
Dremel: Interactive Analysis of
Web-Scale Datasets

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey
Romer, Shiva Shivakumar, Matt Tolton, Theo Vassilakis

Adapted by: Sameer Agarwal

Dremel: Interactive Analysis of
Web-Scale Datasets

Interactive Queries on Large
Data

• Input/Output

‐ Sequentially reading a Terabyte from disk in a second
requires ~20,000 parallel reads!

• Processing

‐ CPU-intensive queries may need to run on thousands of
cores to complete within a second.

‐ Dealing with failures and stragglers is essential.

Interactive Queries on Large
Data

• Input/Output

‐ Sequentially reading a Terabyte from disk in a second
requires ~20,000 parallel reads! [Nested Columnar
Storage]

• Processing

‐ CPU-intensive queries may need to run on thousands of
cores to complete within a second.

‐ Dealing with failures and stragglers is essential.

Interactive Queries on Large
Data

• Input/Output

‐ Sequentially reading a Terabyte from disk in a second
requires ~20,000 parallel reads! [Nested Columnar
Storage]

• Processing

‐ CPU-intensive queries may need to run on thousands of
cores to complete within a second. [Hierarchical Query
Processing]

‐ Dealing with failures and stragglers is essential.

Interactive Queries on Large
Data

• Input/Output

‐ Sequentially reading a Terabyte from disk in a second
requires ~20,000 parallel reads! [Nested Columnar
Storage]

• Processing

‐ CPU-intensive queries may need to run on thousands of
cores to complete within a second. [Hierarchical Query
Processing]

‐ Dealing with failures and stragglers is essential.
[Profiles, Duplicates or Ignores Them]

Nested Columnar Storage

DocId: 10

Links

 Forward: 20

Name

 Language

 Code: 'en-us'

 Country: 'us'

 Url: 'http://A'

Name

 Url: 'http://B'

r1

Nested Columnar Storage

A

B

C D

E
*

*

*

. . .

. . .

r1

r2
r1

r2

r1

r2

r1

r2

Read Less; Cheaper Decompression!

Nested Columnar Storage

message Document {

 required int64 DocId;

 optional group Links {

 repeated int64 Backward;
 repeated int64 Forward;

 }

 repeated group Name {

 repeated group Language {

 required string Code;

 optional string Country;

 }

 optional string Url;

 }

}

DocId: 10

Links

 Forward: 20

 Forward: 40

 Forward: 60

Name

 Language

 Code: 'en-us'

 Country: 'us'

 Language

 Code: 'en'

 Url: 'http://A'

Name

 Url: 'http://B'

Name

 Language

 Code: 'en-gb'

 Country: 'gb'

Nested Columnar Storage

DocId: 10

Links

 Forward: 20

 Forward: 40

 Forward: 60

Name

 Language

 Code: 'en-us'

 Country: 'us'

 Language

 Code: 'en'

 Url: 'http://A'

Name

 Url: 'http://B'

Name

 Language

 Code: 'en-gb'

 Country: 'gb'

value r d

10 0 0

20 0 0

DocId

value r d

http://A 0 2

http://B 1 2

NULL 1 1

Name.Url

value r d

en-us 0 2

en 2 2

NULL 1 1

en-gb 1 2

Name.Language.Code Name.Language.Country

Links.Forward

value r d

us 0 3

NULL 2 2

NULL 1 1

gb 1 3

value r d

20 0 2

40 1 2

60 1 2

value r d

en-us 0 2

Name.Language.Code

r1.Name1.Language1.Code: 'en-us'

DocId: 10

Links

 Forward: 20

 Forward: 40

 Forward: 60

Name

 Language

 Code: 'en-us'

 Country: 'us'

 Language

 Code: 'en'

 Url: 'http://A'

Name

 Url: 'http://B'

Name

 Language

 Code: 'en-gb'

 Country: 'gb'

DocId: 20

Links

 Backward: 10

 Backward: 30

 Forward: 80

Name

 Url: 'http://C'

r1

r2

Building Columns

Repetition (r) and definition (d) levels encode the structural
delta between the current value and the previous value.

(r): Length of common path prefix
(d): Number of fields in the path that could be optional but
are actually present

value r d

en-us 0 2

Name.Language.Code

r1.Name1.Language1.Code: 'en-us‘

r1.Name1.Language2.Code: 'en'

DocId: 10

Links

 Forward: 20

 Forward: 40

 Forward: 60

Name

 Language

 Code: 'en-us'

 Country: 'us'

 Language

 Code: 'en'

 Url: 'http://A'

Name

 Url: 'http://B'

Name

 Language

 Code: 'en-gb'

 Country: 'gb'

DocId: 20

Links

 Backward: 10

 Backward: 30

 Forward: 80

Name

 Url: 'http://C'

r1

r2

Building Columns

value r d

en-us 0 2

en 2 2

Name.Language.Code

r1.Name1.Language1.Code: 'en-us‘

r1.Name1.Language2.Code: 'en‘

r1.Name2

DocId: 10

Links

 Forward: 20

 Forward: 40

 Forward: 60

Name

 Language

 Code: 'en-us'

 Country: 'us'

 Language

 Code: 'en'

 Url: 'http://A'

Name

 Url: 'http://B'

Name

 Language

 Code: 'en-gb'

