




Computing Platforms
Distributed Commodity, Clustered High-Performance, Single Node

Data 
Ingestion
ETL, Distcp, 
Kafka, 
OpenRefine, 
…

Data 
Serving
BI, Cubes, 
RDBMS, Key-
value Stores, 
Tableau, …

Storage Systems
HDFS, RDBMS, Column Stores, Graph Databases

Data Definition
SQL DDL, Avro, Protobuf, CSV

Batch Processing Platforms
MapReduce, SparkSQL, BigQuery, Hive, Cypher, ...

Stream Processing Platforms
Storm, Spark, ..

Query & Exploration
SQL, Search, Cypher, … 



Computing Platforms
Distributed Commodity, Clustered High-Performance, Single Node

Data 
Ingestion
ETL, Distcp, 
Kafka, 
OpenRefine, 
…

Data 
Serving
BI, Cubes, 
RDBMS, Key-
value Stores, 
Tableau, …

Storage Systems
HDFS, RDBMS, Column Stores, Graph Databases

Data Definition
SQL DDL, Avro, Protobuf, CSV

Batch Processing Platforms
MapReduce, SparkSQL, BigQuery, Hive, Cypher, ...

Stream Processing Platforms
Storm, Spark, ..

Query & Exploration
SQL, Search, Cypher, … 





Computing

Single Node 
Computing

Distributed 
Computing

Grid 
Computing

Cluster 
Computing

Parallel 
Computing

CPU GPU



 A single node (usually multiple cores)
 Attached to a data store (Disc, SSD, …)
 One process with potentially multiple threads



R: All processing is done on one computer

BidMat: All processing is done on one 
computer with specialized HW



Single Node
In memory
Retrieve/Stores from Disc

Pros
Simple to program and debug

Cons
Can only scale-up
Does not deal with large data sets



Single Node solution for large scale 
exploratory analysis

Specialized HW and SW for efficient 
Matrix operations

Elements:
 Data engine software for optimized operations
 HW design pattern for balancing Storage, CPU 

and GPU computing
 Optimized machine learning package
 Advanced communication patterns



Common Data Store
Many Processors
Parallel execution of tasks
Processor communication



R is a single thread computing application
R Snow enable multi threading/distribution

Pros

 Distributed/parallel
 Commonly known tool and model

Cons

 Each node requires access to all data



Connected processors collaborate to achieve a 
common goal

Requires:
 Message passing
 Coordination
 Scheduling
 Tolerate failures on individual nodes



 Uniform nodes
 Data shards in a distributed storage



 Hadoop
 BigQuery
 Pregel
 Spark
 …







 Each node does computation
 Each node can be distributed
 Information is passed between nodes
 Execution is coordinated amongst nodes





 Distributed Nodes
 Heterogeneous and Physically Separate Nodes



 SETI@home (SETI Institute)
 Large Hadron Collider Computing Grid (CERN)
 NFCR Centre for Comp. Drug Discovery 

(Oxford Univ)
 Globus Toolkit (Globus Alliance)
 …





Data Lake
 Many data sources
 Retain all data
 Allows for exploration
 Apply transform as 

needed
 Apply schema as 

needed

Data Warehouse
 Data Transformed to 

defined schema
 Loaded when usage 

identified
 Allows for quick 

response of defined 
queries



Key points:
● Extract needed data
● Map to schema
● Prepare for defined use 

cases



Data Storage

Schema (Avro, Thrift, Protobuf)

Cleaning, Transformation

Processing

Query

Data 
Ingest

Key points:
● Store all data
● Transform as needed
● Apply schema as needed



 Understanding of data models and schemas 
in traditional BW

 Understanding of data models and schemas 
proposed for big data systems



New 
transactions 
and facts

Analytics Data

Transaction data 
and Fact based 
data model



Online Transaction
Processing (OLTP)

systems and approach that 
facilitate and manage 
transaction-oriented 
applications, typically for 
data entry and retrieval 
transaction processing

Online Analytics
Processing (OLAP)

systems and approach to 
answering multi-
dimensional analytical 
queries quickly



OLTP
CRUD Transactions (Create, 

Read, Update, and Delete)
Frequent Updates

Example query:
UPDATE Employees
SET Salary='100,000'
WHERE EmployeeName='Alfred Nobel';
SELECT Salary FROM Employees
WHERE Salary ='Alfred Nobel';

