EECS4415: (!ﬂ‘?m

Big Data Systems

Computing Platforms, Storage
Systems, Data Definition

Big Data Technology & Analytics

Query & Exploration
SQL, Search, Cypher, ...

Stream Processing Platforms
Data Storm, Spark, .. Data

Ingestion _ Serving
ETL, Distep, || Batch Processing Platforms 81 Cubes

Kafka, MapReduce, SparkSQL, BigQuery, Hive, Cypher, ... RDBMS, Key-
OpenRefine, value Stores,

Data Definition Tableau, ...
SQL DDL, Avro, Protobuf, CSV

Storage Systems
HDFS, RDBMS, Column Stores, Graph Databases

Computing Platforms
Distributed Commodity, Clustered High-Performance, Single Node

Big Data Technology & Analytics

Query & Exploration
SQL, Search, Cypher, ...

Stream Processing Platforms

Data Storm, Spark, ..

Ingestion _

ETL, Distep, || Batch Processing Platforms

Kafka, MapReduce, SparkSQL, BigQuery, Hive, Cypher, ...
OpenRefine,

Data Definition
SQL DDL, Avro, Protobuf, CSV

Storage Systems
HDFS, RDBMS, Column Stores, Graph Databases

Computing Platforms
Distributed Commodity, Clustered High-Performance, Single Node

Data

Serving
Bl, Cubes,
RDBMS, Key-
value Stores,
Tableau, ...

Computing Platforms

Computing Platforms

Computing
Single Node Parallel Distributed
Computing Computing Computing
CPU GPU Grid Cluster

Computing Computing

Single Node Computing

A single node (usually multiple cores)
Attached to a data store (Disc, SSD, ...)
One process with potentially multiple threads

-

Single Node Example

R: All processing is done on one computer

BidMat: All processing is done on one
computer with specialized HW

-

Single Node
In memory
Retrieve/Stores from Disc

Pros

Simple to program and debug
Cons

Can only scale-up

Does not deal with large data sets

BidMat/BidMach

Single Node solution for large scale

exploratory analysis
Specialized HW and SW for efficient

Matrix operations

Elements:
Data engine software for optimized operations
HW design pattern for balancing Storage, CPU
and GPU computing
Optimized machine learning package
Advanced communication patterns

Parallel Computing

Common Data Store
Many Processors

Parallel execution of tasks
Processor communication

- —
- -

-

R Snow: Parallel R

R is a single thread computing application
R Snow enable multi threading/distribution

Pros
Distributed/parallel

Commonly known tool and model
Cons

Each node requires access to all data

Distributed Computing

Connected processors collaborate to achieve a
common goal

Requires:
Message passing
Coordination

Scheduling
Tolerate failures on individual nodes

Cluster Computing

Uniform nodes
Data shards in a distributed storage

<P <P

ESE9ES

Cluster Computing Example

Hadoop
BigQuery
Pregel
Spark

() —

: R
=

O o

v =

4 -

Q. s

(O =

= —»

~ 5

p £

O

O

O

(o]

L

Dremel/BigQuery — General Model

- Dremel Architecture

e partial Reduction
Mixer 1 Mixer 1 /' Diskless data flow

/\ /\ — ® Long lived shared serving tree

/' Columnar Storage
[Distributed Storage }

Distributed Graph Computing

Each node does computation

Each node can be distributed
Information is passed between nodes
Execution is coordinated amongst nodes

Node A _.f~""""~+~. Node B Node C

Spark - General Model

Spark MLIib
Streamingll (machine
learning)

Apache Spark

Grid Computing

Distributed Nodes
Heterogeneous and Physically Separate Nodes

Grid Computing Example

SETI@home (SETI Institute)

Large Hadron Collider Computing Grid (CERN)

NFCR Centre for Comp. Drug Discovery
(Oxford Univ)

Globus Toolkit (Globus Alliance)

Data Storage:
Data Warehouse vs Data Lakes

Data Warehouse vs Data Lake

Data Warehouse Data Lake
Data Transformed to Many data sources
defined schema Retain all data
Loaded when usage Allows for exploration
identified Apply transform as
Allows for quick needed
response of defined Apply schema as

gueries needed

Data Warehouse

Key points:
e Extract needed data
e Map to schema
e Prepare for defined use
cases

.\
Operational System "\
\

= ETL
.

