for the entire topology

ASSIGNS ROLE

MONITORING

TOPOLOGY MASTER

Topology Master

PREVENT MULTIPLE TM BECOMING MASTERS

ALLOWS OTHER PROCESS TO DISCOVER TM

ROUTES TUPLES

Routing Engine

BACKPRESSURE

STREAM MANAGER

STREAM MANAGER tcp back pressure

SLOWS UPSTREAM AND DOWNSTREAM INSTANCES

STREAM MANAGER spout back pressure

STREAM MANAGER back pressure advantages

PREDICTABILITY
Tuple failures are more deterministic
SELF ADJUSTS
Topology goes as fast as the slowest component

Does the real work!

EXPOSES API

HERON INSTANCE

BOUNDED QUEUES - TRIGGERS GC IN LARGE TOPOLOGIES

GATHERS METRICS

Optical Nerve

HERON PERFORMANCE

HERON PERFORMANCE Latency with acknowledgements enabled – Word Count Topology

Storm

HERON PERFORMANCE CPU usage with acknowledgements enabled – Word Count Topology

Storm

HERON PERFORMANCE Throughput with no acknowledgements – Word count topology

Storm

HERON PERFORMANCE CPU usage with no acknowledgements – Word Count Topology

Storm

HERON PERFORMANCE Latency with acknowledgements enabled – RTAC Topology

Storm

OPERATIONAL EXPERIENCES

Aurora

HERON DEPLOYMENT

OPERATIONAL EXPERIENCE

SERVICE-LESS

All topologies run under topology owner's role

DEVELOPER EXPERIENCE

DEBUG

MIGRATION EXPERIENCE

CURRENT WORK

CURRENT WORK

SERIALIZATION

TUNING

OUESTIONS AND ANSWERS

