Dremel: Interactive Analysis of
Web-Scale Datasets

Sergey Melnik, Andrey Gubarey, Jing Jing Long, Geoffrey
Romer, Shiva Shivakumar, Matt Tolton, Theo Vassilakis

Go ugle "

Adapted by: Sameer Agarwal

Dremel: Interactive Analysis of
Web-Scale Datasets

Interactive Queries on Large
Data

* Input/Output

- Sequentially reading a Terabyte from disk in a second
requires ~20,000 parallel reads!

* Processing

- CPU-intensive queries may need to run on thousands of
cores to complete within a second.

- Dealing with failures and stragglers is essential.

Interactive Queries on Large
Data

* Input/Output

- Sequentially reading a Terabyte from disk in a second
requires ~20,000 parallel reads! [Nested Columnar
Storage]

* Processing

- CPU-intensive queries may need to run on thousands of
cores to complete within a second.

- Dealing with failures and stragglers is essential.

Interactive Queries on Large
Data

* Input/Output

- Sequentially reading a Terabyte from disk in a second
requires ~20,000 parallel reads! [Nested Columnar
Storage]

* Processing

- CPU-intensive queries may need to run on thousands of
cores to complete within a second. [Hierarchical Query
Processing]

- Dealing with failures and stragglers is essential.

Interactive Queries on Large
Data

* Input/Output

- Sequentially reading a Terabyte from disk in a second
requires ~20,000 parallel reads! [Nested Columnar
Storage]

* Processing
- CPU-intensive queries may need to run on thousands of

cores to complete within a second. [Hierarchical Query
Processing]

- Dealing with failures and stragglers is essential.
[Profiles, Duplicates or Ignores Them]

Nested Columnar Storage

DocId: 10 r
Links 1
Forward: 20
Name
Language
Code: 'en-us'
Country: 'us'
Url: 'http://A’'
Name
Url: 'http://B'

Nested Columnar Storage

A
B(\E
W oo
1
L iy B rI
1
rzl

r2I
r2I

Read Less; Cheaper Decompression!

Nested Columnar Storage

message Document ({
required int64 DocId;
optional group Links ({
repeated int64 Backward;
repeated int64 Forward;
}
repeated group Name {
repeated group Language ({
required string Code;
optional string Country;
}
optional string Url;

}

DocId: 10
Links
Forward: 20
Forward: 40
Forward: 60
Name
Language
Code: 'en-us'
Country: 'us'
Language
Code: 'en'
Url: 'http://A'
Name
Url: 'http://B'
Name
Language
Code: 'en-gb'
Country: 'gb'

Nested Columnar Storage

Name.Url

value r d
10 0o o http://[A o 2
20 0O o http://B 1 2
NULL 1 1

Ve

Links.Forward

20 o 2
40 1 2
60 1 2

Name.Language.Country]

en-us o 2 us 0]
en 2 2 NULL 2
NULL 1 1 NULL 1

en-gb 1 2 gb 1

DocId: 10
Links
Forward: 20
Forward: 40
Forward: 60
Name
Language
Code: 'en-us'
Country: 'us'
Language
Code: 'en'
Url: 'http://A'
Name
Url: 'http://B'
Name
Language
Code: 'en-gb'
Country: 'gb'

Building Columns

(Name.Language.Code

Repetition (r) and definition (d) levels encode the structural
delta between the current value and the previous value.

(r): Length of common path prefix
(d): Number of fields in the path that could be optional but
are actually present

en-us o0 2 r,..Name,.Language,.Code: 'en-us'*

\

DocId: 10 rl
Links
Forward: 20
Forward: 40
Forward: 60
Name
Language
. Code: 'en-us'
~" Country: 'us'
‘ Language
Code: 'en'
Url: 'http://A’'
Name
Url: 'http://B'
Name
Language
Code: 'en-gb'
Country: 'gb'

DocId: 20 r
Links 2
Backward: 10
Backward: 30
Forward: 80

Name
Url: 'http://C'

Building Columns

(Name.Language.Code

'
'
e

r,.Name,.Language,.Code: 'en-us‘* _.-

L@t
-

r,.Name,.Language,.Code: 'en "

DocId: 10 rl
Links
Forward: 20
Forward: 40
Forward: 60

Name

Language

. Code: 'en-us'
~" Country: 'us'
‘ Language

_..-—Code: 'en'
" Url: 'http://A’
Name
Url: 'http://B'
Name
Language
Code: 'en-gb'
Country: 'gb'

DocId: 20 r
Links 2
Backward: 10
Backward: 30
Forward: 80

Name
Url: 'http://C'

Building Columns

(Name.Language.Code

'
'
e

r,.Name,.Language,.Code: 'en-us‘* _.-

L@t
-

DocId: 10 rl
Links
Forward: 20
Forward: 40
Forward: 60

Name

Language

. Code: 'en-us'
~" Country: 'us'
‘ Language

_..-—Code: 'en'
" Url: 'http://A’
Name
Url: 'http://B'
Name
Language
Code: 'en-gb'
Country: 'gb'

DocId: 20 r
Links 2
Backward: 10
Backward: 30
Forward: 80

Name
Url: 'http://C'

Building Columns

en-us

en

NULL

en-gb

(Name.Language.Code

'
'
e

r,.Name,.Language,.Code: 'en-us‘* _.-

L@t
-

r,.Names.Language;.Code: 'en-gb' «-._ |
— .

