EECS4415: Big Data Systems

Processing Platforms

Big Data Technology & Analytics

Data Ingestion ETL, Distcp, Kafka, OpenRefine, 	Ouery & Exploration SQL, Search, Cypher,	Data Serving BI, Cubes, RDBMS, Key- value Stores, Tableau,	
	Stream Processing Platforms Storm, Spark,		
	Batch Processing Platforms MapReduce, SparkSQL, BigQuery, Hive, Cypher,		
	Data Definition SQL DDL, Avro, Protobuf, CSV		
	Storage Systems HDFS, RDBMS, Column Stores, Graph Databases		
Computing Platforms			

Distributed Commodity, Clustered High-Performance, Single Node

Big Data Technology & Analytics

Query & Exploration SQL, Search, Cypher, ... Stream Processing Platforms Storm, Spark, ... Data Data Ingestion Serving **Batch Processing Platforms** BI, Cubes, ETL, Distcp, MapReduce, SparkSQL, BigQuery, Hive, Cypher, ... RDBMS, Key-Kafka, OpenRefine, value Stores, **Data Definition** Tableau, ... SQL DDL, Avro, Protobuf, CSV Storage Systems HDFS, RDBMS, Column Stores, Graph Databases

Computing Platforms Distributed Commodity, Clustered High-Performance, Single Node

Big Data Architectures

Elements of DAV Architecture

Difference in Approach

Notice the difference!

Traditional Business Warehouse

Big Data Analytics Architecture

Example: Lambda Architecture

Other examples: Kappa Architecture Netflix Architecture

Lambda Architecture

Kappa Architecture

Netflix Architecture

MapReduce, Spark, BigQuery, ...

Processing Platforms

Processing Platforms

- Batch Processing
 - Google GFS/MapReduce (2003)
 - Apache Hadoop HDFS/MapReduce (2004)

SQL

- BigQuery (based on Google Dremel, 2010)
- Apache Hive (HiveQL) (2012)
- Streaming Data
 - Apache Storm (2011) / Twitter Huron (2015)
- Unified Engine (Streaming, SQL, Batch, ML)
 - Apache Spark (2012)

Map-Reduce and the New Software Stack

Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University http://www.mmds.org

Single Node Architecture

Machine Learning, Statistics

"Classical" Data Mining

Motivation: Google Example

- 20+ billion web pages x 20KB = 400+ TB
- 1 computer reads 30-35 MB/sec from disk
 - ~4 months to read the web
- ~1,000 hard drives to store the web
- Takes even more to **do** something useful with the data!
- Today, a standard architecture for such problems is emerging:
 - Cluster of commodity Linux nodes
 - Commodity network (ethernet) to connect them

Cluster Architecture

Each rack contains 16-64 nodes

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO

Large-scale Computing

- Large-scale computing for data mining problems on commodity hardware
- Challenges:
 - How do you distribute computation?
 - How can we make it easy to write distributed programs?
 - Machines fail:
 - One server may stay up 3 years (1,000 days)
 - If you have 1,000 servers, expect to loose 1/day
 - People estimated Google had ~1M machines in 2011
 - 1,000 machines fail every day!

Idea and Solution

- Issue: Copying data over a network takes time
 Idea:
 - Store files multiple times for reliability
 - Bring computation close to the data

Storage Infrastructure: Distributed File system

- Google: GFS. Hadoop: HDFS
- Programming Model: Map-Reduce
 - Google's computational/data manipulation model
 - Elegant way to work with big data

Storage Infrastructure

Problem:

If nodes fail, how to store data persistently?

Answer:

- Distributed File System:
 - Provides global file namespace
 - Google GFS; Hadoop HDFS;

Typical usage pattern

- Huge files (100s of GB to TB)
- Data reads and appends are common
- Data is rarely updated in place

Distributed File System

Chunk servers

- File is split into contiguous chunks
- Typically each chunk is 16-64MB
- Each chunk replicated (usually 3x)
- Try to keep replicas in different racks

Master node

- a.k.a. Name Node in Hadoop's HDFS
- Stores metadata about where files are stored
- Might be replicated
- Client library for file access
 - Talks to master to find chunk servers
 - Connects directly to chunk servers to access data

Distributed File System

- Reliable distributed file system
- Data kept in "chunks" spread across machines
- Each chunk replicated on different machines
 - Seamless recovery from disk or machine failure

Bring computation directly to the data!

