EECS4415: (!ﬂ‘?m

Big Data Systems

Processing Platforms

Big Data Technology & Analytics

Query & Exploration
SQL, Search, Cypher, ...

Stream Processing Platforms
Data Storm, Spark, .. Data

Ingestion _ Serving
ETL, Distep, || Batch Processing Platforms Bl Cubes,

Kafka, MapReduce, SparkSQL, BigQuery, Hive, Cypher, ... RDBMS, Key-

OpenRefine, value Stores,
Data Definition Tableau, ...
SQL DDL, Avro, Protobuf, CSV

Storage Systems
HDFS, RDBMS, Column Stores, Graph Databases

Computing Platforms
Distributed Commodity, Clustered High-Performance, Single Node

Big Data Technology & Analytics

Query & Exploration
SQL, Search, Cypher, ...

Stream Processing Platforms

Data Storm, Spark, ..

Ingestion _

ETL, Distep, | Batch Processing Platforms

Kafka, MapReduce, SparkSQL, BigQuery, Hive, Cypher, ...
OpenRefine,

Data Definition
SQL DDL, Avro, Protobuf, CSV

Storage Systems
HDFS, RDBMS, Column Stores, Graph Databases

Computing Platforms
Distributed Commodity, Clustered High-Performance, Single Node

Data

Serving
Bl, Cubes,
RDBMS, Key-
value Stores,
Tableay, ...

Big Data Architectures

Elements of DAV Architecture

Collect/
Ingest
Data

Store
Raw
Data

Clean
Transfor
m

Data

Query
Data

Comput
e, Join,

Aggrega
te data

Analyze
Report

Difference in Approach

Traditional Approach
Structured & Repeatable Analysis

Business Users

Determine what
question to ask ;&

IT

Structures the data to

answer that question 5
Monthly sales reports

Profitability analysis
Customer surveys

Notice the difference!

5

Big Data Approach
Iterative & Exploratory Analysis

[-

P
‘ \

I
?

-
.

u IT

Delivers a platform to
enable creative
discovery

Business

Explores what questions
could be asked
Brand sentiment
Product strategy
Maximum asset utilization
Preventative care

Traditional Business Warehouse

Data Staging
Sources Area Warehouse Users
Transaction data
Operational and Fact based
System
data model
New .
transactions Flat Eiles

Analytics Data Mining

and facts

Big Data Analytics Architecture

Example:
Lambda Architecture

/'{ batch view I"‘.
Precomputed -
All data . - S
A information . :
[batch view J

\ 4

Merge

/{real time view I'—D
o~

Incremented
information

Other examples:
Kappa Architecture
Netflix Architecture

Lambda Architecture

Streaming
analytics

Kafka Cluster Storm ,//Servin DB(s)

processing_job N
input_topic < speed_table
Hadoop queriess| App
batch_table
processing_job
Key points:

Analytics Data

e Keep you data in Kafka and HDFS
e Low latency processing as a stream
® Re-process and batch processing in Hadoop

Ingest

Kappa Architecture

Transaction data
and Fact based
data model

Stream Processing

Kafka Cluster System /M\

“'-._________________..-f‘

. ; queries
job_version_n » output_table. n |e4———— App

input_topic r:ﬂ
\\‘“ job_version_n+1 & output_table_n+1

“'--.___________________._.\
// Key points:

New e Keep you data in Kafka Analytics Data
transaction e Treat everything as a Stream
s and facts ® Re-process stream by resetting offset

e Advantage: simplified architecture, everything is a stream

Netflix Architecture

~ N
ETL: Enterprise Scheduler, Viz Web
Ursula, Aegisthus tools Uls
9 S
=N
Hadoop Platform as a Service (Genie) Traditional Gateways
s Resource Configuration &
Job Execution Management CLls
(. / 3
e , D
COIS (\‘\‘f‘. 3 /(
%ﬁg! g ~ W pythor Analytics Data
Java
)/
Hadoop (EMR) Clusters /
'_.-'.‘ :';_ f" ".-r' 1 _ _f' :
\ B
\
Cloud Data Warehouse
amazon
1 webservices™
New o Transaction data
transactions and Fact based

and facts

data model

MapReduce, Spark, BigQuery, ...