DocId: 10 rl
Links

Forward: 20

Forward: 40

Forward: 60
Name

Language

. Code: 'en-us'
~" Country: 'us'
‘ Language
_...--Code: 'en'

-

Url: 'http://A’'
Name
Url: 'http://B'
Name
Language
""Code: 'en-gb'
Country: 'gb'

DocId: 20 r
Links 2
Backward: 10
Backward: 30
Forward: 80

Name
Url: 'http://C'

Building Columns

en-us

en

NULL

en-gb

NULL

(Name.Language.Code

'
'
e

r,.Name,.Language,.Code: 'en-us‘* _.-

L@t
-

r,.Names.Language;.Code: 'en-gb’ <-._ |
—_— .

r,.Name; «

DocId: 10 rl
Links
Forward: 20
Forward: 40
Forward: 60
Name
Language
. Code: 'en-us'
~" Country: 'us'
‘ Language
_...--Code: 'en'
Url: 'http://A'
Name
Url: 'http://B'
Name
Language
""Code: 'en-gb'
Country: 'gb'

-

DocId: 20 r
Links 2
Backward: 10
Backward: 30
Forward: 80

Name
Url: 'http://C'

Retrieving Columns

1@ Links.Backward]L{ Links.Forward @1
(0] _/

v
[Name.Language.Code Name.Language.Country]

’ 2
1 Name.Url 0,1

o

1 0,1,2

Retrieving Columns

ch

1@ Links.Backward]—O>[Links.Forward @1
(0] /

- 1 0,1,2
[Name.Language.Code = Name.Language.Country
2
1 Name.Url

¥

Retrieving Columns

Docld

10 O O
0
1,20 Name.Language.Country] (Name.Language.Country]
]
us o 3
NULL 2 2
NULL 1 1
gb 1 3

Retrieving Columns

Docld
10 O O
20 O O

Ve

Name.Language.Country]

value r d

us o 3
NULL 2 2
NULL 1 1

gb 1 3

DocId: 10
Name
Language

Country:

Language
Name
Name
Language

Country:

DocId: 20
Name

Hierarchical Query Processing

client

|
1l

root server

Intermediate
servers

lA
leaf servers =t

(with local Ej Ej Ej

storage)
|l

storage layer (e.g., GFS)

Hierarchical Query Processing

* Optimized for Select-Project-Aggregate
queries.

- Single Scan over Data
- Recursive Reducers

* Defers discussion of joins, indexing, updates
etc. to future work.

 Scheduler's Secret Sauce.

Duplicate/lgnore Stragglers

percentage of processed tablets

0.6 h

0.5
0.4 - .
o Duplicates
' or Ignores
0.2 Stragglers
O ¥ A —
0 ' |
0 2 4 5 g 10 12 14 16

processing time per tablet (sec)

Comments/Critiques

Does Dremel really require a
new execution engine?

Execution time (sec) on 3000 nodes

10000
1000
100
10

1

87 TB 0.5TB 057TB
MR-records MR-columns Dremel

What's really novel about
Aggregation Trees?

* Very similar to the MapReduce model (Leaf
servers run Map tasks and Aggregators are
Reduce tasks)

* Partial Aggregates/Recursive Reducers have
already been proposed by Traditional
Databases as well as SCOPE/Dryad.

Can we make other
tradeoffs?

* Input/Output

- Sequentially reading a Terabyte from disk in a second
requires ~20,000 parallel reads!

* Processing

- CPU-intensive queries may need to run on thousands of
cores to complete within a second.

- Dealing with failures and stragglers is essential.

Can we make other
tradeoffs?

* Input/Output

- Sequentially reading a Terabyte from disk in a second
requires ~20,000 parallel reads! [Sampling? In-memory
RDDs?]

* Processing

- CPU-intensive queries may need to run on thousands of
cores to complete within a second.

- Dealing with failures and stragglers is essential.

Can we make other
tradeoffs?

* Input/Output

- Sequentially reading a Terabyte from disk in a second
requires ~20,000 parallel reads! [Sampling? In-memory
RDDs?]

* Processing

- CPU-intensive queries may need to run on thousands of
cores to complete within a second. [Better Data
Partitioning?]

- Dealing with failures and stragglers is essential.

Can we make other
tradeoffs?

* Input/Output

- Sequentially reading a Terabyte from disk in a second
requires ~20,000 parallel reads! [Sampling? In-memory
RDDs?]

* Processing
- CPU-intensive queries may need to run on thousands of
cores to complete within a second. [Better Data
Partitioning?]
- Dealing with failures and stragglers is essential. [Giving
Answers with Bounded Errors/Confidence Intervals?]

ThankYou!