Chunk servers also serve as compute servers

Programming Model: MapReduce

Warm-up task:

- We have a huge text document
- Count the number of times each distinct word appears in the file
- Sample application:
 - Analyze web server logs to find popular URLs

Task: Word Count

Case 1:

 File too large for memory, but all <word, count> pairs fit in memory

Case 2:

- Count occurrences of words:
 - words(doc.txt) | sort | uniq -c
 - where words takes a file and outputs the words in it, one per a line
- Case 2 captures the essence of MapReduce
 - Great thing is that it is naturally parallelizable

MapReduce: Overview

- Sequentially read a lot of data
- Map: Extract something you care about
- Group by key: Sort and Shuffle
- Reduce: Aggregate, summarize, filter or transform
- Write the result

Outline stays the same, **Map** and **Reduce** steps change to fit the problem

MapReduce: The <u>Map</u> Step

MapReduce: The <u>Reduce</u> Step

More Specifically

- Input: a set of key-value pairs
- Programmer specifies two methods:
 - Map(k, v) $\rightarrow \langle k', v' \rangle^*$
 - Takes a key-value pair and outputs a set of key-value pairs
 - E.g., key is the filename, value is a single line in the file
 - There is one Map call for every (k,v) pair
 - Reduce(k', <v'>*) → <k', v''>*
 - All values v' with same key k' are reduced together and processed in v' order
 - There is one Reduce function call per unique key k'

MapReduce: Word Counting

Word Count Using MapReduce

```
map(key, value):
// key: document name
// value: text of the document
for each word w in value:
    emit(w, 1)
```

reduce(key, values):

```
// key: a word
// value: an iterator over counts
    result = 0
    for each count v in values:
        result += v
    emit(key, result)
```

Map-Reduce: Environment

Map-Reduce environment takes care of:

- Partitioning the input data
- Scheduling the program's execution across a set of machines
- Performing the group by key step
- Handling machine failures
- Managing required inter-machine communication

Map-Reduce: A diagram

Map-Reduce: In Parallel

All phases are distributed with many tasks doing the work

Map-Reduce

Programmer specifies:

- Map and Reduce and input files
- Workflow:
 - Read inputs as a set of key-valuepairs
 - Map transforms input kv-pairs into a new set of k'v'-pairs
 - Sorts & Shuffles the k'v'-pairs to output nodes
 - All k'v'-pairs with a given k' are sent to the same reduce
 - Reduce processes all k'v'-pairs grouped by key into new k''v''-pairs
 - Write the resulting pairs to files
- All phases are distributed with many tasks doing the work

Data Flow

- Input and final output are stored on a distributed file system (FS):
 - Scheduler tries to schedule map tasks "close" to physical storage location of input data
- Intermediate results are stored on local FS of Map and Reduce workers
- Output is often input to another MapReduce task

Coordination: Master

Master node takes care of coordination:

- Task status: (idle, in-progress, completed)
- Idle tasks get scheduled as workers become available
- When a map task completes, it sends the master the location and sizes of its *R* intermediate files, one for each reducer
- Master pushes this info to reducers
- Master pings workers periodically to detect failures

Dealing with Failures

Map worker failure

- Map tasks completed or in-progress at worker are reset to idle
- Reduce workers are notified when task is rescheduled on another worker

Reduce worker failure

- Only in-progress tasks are reset to idle
- Reduce task is restarted

Master failure

MapReduce task is aborted and client is notified

How many Map and Reduce jobs?

- M map tasks, R reduce tasks
- Rule of a thumb:
 - Make M much larger than the number of nodes in the cluster
 - One DFS chunk per map is common
 - Improves dynamic load balancing and speeds up recovery from worker failures
- Usually R is smaller than M
 - Because output is spread across R files

Task Granularity & Pipelining

Fine granularity tasks: map tasks >> machines

- Minimizes time for fault recovery
- Can do pipeline shuffling with map execution
- Better dynamic load balancing

Process	Time>									
User Program	MapReduce()			wait						
Master	Assign tasks to worker machines									
Worker 1		Map 1	Map 3							
Worker 2		Map 2								
Worker 3			Read 1.1	Read 1.3		Read 1.2		Redu	ice 1	
Worker 4			Read 2.1			Read 2.2	Read	d 2.3	Red	uce 2

Refinements: Backup Tasks

Problem

- Slow workers significantly lengthen the job completion time:
 - Other jobs on the machine
 - Bad disks
 - Weird things

Solution

- Near end of phase, copy and run poorly performing tasks (stragglers) on another machine
 - Called speculative execution (tasks called "backup tasks")
 - Whichever copy finishes first "wins"

Effect

Dramatically shortens job completion time

Refinement: Combiners

- Often a Map task will produce many pairs of the form (k,v₁), (k,v₂), ... for the same key k
 - E.g., popular words in the word count example
- Can save network time by pre-aggregating values in the mapper:
 - combine(k, list(v₁)) \rightarrow v₂
 - Combiner is usually same as the reduce function
- Works only if reduce function is commutative and associative

Refinement: Combiners

- Back to our word counting example:
 - Combiner combines the values of all keys of a single mapper (single machine):

Much less data needs to be copied and shuffled!