OLAP
Aggregations
Drill-downs, 
Roll-ups

Example query:
select o.customerid, o.orderid, 

o.orderdate, p.price, sum 
(p.price) over (partition by 
o.customerid order by o.orderdate) 
running_total



Master Data

Transaction Data Analytics Data

Master Data: The source of truth in your system, cannot withstand corruption
Transaction Data: Keeps relationships (e.g., who bought what)
Analytics Data: Aggregated/processed transaction data



Master Data 
(Dimension Tables)

Transaction Data
(Fact table)

Analytics Data
(Cuboid)



Captures concepts and 
relationships that 
participate in 
transactions

object, relationship, 
object attributes







Each Record Captures a Transaction
(id, object, amount, time, ...)



Roll-ups, drill downs, summaries
summary, average, grouping



Master Data 
(fact based, Immutable, Dimensions)

Transaction Data
(Log items)

Analytics Data
(Aggregates, Roll-ups)





In the fact-based model, you deconstruct the data into fundamental units called facts



 Supports queries about any time in history
 Enables complex queries (that a predefined 

schema might have have ignored)



More easily correctable (remove erroneous facts)





Two kinds of database management systems
Relational Databases

▪ Presents via Declarative Query Languages

▪ Organize underlying storage row-wise 
▪ Sometimes column-wise

Columnar Databases
▪ Presents via API and Declarative Query Languages

▪ Organize underlying storage column-wise



● Records stored as tables
○ Schema validated on-

write
○ Typically indexed

● Records may be persisted 
○ Row-wise
○ Column-wise

● Additional structures can 
be applied to enhance 
access

○ Secondary Indices
○ Materialized Views
○ Stored Procedures

<RowID> EmployeeID FirstName LastName Dept Salary

001 12 John Smith Marketing 90

002 24 Sue Richards Engine 130

003 35 Maggie Smith DataSci 120

004 44 Bobby Jones DataSci 120

Logical Schema

Physical Schema
001:12,John,Smith,Marketing,90\n

002:24,Sue,Richards,Engine,130\n

003:35,Maggie,Smith,DataSci,120\n

004:44,Bobby,Jones,DataSci,120\n

Row-Oriented
● Very fast to insert rows
● Very fast to retrieve whole rows
● Slower to retrieve whole 

columns



● Records stored as tables
● Largely for analytical 

workloads
○ Read-mostly
○ Bulk-insertion

● Additional access structures
● Presumption

○ More likely to read all 
values of a column 
than all values of a row

○ Optimize storage for 
fast column retrieval

<RowID> EmployeeID FirstName LastName Dept Salary

001 12 John Smith Marketing 90

002 24 Sue Richards Engine 130

003 35 Maggie Smith DataSci 120

004 44 Bobby Jones DataSci 120

Logical Schema

Physical Schema

12:001;24:002;35:003;44:004\n

John:001;Sue:002;Maggie:003;Bobby:004\n

Smith:001,003;Richards:002;Jones:004\m

Marketing:001;Engine:002;DataSci:003,004\n

90:001;130:002;120:003,004\n

Column-Oriented
● Very fast to retrieve columns
● May save space for sparse 

data 
● Slow to insert, slow for row 

reads



Relational
 Most common data storage 

and retrieval system
 Many drivers, declarative 

language (SQL)
 Good for fast inserts
 Good for (some) fast reads
 Good for sharing data among 

applications
 Limited schema-on-read 

support
 Can be costly or difficult to 

scale

Columnar
 Optimized for analytical 

workloads
 Maintains relational data 

model
 Good for analytical 

operations
 Good for horizontal scaling
 Bad for fast writes
 Bad for fast row-wise 

reads



Two distributed approaches to data storage
HDFS (Hadoop Distributed File System) 

▪ Presents like a local filesystem 
▪ Distribution mechanics handled automatically

NoSQL Databases (Key/Value Stores) 
▪ Typically store records as “key-value pairs”
▪ Distribution mechanics tied to record keys



Server 1 Server 2 Server 3 Server n...

A Large File
B1 B2

Bn

B3

File divided into blocks
(Typically between 64MB and 256MB) ● Blocks replicated k times

○ Typically: k >= 3

● Block placement tries to
○ Ensure resiliency
○ Minimize network hops

● On read
○ Request 1 copy of each 

block
○ Retries on other copies



Server 1 Server 2 Server 3 Server n...