Processing Platforms

Processing Platforms

Batch Processing
Google GFS/MapReduce (2003)
Apache Hadoop HDFS/MapReduce (2004)
SQL
BigQuery (based on Google Dremel, 2010)
Apache Hive (HiveQl) (2012)
Streaming Data
Apache Storm (2011) / Twitter Huron (2015)
Unified Engine (Streaming, SQL, Batch, ML)
Apache Spark (2012)

Map-Reduce and
the New Software Stack

Single Node Architecture

CPU

Machine Learning, Statistics

Memory

“Classical” Data Mining
j@

Motivation: Google Example

20+ billion web pages x 20KB = 400+ TB
1 computer reads 30-35 MB/sec from disk
~4 months to read the web
~1,000 hard drives to store the web
Takes even more to do something useful
with the data!
Today, a standard architecture for such
problems is emerging:
Cluster of commodity Linux nodes
Commodity network (ethernet) to connect them

Cluster Architecture

Switch
2-10 Gbps backbone
between racks
Switch Switch
1 Gbps between any
pair of nodes in a rack
CPU CPU CPU CPU
Mem Mem Mem Mem

Each rack contains 16-64 nodes

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/ShhORO

http://bit.ly/Shh0RO

‘c. %
e s

-

2

) S ol

asnnrs et
S =

.
A

bk

o

Large-scale Computing

Large-scale computing for data mining
problems on commodity hardware
Challenges:

One server may stay up 3 years (1,000 days)
If you have 1,000 servers, expect to loose 1/day

People estimated Google had ~1M machines in 2011
1,000 machines fail every day!

ldea and Solution

Issue: Copying data over a network takes time
Idea:
Store files multiple times for reliability

Bring computation close to the data
Storage Infrastructure: Distributed File system

Google: GFS. Hadoop: HDFS
Programming Model: Map-Reduce

Google’s computational/data manipulation model
Elegant way to work with big data

Storage Infrastructure

If nodes fail, how to store data persistently?

Provides global file namespace
Google GFS; Hadoop HDFS;

Huge files (100s of GB to TB)
Data reads and appends are common
Data is rarely updated in place

Distributed File System

File is split into contiguous chunks

Typica
Each c
Try to

ly each chunk is 16-64MB
nunk replicated (usually 3x)

keep replicas in different racks

a.k.a. Name Node in Hadoop’s HDFS

Stores
Might

metadata about where files are stored
be replicated

Talks to master to find chunk servers
Connects directly to chunk servers to access data

Distributed File System

Reliable distributed file system

Data kept in “chunks” spread across machines
Each chunk

Seamless recovery from disk or machine failure

H Cy C, : | Do C, :
l l

I I
I I
I C5 Cz : ! C5 C3 :
Chunk server 1 Chunk server 2

r

Chunk server 3

on different machines

r

Chunk server N

Bring computation directly to the data!

Chunk servers also serve as compute servers

Programming Model: MapReduce

Warm-up task:
We have a huge text document

Count the number of times each
distinct word appears in the file

Sample application:

Analyze web server logs to find popular URLs

Task: Word Count

File too large for memory, but all <word,
count> pairs fit in memory

Count occurrences of words:

words (doc.txt) | sort | unig -c

where words takes a file and outputs the words in it,
one per aline

Case 2 captures the essence of
Great thing is that it is naturally parallelizable

MapReduce: Overview

Sequentially read a lot of data

Group by key: Sort and Shuffle

Write the result

Outline stays the same, Map and Reduce

steps change to fit the problem

MapReduce: The Map Step

Input Intermediate
key-value pairs key-value pairs

. &
AE S @ gy

AT 7 4

MapReduce: The Reduce Step

Output

key-value pairs

® © =@
O oM =0
&7

A >@

More Specifically

Input: a set of key-value pairs

Programmer specifies two methods:

— <k’, v'>*

Takes a key-value pair and outputs a set of key-value pairs
E.g., key is the filename, value is a single line in the file
There is one Map call for every (k,v) pair
— <Kk’, vV'>*

All values v’ with same key k’ are reduced together
and processed in v’ order
There is one Reduce function call per unique key k’

MapReduce: Word Counting

Provided by the Provided by the
programmer programmer

The crew of the space
shuttle Endeavor recently
eturned to Farth as
ambassadors, harbingers of
a new era of space
exploration. Scientists at
VASA e ying [ne

recent assembly of the
Dextre bot is the first step in

man/mache partnership.
"The work we're doing now
-- the robotics we're doing -
- is what we're going to

Big document (key, value) (key, value) (key, value)

Word Count Using MapReduce

map (key, value):
// key: document name
// value: text of the document
for each word w in value:
emit (w, 1)

reduce (key, values):
// key: a word
// value: an iterator over counts
result = 0
for each count v in values:
result += v
emit (key, result)

Map-Reduce: Environment

Map-Reduce environment takes care of:
the input data

the program’s execution across a
set of machines

Performing the step
Handling machine
Managing required inter-machine

Map-Reduce: A diagram

Input (Big document

Bl ccvoo oo

Intermediate | kl:v kl:v k2:v k3:v k4'r kd:v k5:v kl:v k3:v
[[Cu oup by I{emjjJ
Grouped |kl1:v,v,v,v k3 v,v [kdvv,v | k3w