ERP
CRM

Flat Files

Metadata

Summary

Raw Data
Data

Data Warehouse

A
\
s

v

H) =)

_|

Olap Analysis

Data Mining

Data Lake

Key points:
e Store all data
e Transform as needed
e Apply schema as needed

Query

Processing

Cleaning, Transformation

Schema (Avro, Thrift, Protobuf)

Data
Ingest

el

Data Storage

\

Data Characteristics

Understanding of data models and schemas
in traditional BW

Understanding of data models and schemas
proposed for big data systems

Traditional Business Warehouse

Data Staging
Sources Area Warehouse Users
Transaction data
Operational and Fact based
System
data model
New .
transactions Flet Elles

Analytics Data Mining

and facts

OLTP vs OLAP

Online Transaction Online Analytics
Processing (OLTP) Processing (OLAP)
systems and approach that systems and approach to
facilitate and manage answering multi-
transaction-oriented dimensional analytical
applications, typically for queries quickly

data entry and retrieval
transaction processing

OLTP vs OLAP

OLTP

CRUD Transactions (Create,
Read, Update, and Delete)
Frequent Updates

Example query:

UPDATE Employees

SET Salary='100,000"

WHERE EmployeeName='Alfred Nobel';
SELECT Salary FROM Employees
WHERE Salary ='Alfred Nobel';

OLAP

Aggregations
Drill-downs,
Roll-ups

Example query:

select o.customerid, o.orderid,
o.orderdate, p.price, sum
(p.price) over (partition by
o.customerid order by o.orderdate)
running_total

The Data

Master Data

Transaction Data Analytics Data

Master Data: The source of truth in your system, cannot withstand corruption
Transaction Data: Keeps relationships (e.g., who bought what)
Analytics Data: Aggregated/processed transaction data

Data Warehouse Model

Master Data
(Dimension Tables)

Transaction Data Analytics Data
(Fact table) (Cuboid)

Master Data (Dimensions)

Captures concepts and e
relationships that Scheaile

1
. . . 1 | +TimeToUsed ! !
partICIpate In : : :?;‘;;l"“:'h”n” : s Worker
' ' Amelead B +I0
tra nsaCtIOHS ' CUStOmeT : Job Assigment & s
: s ~ ! Jexp < +ID e ABanrvlnbl an
+1D I levivle = J+J0b '
1

object, relationship,
object attributes Geparmen

-
sMaxs

tProductType

Cost

Star Schema

Dim_Date
¥ Id e

Date
Day
Day_of _week
Month
Manth_Marne
Cuarker
Quarker_Mame

Year

Fact_Sales
13 Dake_Id
Store_Id e
Product_Id =
Inits_Sald

Dim_Store
% Id
Store_Mumber
Skate_Province

Counkry

Dim_Product
% 1d
EAN_Code
Product_Mame
Brand
Product_Zategory

Snow flake Schema

Dim_Day_of_Week
— 7
Day_of _Week
Dim_Month Dim_Date Dim_Store
7 2 o sog @
Month,_Name Date Store_Number Dim_Geography
Dy Geography _Id ooz Id
. =S Day_of _week_Id Skate_Province
Quarter_Mame Quarter 1d = Date_Id
Year Stare_Id ol
Product_Id =
Units_Sold
Dim_Product
e % W
EAN_Code
Product_Mame Dim_Brand
Brand_Id looe—esd 7
Product_Category_Id Brand

Dim_Product_Category
—cx § I
Product_Category

Transaction Data (Fact Table)

Each Record Captures a Transaction
(id, object, amount, time, ...