Key Value

1234 Some text like this

2345 {name: “A JSON 
Document”, number: 

7}

3456 <image data>

● Records stored by key
○ Provides a simple index

● Record placement 
○ Keys are used to shard
○ All keys in a certain range go 

to a certain (set of) servers

● On read
○ Driver process reads from 

servers based on key-ranges



Key-Value Stores
 Many popular choices

▪ Redis, Berkeley DB

▪ MongoDB

▪ Cassandra (column-families 
imposed on value)

 Good for fast, key-based 
access

 Good for fast writes
 Bad for off-key access
 Complicated for merging 

datasets

HDFS
 Popular bulk data store
 Many, large files

▪ File size >= Block size

 Agnostic to file content
 Good as an immutable 

data store
 Good for parallel reads of 

lots of blocks
 Bad for small, specific 

reads
 Bad for fast writes



Two Concepts
 Object Storage (OS): as a new abstraction for 

storing data
 Software Defined Storage (SDS): An 

architecture that enables cost effective, 
scalable, highly available (HA) storage systems

Combining OS and SDS provides an efficient 
solution for certain data applications



Software Defined Storage

Object Storage

Manage data as one (large) logical object
Consists of meta data and data
Unique identifier across system
Data is an uninterpreted set of bytes

Data Replication for resilience and HA
Store anything
Runs on commodity hardware
Manages data automatically, blocks 
hidden

Network

Node

Disc Disc Disc Disc

Node

Disc Disc Disc

Node

Distributed Storage Manager/Files System

Fil
e

Fil
e

Fil
e

Fil
e

Fil
e

Fil
e



 Simplified model for managing data growth
 Lowers management cost
 Lowers hardware cost
 Meet Resiliency and HA needs and lower cost



 Simple API with an Object Abstraction
 Data is partitioned, partitions are replicated 

for resiliency and HA
 Software layer 

▪ manages replication and data placement

▪ automatically re-distributes data in case of 
expansion, contraction or failure



Oracle Storage 
Service

OpenStack SWIFT based Storage. 
HA, scalable storage with eventual consistency

Amazon S3 HA, scalable storage with eventual consistency

Google Cloud 
Storage

HA, scalable storage with strong consistency

Windows Azur 
Storage

HA, scalable storage with strong consistency

Rackspace Files OpenStack SWIFT based Storage. 
HA, scalable storage with eventual consistency

Strong consistency offers up-to-date data but at the cost of high latency
Eventual consistency offers low latency but may reply to read requests with stale data since all nodes of the 
database may not have the updated data.



Consistency: Every read receives the most recent write or an error
Availability: Every request receives a (non-error) response – without guarantee that it contains the 
most recent write
Partition tolerance: The system continues to operate despite an arbitrary number of messages being 
dropped (or delayed) by the network between nodes

It is impossible for a distributed data store to simultaneously 
provide more than two out of the following three guarantees







 If data is distributed how can you leverage 
parallelism?

 What kind of source and sink is involved?
 How do you use network bandwidth efficiently?
 How to handle different formats and structures?
 Large files take a long-time, how are failures 

handled?

As a data scientist you need to understand how to think 
about data transfer and movement



 Bandwidth measured in bits/sec is the maximum 
transfer rate

 Throughput is the actual rate that information is 
transferred

 Latency the delay between the sender and the 
receiver, this is a function of the calls/signals travel 
time and intermediate processing time

 Jitter variation in the time of arrival at the receiver 
of the information

 Error rate # of corrupted bits as a percentage or 
fraction of the total sent



Limiting Factors:
 Available Network Bandwidth
 Read/Write performance
 Error rates

Some info (for Disk storage we use base 10)
 1 byte = 8 bits
 1000 Bytes = 1 Kilobyte
 1000 Kilobytes = 1 Megabyte
 1000 Megabytes = 1 Gigabyte
 1000 Gigabytes = 1 Terabyte

Example
How long would it take to transfer 2 TB file over a 100 Mbit / sec connection?