— T

Output

Map-Reduce: In Parallel

r-—- - -=—-—-=-=-=-== A r--—-- - --=-=-= = r-—--—- - =-=-=-=-= -
| Map Task | I | Map Task 2 | | Map Task 3 |
! Lo L '
! Lo L '
! Lo L '
! Lo L '
! Lo L '
! Lo L '
| klwklwvk2n kv | | k3o kdn kdw ks |1 I ke v kl:wv k3w |
| Partitioning Funetion | | Partitioning Funetion I | Partitioning Funetion I

______ —_ = = = — = = == = = = 4

Sert and Group

klwvww | k3w

Sort and Group

r
|

Il k2w ke v v v k5w
|

I

|

I

|

I

|

Reduce Task 1 . Reduce Task z_l

Map-Reduce

Map and Reduce and input files @ @ @

Workflow:

Read inputs as a set of key-value-
pairs

transforms input kv-pairs into a
new set of k'v'-pairs
Shuffle

Sorts & Shuffles the k'v'-pairs to
output nodes
All k’v’-pairs with a given k’ are sent
to the same
processes all k'v'-pairs
grouped by key into new k''v''-pairs
Write the resulting pairs to files @ @

Data Flow

are stored on a

Scheduler tries to schedule map tasks “close” to
physical storage location of input data

are stored on
of Map and Reduce workers

Output is often input to another
MapReduce task

Coordination: Master

Task status: (idle, in-progress, completed)

Idle tasks get scheduled as workers become
available

When a map task completes, it sends the master
the location and sizes of its R intermediate files,
one for each reducer

Master pushes this info to reducers

Master pings workers periodically to detect
failures

Dealing with Failures

Map tasks completed or in-progress at
worker are reset to idle

Reduce workers are notified when task is
rescheduled on another worker

Only in-progress tasks are reset to idle
Reduce task is restarted

MapReduce task is aborted and client is notified

How many Map and Reduce jobs?

M map tasks, R reduce tasks

Make M much larger than the number of nodes
in the cluster

One DFS chunk per map is common

Improves dynamic load balancing and speeds up
recovery from worker failures

Usually R is smaller than M
Because output is spread across R files

Task Granularity & Pipelining

map tasks >> machines

Minimizes time for fault recovery

Can do pipeline shuffling with map execution
Better dynamic load balancing

Process Time >

User Program |MapReduce() .. wait ...

Master Assign tasks to worker machines...

Worker 1 Map 1 Map 3

Worker 2 Map 2

Worker 3 Reduce 1
Worker 4 Reduce 2

Refinements: Backup Tasks

Slow workers significantly lengthen the job completion
time:

Other jobs on the machine

Bad disks

Weird things

Near end of phase, copy and run poorly performing
tasks (stragglers) on another machine

Called speculative execution (tasks called “backup tasks”)
Whichever copy finishes first “wins”

Dramatically shortens job completion time

Refinement: Combiners

Often a Map task will produce many pairs of
the form (k,v,), (k,v,), ... for the same key k

E.g., popular words in the word count example
Can save network time by

———————————————————————————————— -

@ééﬁéwéél

combine(k, list(v,)) > v, "j_'_f_'_ '_ZMIT
as the reduce function é&% i%i

Works only if reduce
function is commutative and associative

Refinement: Combiners

Back to our word counting example:

Combiner combines the values of all keys of a
single mapper (single machine):

(AB)| (8.)

(AL) ‘ (1) (8.2)

(AD) | (00 ||, rE (€D [
3 |®0 [MSwerT | (e |- Loombinerly) M- Lo
= o g &2 a3

s — 4| Shuffie [|0 | Reducer || (.2

~ |(C.D) LoD | B — Lled22n||] (0.4)
Z|cn (D (0.2) (E.0) | (ED)
= |OA | o Tiiapperth | AD || [eombi (A.2) =

(e.c) | (URREE) | ¢y | ("UEOMBERY) |y ||

(E.B) (8.) (B.)

{ED) | (0.)

Much less data needs to be copied and shuffled!