¥ ComplaintID ¥ Product ¥ Sub-product ¥ Issue ¥ | Sub-issue ¥ State ¥ ZIPcode ¥ Submittedvia ¥ Date received ¥ Datesenttocon ¥ Company ¥ Company respol ¥ Timely responsc
1354490 Debt Cont'd attempts collect dabt not Debt is not mine OH 44077 Web /302015 04/30/2015 Expert Global In progress Yes
collection owed Solutions, Inc.
1355160 Student loan Non-federal Dealing with my lender or servicer MNJ 8807 Web 043002015 04/30/2015 Transworld In progress Yes
student loan Systems Inc.
1355730 Credit Incorrect information on credit Account status IL 60618 Web 04/30/2015 04/30/2015 FNIS (Fidelity — Closed with Yes
reporting report Mational explanation
Information
Services, Inc.)
1355607 Debt Crher (phone, Disclosure verification of debt Right to dispute nofice Wi 98133 Web 043002015 04/30/2015 Stellar Closed with Yes
collection health club, etc.) net received Recovery Inc. explanation
1354248 Bank Checking Problems caused by my funds AL 35127 Web 04/30/2015 04/30/2015 Wells Fargo Closed with Yes
accountor account being low explanation
service
1354326 Bank Checking Account opening, closing, or X 78575 Web 04/30/2015 04/30/2015 Ally Financial In progress Yes
accountor account management Inc.
service
1351925 Bank Checking Account opening, closing, or FL 34677 Web 04/29/2015 04/29/2015 HSBC Closed with Yes
accountor account management explanation
service
1352573 Debt Medical Cont'd attempts collect debt not Debt was paid NV 69143 Web 04/29/2015 04/29/2015 Nevada Closed with Yes
collection owed Credico, Inc. explanation
1354227 Debt Medical False statements or Indicated committed FL 32792 Web 04/29/2015 04/30/2015 Trangworld In progress Yes
collaction representation crime not paying Systems Inc.
1354200 Debt Credit card False statements or Indicated committed AZ 85304 Web 04/29/2015 04/30/2015 Patenaude & Closed with Yes
collection ion crime not paying Felix APC explanation
1352929 Debt Other (phone, Cont'd attempts collect debt not Debt is not mine NC 27534 Web 04/29/2015 04/29/2015 M&S Recovery Closed with Yes
collection health club, etc.) owed Solutions explanation
1354191 Bank Checking Problems caused by my funds CA 90044 Web 04/29/2015 04/30/2015 Wells Fargo Closed with Yes
accountor account being low explanation
service
1354115 Debt Medical Cont'd attempts collect debt not Debt is not mine TX 77449 Web 04/29/2015 04/29/2015 Commonwealth Closed with Yes
collection owed Financial explanation
Systems, Inc.
1353502 Consumer Vehicle loan Problems when you are unable to X 75287 Web 04/2912015 04/29/2015 Ally Financial — In progress Yes
loan pay Inc.
1353732 Morigage Conventional Loan servicing, payments, escrow GA 35114 Web /292015 04/29/2015 United Security ~ Closed with non- Yes
fixed mortgage account Financial Corp monetary relief
1353334 Bank Checking Account opening, closing, or D 83705 Web 04/29/2015 04/29/2015 Wells Fargo Closed with Yes
accountor account management explanation
service
1353247 Money Domestic (US) Fraud or scam AR 72712 Web 04/29/2015 04/29/2015 MoneyGram In progress Yes
transfers money transfer
1352727 Mortgage Conventiona Loan FL 32808 Web 04/29/2015 04/29/2015 Bayview Loan In progress Yes
adjustable modification,collection, foreclosure Servicing, LLC

mortgage (ARM)