Answer
2TB = 2*1000*1000*1000*1000*8 = 1.6E+13 bit

100 Mbit = 100*1000*1000 = 100000000

seconds = 1.6E+13 / 100000000 = 160000

hours = 160000 / 60 / 60 = 44 hours



Tool What

Sqoop RDBMS, BDW to Hadoop

distcp2 HDFS to HDFS copy

Rsync FS to FS copy, FS to FS synchronization



Sqoop rsync Distcp

Type(s) of source and 
sink

RDBMS to HDFS A unix / linux system inter 
transfer tool

HDFS to HDFS
Storage Service (S3) to 
HDFS

Network usage High Smart use of bandwidth 
for sync

Uses available bandwidth

Level of parallelism Low No built-in parallelism High. Configurable

Structures and formats Per table or free form 
SQL

Agnostic to file content Agnostic to structure in 
files

Resilience to failures If task fails it will be 
rolled back and result in a 
partial export

Need to be reinitiated/ 
restarted

High, will retry per job. If 
one job fails it will be 
restarted



 Understand the bottleneck and your use case
 Define your time constraints, can you move all 

the data or do you need to segment
 Pick the right tool



SQL DDL, Avro, Protobuf, CSV



Schemas represent the logical view of data
We can apply them

▪ When data is written

▪ When data is read

The application of schema comes with trade-offs



Data is stored without constraint

▪ Store data without validation

Apply the plan to the data stream on every read

▪ Extract the record from the data stream

▪ Extract the details from the record

▪ Validate the record



File systems

▪ The local disk on your computer

 “Big Data Frameworks”

▪ Apache Hadoop

▪ Apache Spark

Some NoSQL Databases

▪ MongoDB

▪ CouchDB

Rely on runtime logic to apply 
schema

Rely on self-describing data to 
apply schema



Consider this Avro schema expressed in JSON

{

"type": "record",

"name": "Person",

"fields": [

{"name": "userName", "type": "string"},

{"name": "favoriteNumber", "type": ["null", "long"]},

{"name": "interests","type":{"type":"array","items":"string"}}]

}



Google protobuf
messagepack
Cap’n Proto
Parquet

▪ Designed for large, column-oriented data



Pros
 Data can be subject to 

varying interpretation
 Validation can be as strict as 

needed
 Schema can mutate over time

Cons
 Higher cost to read data

▪ Assemble records

▪ Validate records

▪ Access details

 No implicit guarantees about 
data contents 



Data is stored only if it fits constraints

▪ Validate the schema before persisting
▪ # and type of attributes

▪ uniqueness, size, etc.

Extract data quickly, without re-validation

▪ Data shape, size, and location is already known



 Databases (Typically Relational or Object-Relational)
▪ MySQL

▪ PostgreSQL

▪ Oracle Database

▪ Microsoft SQL Server

▪ and many more



Pros
 Data characteristics are 

guaranteed
 Storage can be optimized to 

speed retrieval

▪ Lower-cost reads

Cons

 Schema must be provided 
before data is written

 Schema modifications may 
cause writes to existing data

 Multiple interpretations require 

▪ Duplicate definitions 

▪ Sometimes duplicate 
materializations 



Column-Family Database

▪ Organize data into a hierarchy
▪ Columns → record details

▪ Column families → groups of columns

▪ Column families are schema-on-write

▪ Columns are schema-on-read
▪ Can add columns, interpret bytes variably

Examples: 

▪ Apache HBase

▪ Apache Cassandra





Collect/
Ingest
Data

Store 
Raw
Data

Clean
Transfor
m
Data

Query
Data

Analyze
Report

Comput
e, Join, 
Aggrega
te data



Notice the difference!



New 
transactions 
and facts

Analytics Data

Transaction data 
and Fact based 
data model



Example: 
Lambda Architecture

Other examples: 
Kappa Architecture
Netflix Architecture



Key points:
● Keep you data in Kafka and HDFS
● Low latency processing as a stream
● Re-process and batch processing in Hadoop

Ingest

Analytics Data

Streaming 
analytics



Key points:
● Keep you data in Kafka
● Treat everything as a Stream
● Re-process stream by resetting offset
● Advantage: simplified architecture, everything is a stream

Transaction data 
and Fact based 
data model

Analytics Data
New 
transaction
s and facts



MapReduce, Spark, BigQuery, …



 Batch Processing

▪ Google GFS/MapReduce (2003)

▪ Apache Hadoop HDFS/MapReduce (2004)

 SQL

▪ BigQuery (based on Google Dremel, 2010)

▪ Apache Hive (HiveQL) (2012)

 Streaming Data

▪ Apache Storm (2011) / Twitter Huron (2015)

 Unified Engine (Streaming, SQL, Batch, ML)

▪ Apache Spark (2012)