Refinement: Partition Function

Want to control how keys get partitioned

- Inputs to map tasks are created by contiguous splits of input file
- Reduce needs to ensure that records with the same intermediate key end up at the same worker
- System uses a default partition function:
 hash(key) mod R
- Sometimes useful to override the hash function:
 - E.g., hash(hostname(URL)) mod R ensures URLs from a host end up in the same output file

Problems Suited for Map-Reduce

Example: Host size

- Suppose we have a large web corpus
- For each host, find the total number of bytes
 - That is, the sum of the page sizes for all URLs from that particular host
- Other examples:
 - Link analysis and graph processing
 - Machine Learning algorithms

Example: Language Model

Statistical machine translation:

 Need to count number of times every 5-word sequence occurs in a large corpus of documents

Very easy with MapReduce:

- Map:
 - Extract (5-word sequence, count) from document

Reduce:

Combine the counts

Example: Join By Map-Reduce

- Compute the natural join R(A,B) ⋈ S(B,C)
- R and S are each stored in files
- Tuples are pairs (a,b) or (b,c)

Α	В		В	С		Α	С
a ₁	b ₁		b ₂	C ₁		a ₃	C ₁
a ₂	b ₁	\bowtie	b_2	C ₂	=	a ₃	C ₂
a ₃	b ₂		b ₃	с ₃		a ₄	с ₃
a ₄	b ₃		Ū				

Map-Reduce Join

- Use a hash function h from B-values to 1...k
- A Map process turns:
 - Each input tuple R(a,b) into key-value pair (b,(a,R))
 - Each input tuple S(b,c) into (b,(c,S))
- Map processes send each key-value pair with key b to Reduce process h(b)
 - Hadoop does this automatically; just tell it what k is.
- Each Reduce process matches all the pairs (b,(a,R)) with all (b,(c,S)) and outputs (a,b,c).

Cost Measures for Algorithms

- In MapReduce we quantify the cost of an algorithm using
- Communication cost = total I/O of all processes
- 2. Elapsed communication cost = max of I/O along any path
- 3. (*Elapsed*) *computation cost* analogous, but count only running time of processes

Note that here the big-O notation is not the most useful (adding more machines is always an option)

Example: Cost Measures

For a map-reduce algorithm:

- Communication cost = input file size + 2 × (sum of the sizes of all files passed from Map processes to Reduce processes) + the sum of the output sizes of the Reduce processes.
- Elapsed communication cost is the sum of the largest input + output for any map process, plus the same for any reduce process

What Cost Measures Mean

- Either the I/O (communication) or processing (computation) cost dominates
 - Ignore one or the other
- Total cost tells what you pay in rent from your friendly neighborhood cloud
- Elapsed cost is wall-clock time using parallelism

Cost of Map-Reduce Join

- Total communication cost = $O(|R|+|S|+|R \bowtie S|)$
- Elapsed communication cost = O(s)
 - We're going to pick k and the number of Map processes so that the I/O limit s is respected
 - We put a limit s on the amount of input or output that any one process can have. s could be:
 - What fits in main memory
 - What fits on local disk
- With proper indexes, computation cost is linear in the input + output size
 - So computation cost is like communication cost

Pointers and Further Reading

Implementations

Google

Not available outside Google

Hadoop

- An open-source implementation in Java
- Uses HDFS for stable storage
- Download: <u>http://lucene.apache.org/hadoop/</u>
- Aster Data
 - Cluster-optimized SQL Database that also implements MapReduce

Cloud Computing

- Ability to rent computing by the hour
 - Additional services e.g., persistent storage
- Amazon's "Elastic Compute Cloud" (EC2)
- Aster Data and Hadoop can both be run on EC2

Reading

- Jeffrey Dean and Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large Clusters
 - http://labs.google.com/papers/mapreduce.html
- Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung: The Google File System
 - <u>http://labs.google.com/papers/gfs.html</u>

Resources

- Hadoop Wiki
 - Introduction
 - http://wiki.apache.org/lucene-hadoop/
 - Getting Started
 - <u>http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop</u>
 - Map/Reduce Overview
 - http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
 - <u>http://wiki.apache.org/lucenehadoop/HadoopMapRedClasses</u>
 - Eclipse Environment
 - http://wiki.apache.org/lucene-hadoop/EclipseEnvironment
- Javadoc
 - http://lucene.apache.org/hadoop/docs/api/

Resources

- Releases from Apache download mirrors
 - http://www.apache.org/dyn/closer.cgi/lucene/had oop/
- Nightly builds of source
 - <u>http://people.apache.org/dist/lucene/hadoop/nig</u>
 <u>htly/</u>
- Source code from subversion
 - <u>http://lucene.apache.org/hadoop/version_control</u>
 <u>.html</u>

Further Reading

- Programming model inspired by functional language primitives
- Partitioning/shuffling similar to many large-scale sorting systems
 - NOW-Sort ['97]
- Re-execution for fault tolerance
 - BAD-FS ['04] and TACC ['97]
- Locality optimization has parallels with Active Disks/Diamond work
 - Active Disks ['01], Diamond ['04]
- Backup tasks similar to Eager Scheduling in Charlotte system
 - Charlotte ['96]
- Dynamic load balancing solves similar problem as River's distributed queues
 - River ['99]