Analytics Data

Roll-ups, drill downs, summaries
summary, average, grouping

1 Total Family Households, All Races Total Age of Mean age
Householder
2 Under 20 years 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-84 65-74 75+ years
years years years years years years years years years
3 ALL FAMILIES 81,353 575 2,786 5,479 7,829 8,081 8,562 8,602 8,836 15,039 9,780 5,804 48.3
4 TENURE
5 Own/Buying 58,426 237 787 2,181 4,062 4,955 5914 6470 7,087 12,814 8,742 5177 51.3
6 Rent 22,146 329 1,934 3,189 3674 3,033 2,573 2,060 1,668 2129 a74 582 40.4
& Mo Cash Rent /3 781 9 85 109 93 73 75 T2 81 96 B4 45 44.5
8 SIZE OF FAMILY
.t Two members 37,486 150 1,266 2,140 2,154 1,653 1,885 2379 3,611 9,616 7,855 4,878 55.2
10. .Three members 17,931 181 850 1,500 2,080 1,939 2,037 2194 2,207 3,081 1,164 897 45.2
11. .Four members 15231 114 388 1,152 2041 2441 2708 2,466 1,861 1,468 413 179 42.8
12 Five members 6,838 76 183 456 969 1,265 1274 1,052 694 588 200 a1 424
13. .Sixmembers 2,494 a7 50 145 396 477 456 338 238 213 52 425
14. .Sewven or more members 1,374 16 40 a5 179 286 202 173 132 173 65 17 434
15. AGE OF OWN CHILDREN
16. Without own children, any age 33,344 487 1,323 1,828 1,685 1,192 1179 1,701 3,038 8,969 7,710 4,251 56
17. With own children, any age 48,009 109 1462 3,651 6,144 6,869 7,383 6,901 5,798 6,070 2,010 1,583 44.2
18. Without own children under 25 years 39,873 471 | 1,330 1,837 1,709 1238 1227 1936 3,815 1,317 9,324 5,669 57.5
19. With own children under 25 years /4 41,479 104 1,456 3,642 6,120 6,823 7,336 6,665 5,021 3722 456 135 416
20. Without own children under 18 years 46,398 477 1,351 1,853 1,753 1,374 1,858 3,368 5,673 13,450 9,529 5713 56.6
21 With own children under 18 years 34,955 98 1,435 3,626 6,076 6,687 6,705 5234 3,163 1,589 252 a1 30.9
22 Without own children under 12 years 55,801 487 1,368 1,901 2,075 2,473 3,826 5962 7.815 14,511 9,640 5744 54.5
23. With own children under 12 years 25,561 88 1,418 3,578 5754 5,588 4,736 2,840 1,022 528 141 60 ar.2
24 Without own children under 6 years 66,374 485 1,414 2,483 3,620 4783 6,726 7,885 8,585 14,904 9721 5778 52
25. With own children under 6 years 14,978 80 1,372 3,016 4,209 3278 1,836 717 251 136 59 26 342
26. Without own children under 5 years 68,534 485 1,488 2,743 4,126 5,342 7167 8,087 8,647 14,942 9,735 5782 514
27. With own children under 5 years 12,818 80 1,208 2735 3,703 2719 1,385 534 188 a7 45 22 33.7
28 Without own children under 3 years 72,929 501 1,790 3,496 5265 6,400 7,842 8,361 8,735 14,990 9,758 5792 50.3
29. With own children under 3 years 8423 74 996 1,982 2,664 1,681 720 241 101 48 23 12 328
30. Without own children under 1 year 78,604 537 2,347 4,797 6,953 7,605 8,396 8552 8,818 15,023 9,772 5,804 48.9
3 With own children under 1 year 2,749 39 439 682 B76 456 166 50 18 15 a8 - 315
32. Without own children 3-5 years 71,884 580 2,145 3,759 5,199 5,826 7211 8,061 8,667 14,928 9,742 5787 50.3
33. With own children 3-5 years 9,468 16 641 1,720 2,630 2,236 1,351 540 169 1 38 17 5
34 Without own children 6-11 years 64,970 585 2,608 3,854 4,587 4,180 4783 6,350 7.963 14,614 9,681 5766 511
35. With own children 6-11 years 16,383 10 179 1,625 3242 3,871 3,769 2,252 873 425 99 a8 39.2
36. Without own children 12-17 years 64,774 566 2,756 5,271 6,265 5,031 4,646 4777 6,256 13,807 9,640 5759 49.6
ar. With own children 12-17 years 16,579 10 30 207 1,564 3,030 3916 3824 2,580 1231 141 45 443
as. FAMILIES WITH OWN CHILDREN,
SPECIFIC AGES/4

