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Interactive Queries on Large 
Data 

 
 

 

 

 

 

• Input/Output 

‐ Sequentially reading  a Terabyte from disk in a second 
requires ~20,000 parallel reads! 

• Processing 

‐ CPU-intensive queries may need to run on thousands of 
cores to complete within a second. 

‐ Dealing with failures and stragglers is essential. 
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• Input/Output 

‐ Sequentially reading  a Terabyte from disk in a second 
requires ~20,000 parallel reads! [Nested Columnar 
Storage] 

• Processing 

‐ CPU-intensive queries may need to run on thousands of 
cores to complete within a second. [Hierarchical Query 
Processing] 

‐ Dealing with failures and stragglers is essential. 
[Profiles, Duplicates or Ignores Them] 
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Read Less; Cheaper Decompression! 



Nested Columnar Storage 

message Document { 

  required int64 DocId; 

  optional group Links { 

    repeated int64 Backward; 
    repeated int64 Forward; 

  } 

  repeated group Name { 

    repeated group Language { 

      required string Code; 

      optional string Country; 

    } 

    optional string Url; 

  } 

} 
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Building Columns 

Repetition (r) and definition (d) levels encode the structural 
delta between the current value and the previous value. 
 
(r):  Length of common path prefix 
(d): Number of fields in the path that could be optional but 
are actually present 
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Hierarchical Query Processing 
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• Optimized for Select-Project-Aggregate 
queries. 

‐ Single Scan over Data 

‐ Recursive Reducers 

• Defers discussion of joins, indexing, updates 
etc. to future work. 

• Scheduler’s Secret Sauce. 
 

Hierarchical Query Processing 



Duplicate/Ignore Stragglers 
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Comments/Critiques 



Does Dremel really require a 
new execution engine? 

 
 

 

 

 



What’s really novel about 
Aggregation Trees? 

• Very similar to the MapReduce model (Leaf 
servers run Map tasks and Aggregators are 
Reduce tasks) 

• Partial Aggregates/Recursive Reducers have 
already been proposed by Traditional 
Databases as well as SCOPE/Dryad. 
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requires ~20,000 parallel reads! [Sampling? In-memory 
RDDs?] 

• Processing 

‐ CPU-intensive queries may need to run on thousands of 
cores to complete within a second. [Better Data 
Partitioning?] 

‐ Dealing with failures and stragglers is essential. [Giving 
Answers with Bounded Errors/Confidence Intervals?] 

 

 
 
 

 

 

 



Thank You! 

 

 

 
 
 
 
 

 

 

 