Refinement: Partition Function

Want to control how keys get partitioned

Inputs to map tasks are created by contiguous
splits of input file

Reduce needs to ensure that records with the
same intermediate key end up at the same worker

System uses a default partition function:
hash(key) mod R

Sometimes useful to override the hash
function:

E.g., hash(hostname(URL)) mod R ensures URLs
from a host end up in the same output file

Problems Suited for
Map-Reduce

Example: Host size

Suppose we have a large web corpus
For each host, find the total number of bytes

That is, the sum of the page sizes for all URLs from
that particular host

Link analysis and graph processing
Machine Learning algorithms

Example: Language Model

Need to count number of times every 5-word
sequence occurs in a large corpus of documents

Very easy with MapReduce:
Map:
Extract (5-word sequence, count) from document

Reduce:

Combine the counts

Example: Join By Map-Reduce

Compute the natural join R(A,B) = S(B,C)
R and S are each stored in files
Tuples are pairs (a,b) or (b,c)

AL B B | C
h C, a, C,

ay b, M b, C, — ag C,
cl b, b, Cq a, Cq
b

w

Map-Reduce Join

Use a hash function h from B-values to 1...k
A Map process turns:
Each input tuple R(a,b) into key-value pair (b,(a,R))
Each input tuple S(b,c) into (b,(c,S))

Map processes send each key-value pair with
key b to Reduce process h(b)
Hadoop does this automatically; just tell it what k is.

Each Reduce process matches all the pairs
(b,(a,R)) with all (b,(c,5)) and outputs (a,b,c).

Cost Measures for Algorithms

In MapReduce we quantify the cost of an
algorithm using

Communication cost = total 1/0O of all
processes

Elapsed communication cost = max of 1/0
along any path

(Elapsed) computation cost analogous, but
count only running time of processes

Note that here the big-O notation is not the most useful
(adding more machines is always an option)

Example: Cost Measures

For a map-reduce algorithm:

Communication cost = input file size + 2 x (sum of
the sizes of all files passed from Map processes to

Reduce processes) + the sum of the output sizes of
the Reduce processes.

Elapsed communication cost is the sum of the
largest input + output for any map process, plus
the same for any reduce process

What Cost Measures Mean

Either the 1/0 (communication) or processing
(computation) cost dominates

lgnore one or the other

Total cost tells what you pay in rent from
your friendly neighborhood cloud

Elapsed cost is wall-clock time using
parallelism

Cost of Map-Reduce Join

Total communication cost
= O(|R[+[S[+[R > S])
Elapsed communication cost = O(s)

We’'re going to pick k and the number of Map
processes so that the I/O limit s is respected

We put a limit s on the amount of input or output
that any one process can have. s could be:

What fits in main memory
What fits on local disk
With proper indexes, computation cost is

linear in the input + output size
So computation cost is like communication cost

Pointers and Further Reading

Implementations

Google

Not available outside Google

An open-source implementation in Java
Uses HDFS for stable storage

Download: http://lucene.apache.org/hadoop/
Aster Data

Cluster-optimized SQL Database that also
implements MapReduce

http://lucene.apache.org/hadoop/

Cloud Computing

Ability to rent computing by the hour

Additional services e.g., persistent storage
Amazon’s “Elastic Compute Cloud” (EC2)

Aster Data and Hadoop can both be run on
EC2

Jeffrey Dean and Sanjay Ghemawat:
MapReduce: Simplified Data Processing on
Large Clusters

http://labs.google.com/papers/mapreduce.html

Sanjay Ghemawat, Howard Gobioff, and Shun-
Tak Leung: The Google File System

http://labs.google.com/papers/gfs.html

http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/gfs.html

Resources

Hadoop Wiki
Introduction
http://wiki.apache.org/lucene-hadoop/

Getting Started

http://wiki.apache.org/lucene-
hadoop/GettingStartedWithHadoop

Map/Reduce Overview
http://wiki.apache.org/lucene-hadoop/HadoopMapReduce

http://wiki.apache.org/lucene-
hadoop/HadoopMapRedClasses

Eclipse Environment

http://wiki.apache.org/lucene-hadoop/EclipseEnvironment
Javadoc

http://lucene.apache.org/hadoop/docs/api/

http://wiki.apache.org/lucene-hadoop/
http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop
http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses
http://wiki.apache.org/lucene-hadoop/EclipseEnvironment
http://lucene.apache.org/hadoop/docs/api/

Resources

Releases from Apache download mirrors
http://www.apache.org/dyn/closer.cgi/lucene/had

00p/
Nightly builds of source

http://people.apache.org/dist/lucene/hadoop/nig

htly/

Source code from subversion

http://lucene.apache.org/hadoop/version control
.html

http://www.apache.org/dyn/closer.cgi/lucene/hadoop/
http://people.apache.org/dist/lucene/hadoop/nightly/
http://lucene.apache.org/hadoop/version_control.html

Further Reading

Programming model inspired by functional language
primitives
Partitioning/shuffling similar to many large-scale sorting
systems

NOW-Sort ['97]
Re-execution for fault tolerance

BAD-FS ['04] and TACC ['97]
Locality optimization has parallels with Active
Disks/Diamond work

Active Disks ['01], Diamond ['04]
Backup tasks similar to Eager Scheduling in Charlotte
system

Charlotte ['96]
Dynamic load balancing solves similar problem as River's
distributed queues

River ['99]