39. .No own children under 25 39,910 471 1,330 1,839 1,709 1,243 1,235 1,948 3,821 11,318 9,325 5,670 57.5
40. Own children, more than one age group 17611 13 379 1,637 3,256 3,819 3,648 2714 1,467 587 69 23 39.7
41. .Own children 18-24 only 6,488 6 21 14 42 131 623 1,420 1,852 2,132 203 42 51.9
42. Own children 12-17 only 6,201 8 17 47 292 831 1,204 1570 1,286 735 91 29 46.6
43, Own children 6-11 only 5,046 8 4 512 876 1,021 1,204 760 333 207 62 24 40.3
44, Own children 3-5 only 2535 6 322 529 624 486 328 124 42 45 19 10 343

63 676 900 1,029 532 23 66 35 15 10] 31.2

45, Own children under 3 only 3,562

Big Data Architecture Model

Master Data
(fact based, Immutable, Dimensions)

Transaction Data Analytics Data
(Log items) (Aggregates, Roll-ups)

Mutable table

User information

id name age gender employer location

1 Alice 25 female Apple Atlanta, GA

2 Bob 36 male SAS Chicago, IL

3 Tom 28 male Google San Francisco, CA -
4 Charlie 25 male Microsoft Washington, DC |

Fact Based, Immutable

Name data _ Age data
userid| name timestamp "‘&_ f userid |age timestamp
1 Alice | 2012/03/29 08:12:24 1 25 | 2012/03/29 08:12:24
2 | Bob |201204112144751] @ 7 2 | 36 | 2012/04/12 14:47:51
3 | Tom | 2012004104 18:31:24] 0 I°C0 LS 3 | 28 | 2012/04/04 18:31:24
4 | Chariie | 2012/04/09 11:52:30 | et separately 4 |25 | 2012/04/09 11:52:30
*
-
Location data
user id location timestamp ° ,
1 Atanta, GA | 2012/03/2908:12:24 | e E/
2 Chicago, IL 2012/04/12 14:47:51 when it is stored.
3 San Francisco, CA | 2012/04/04 18:31:24
4 Washington, DC | 2012/04/09 11:52:30

In the fact-based model, you deconstruct the data into fundamental units called facts

Benefits of a fact based model

Supports queries about any time in history
Enables complex queries (that a predefined
schema might have have ignored)

Location data o The initial information
provided by Tom (user id 3),
user id location timestamp timestamped when he first

joined FaceS :

1 Atlanta, GA 2012/03/29 08:12:24 Jomea rareepate

2 Chicago, IL 2012/04/12 14:47:51

3 San Francisco, CA 2012/04/04 18:31:24 @ When Tom later moves to a

4 Washington, DC 2012/04/09 11:52:30 new location, you add an additional

o record timestamped by when you
3 Los Angeles, CA 2012/06/17 20:09:48 received the new data.

Benefits of a fact based model

More easily correctable (remove erroneous facts)

Location data

user id location timestamp
1 Atlanta, GA 2012/03/29 08:12:24
2 Chicago, IL 2012/04/12 14:47:51 H .
uman faults can easily
3 San Francisco, CA 2012/04/04 18:31:24 | <« be corrected by simply deleting
4 Washington, DC 2012/04/09 11:52:30 erroneous facts. The record is
automatically reset by using
3 tos—Angeles; CA———2012/06/17-26:0948— earlier timestamps.

Storage Systems

DBMS: Relational and Columnar

Two kinds of database management systems
Relational Databases
Presents via Declarative Query Languages
Organize underlying storage row-wise

Sometimes column-wise

Columnar Databases
Presents via APl and Declarative Query Languages
Organize underlying storage column-wise

How Do Relational DBs Work?