 Country: 'gb'

DocId: 20

Links

 Backward: 10

 Backward: 30

 Forward: 80

Name

 Url: 'http://C'

r1

r2

Building Columns

value r d

en-us 0 2

en 2 2

NULL 1 1

Name.Language.Code

r1.Name1.Language1.Code: 'en-us‘

r1.Name1.Language2.Code: 'en‘

r1.Name2

r1.Name3.Language1.Code: 'en-gb'

DocId: 10

Links

 Forward: 20

 Forward: 40

 Forward: 60

Name

 Language

 Code: 'en-us'

 Country: 'us'

 Language

 Code: 'en'

 Url: 'http://A'

Name

 Url: 'http://B'

Name

 Language

 Code: 'en-gb'

 Country: 'gb'

DocId: 20

Links

 Backward: 10

 Backward: 30

 Forward: 80

Name

 Url: 'http://C'

r1

r2

Building Columns

value r d

en-us 0 2

en 2 2

NULL 1 1

value r d

en-us 0 2

en 2 2

NULL 1 1

en-gb 1 2

Name.Language.Code

r1.Name1.Language1.Code: 'en-us‘

r1.Name1.Language2.Code: 'en‘

r1.Name2

r1.Name3.Language1.Code: 'en-gb’

r2.Name1

DocId: 10

Links

 Forward: 20

 Forward: 40

 Forward: 60

Name

 Language

Code: 'en-us'

Country: 'us'

 Language

Code: 'en'

 Url: 'http://A'

Name

 Url: 'http://B'

Name

 Language

Code: 'en-gb'

Country: 'gb'

DocId: 20

Links

 Backward: 10

 Backward: 30

 Forward: 80

Name

 Url: 'http://C'

r1

r2

Building Columns

value r d

en-us 0 2

en 2 2

NULL 1 1

value r d

en-us 0 2

en 2 2

NULL 1 1

en-gb 1 2

value r d

en-us 0 2

en 2 2

NULL 1 1

en-gb 1 2

NULL 0 1

Retrieving Columns

Name.Language.Country Name.Language.Code

Links.Backward Links.Forward

Name.Url

DocId

1

0

1

0

0,1,2

2

0,1 1

0

0

Retrieving Columns

Name.Language.Country Name.Language.Code

Links.Backward Links.Forward

Name.Url

DocId

1

0

1

0

0,1,2

2

0,1 1

0

0

Retrieving Columns

DocId

Name.Language.Country 1,2

0

0

value r d

10 0 0

20 0 0

DocId

Name.Language.Country

value r d

us 0 3

NULL 2 2

NULL 1 1

gb 1 3

Retrieving Columns

value r d

10 0 0

20 0 0

DocId

Name.Language.Country

value r d

us 0 3

NULL 2 2

NULL 1 1

gb 1 3

DocId: 10

Name

 Language

 Country: 'us'

 Language

Name

Name

 Language

 Country: 'gb'

DocId: 20

Name

s1

s2

Hierarchical Query Processing

storage layer (e.g., GFS)

. . .

. . .

. . . leaf servers

(with local

 storage)

intermediate

servers

root server

client

20

• Optimized for Select-Project-Aggregate
queries.

‐ Single Scan over Data

‐ Recursive Reducers

• Defers discussion of joins, indexing, updates
etc. to future work.

• Scheduler’s Secret Sauce.

Hierarchical Query Processing

Duplicate/Ignore Stragglers

percentage of processed tablets

processing time per tablet (sec)

Duplicates

or Ignores

Stragglers

Comments/Critiques

Does Dremel really require a
new execution engine?

What’s really novel about
Aggregation Trees?

• Very similar to the MapReduce model (Leaf
servers run Map tasks and Aggregators are
Reduce tasks)

• Partial Aggregates/Recursive Reducers have
already been proposed by Traditional
Databases as well as SCOPE/Dryad.

Can we make other
tradeoffs?

• Input/Output

‐ Sequentially reading a Terabyte from disk in a second
requires ~20,000 parallel reads!

• Processing

‐ CPU-intensive queries may need to run on thousands of
cores to complete within a second.

‐ Dealing with failures and stragglers is essential.

Can we make other
tradeoffs?

• Input/Output

‐ Sequentially reading a Terabyte from disk in a second
requires ~20,000 parallel reads! [Sampling? In-memory
RDDs?]

• Processing

‐ CPU-intensive queries may need to run on thousands of
cores to complete within a second.

‐ Dealing with failures and stragglers is essential.

Can we make other
tradeoffs?

• Input/Output

‐ Sequentially reading a Terabyte from disk in a second
requires ~20,000 parallel reads! [Sampling? In-memory
RDDs?]

• Processing

‐ CPU-intensive queries may need to run on thousands of
cores to complete within a second. [Better Data
Partitioning?]

‐ Dealing with failures and stragglers is essential.

Can we make other
tradeoffs?

• Input/Output

‐ Sequentially reading a Terabyte from disk in a second
requires ~20,000 parallel reads! [Sampling? In-memory
RDDs?]

• Processing

‐ CPU-intensive queries may need to run on thousands of
cores to complete within a second. [Better Data
Partitioning?]

‐ Dealing with failures and stragglers is essential. [Giving
Answers with Bounded Errors/Confidence Intervals?]

Thank You!

