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Interactive Queries on Large
Data

* Input/Output

- Sequentially reading a Terabyte from disk in a second
requires ~20,000 parallel reads!

* Processing

- CPU-intensive queries may need to run on thousands of
cores to complete within a second.

- Dealing with failures and stragglers is essential.
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Interactive Queries on Large
Data

* Input/Output

- Sequentially reading a Terabyte from disk in a second
requires ~20,000 parallel reads! [Nested Columnar
Storage]

* Processing
- CPU-intensive queries may need to run on thousands of

cores to complete within a second. [Hierarchical Query
Processing]

- Dealing with failures and stragglers is essential.
[Profiles, Duplicates or Ignores Them]



Nested Columnar Storage
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Read Less; Cheaper Decompression!



Nested Columnar Storage

message Document ({
required int64 DocId;
optional group Links ({
repeated int64 Backward;
repeated int64 Forward;
}
repeated group Name {
repeated group Language ({
required string Code;
optional string Country;
}
optional string Url;

}
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Nested Columnar Storage
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Building Columns

( Name.Language.Code

Repetition (r) and definition (d) levels encode the structural
delta between the current value and the previous value.

(r): Length of common path prefix
(d): Number of fields in the path that could be optional but
are actually present
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Building Columns
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Retrieving Columns
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Retrieving Columns

ch

1@ Links.Backward ]—O>[ Links.Forward @1
(0] /

- 1 0,1,2
[ Name.Language.Code = Name.Language.Country
2
1 Name.Url

¥



Retrieving Columns
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Retrieving Columns
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Hierarchical Query Processing

client

|
1l

root server

Intermediate
servers

lA
leaf servers =t

(with local Ej Ej Ej

storage)
|l

storage layer (e.g., GFS)




Hierarchical Query Processing

* Optimized for Select-Project-Aggregate
queries.

- Single Scan over Data
- Recursive Reducers

* Defers discussion of joins, indexing, updates
etc. to future work.

 Scheduler's Secret Sauce.



Duplicate/lgnore Stragglers
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Comments/Critiques



Does Dremel really require a
new execution engine?

Execution time (sec) on 3000 nodes
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What's really novel about
Aggregation Trees?

* Very similar to the MapReduce model (Leaf
servers run Map tasks and Aggregators are
Reduce tasks)

* Partial Aggregates/Recursive Reducers have
already been proposed by Traditional
Databases as well as SCOPE/Dryad.



Can we make other
tradeoffs?

* Input/Output

- Sequentially reading a Terabyte from disk in a second
requires ~20,000 parallel reads!

* Processing

- CPU-intensive queries may need to run on thousands of
cores to complete within a second.

- Dealing with failures and stragglers is essential.
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Can we make other
tradeoffs?

* Input/Output

- Sequentially reading a Terabyte from disk in a second
requires ~20,000 parallel reads! [Sampling? In-memory
RDDs?]

* Processing
- CPU-intensive queries may need to run on thousands of
cores to complete within a second. [Better Data
Partitioning?]
- Dealing with failures and stragglers is essential. [Giving
Answers with Bounded Errors/Confidence Intervals?]
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