Logical Schema

® Records stored as tables
o Schema validated on-
write

o Typically indexed
® Records may be persisted

o Row-wise

o Column-wise
e Additional structures can

be applied to enhance

<RowID> EmployeelD FirstName LastName Dept Salary
001 12 John Smith Marketing 90
002 24 Sue Richards Engine 130
003 35 Maggie Smith DataSci 120
004 YA Bobby Jones DataSci 120

access

001:12,John,Smith,Marketing, 90\n

Physical Schema

002:24, Sue,Richards, Engine, 130\n
003:35,Maggie, Smith, DataSci, 120\n
004:44,Bobby, Jones,DataSci, 120\n

(=

o Secondary Indices
o Materialized Views
o Stored Procedures

Row-Oriented
e Very fast to insert rows
e Very fast to retrieve whole rows
e Slower to retrieve whole
columns

How Do Columnar DBs Work?

e Records stored as tables
e Largely for analytical
workloads

O Read-mostly

o Bulk-insertion
001 12 John Smith Marketing 90 e Additional access structures
e Presumption

o More likely to read all
003 35 Maggie Smith DataSci 120 VaIUGS Of a column
than all values of a row

Logical Schema

<RowID> EmployeelD FirstName LastName Dept Salary

002 24 Sue Richards Engine 130

004 YA Bobby Jones DataSci 120
o Optimize storage for
fast column retrieval
Physical Schema < Column-Oriented

12:001;24:002;35:003;44:004\n e Very fast to retrieve columns
John:001;Sue:002;Maggie:003;Bobby:004\n e May save space for sparse
Smith:001,003;Richards:002;Jones:004\m data
Marketing:001;Engine:002;DataSci:003,004\n e Slow toinsert, slow for row

90:001;130:002;120:003,004\n reads

When are They Useful?

Relational

Most common data storage
and retrieval system
Many drivers, declarative
language (SQL)

B Good for fast inserts

® Good for (some) fast reads

® Good for sharing data among
applications

® | imited schema-on-read
support

® Can be costly or difficult to
scale

Columnar

Optimized for analytical
workloads
Maintains relational data
model

® Good for analytical
operations

® Good for horizontal scaling

® Bad for fast writes

® Bad for fast row-wise
reads

NoSQL and HDFS

Two distributed approaches to data storage

HDFS (Hadoop Distributed File System)

Presents like a local filesystem
Distribution mechanics handled automatically

NoSQL Databases (Key/Value Stores)

Typically store records as “key-value pairs”
Distribution mechanics tied to record keys

How Does HDFS Work?

File divided into blocks

(Typically between 64MB and 256MB) e Blocks replicated k times
o Typically: k>=3

® Block placement tries to

B1 B> B3 o Ensure resiliency

o Minimize network hops

e Onread
o Request 1 copy of each

block
- O Retries on other copies

Server 1 Server 2 Ce;; /S;:

A Large File

How Do Key-Value Stores Work?

Value

1234 Some text like this

2345 fname: "A JSON

Document”, number:
78

3456 <image-data>—

v
Server1 Server 2 Server3

® Records stored by key
o Provides a simple index
® Record placement
o Keys are used to shard
o All keys in a certain range go
to a certain (set of) servers
e Onread
o Driver process reads from
servers based on key-ranges

Servern

When Are They Useful?

HDFS

Popular bulk data store
Many, large files
File size >= Block size

Agnostic to file content

® Good as an immutable
data store

B Good for parallel reads of
lots of blocks

® Bad for small, specific
reads

m Bad for fast writes

Key-Value Stores

Many popular choices
Redis, Berkeley DB
MongoDB

Cassandra (column-families
imposed on value)

® Good for fast, key-based
access

® Good for fast writes

® Bad for off-key access

® Complicated for merging
datasets

OS and SDS Storage

Two Concepts
Object Storage (OS): as a new abstraction for
storing data
Software Defined Storage (SDS): An
architecture that enables cost effective,
scalable, highly available (HA) storage systems

Combining OS and SDS provides an efficient
solution for certain data applications

What is 1t?

Object Storage

A

Manage data as one (large) logical object
Consists of meta data and data

Unique identifier across system

Data is an uninterpreted set of bytes

AN

Software Defined Storage

I Distributed Storage Manager/Files System

I Network

Node |

Node |

- I D O3
- |
Disc LL')EC Disc Disc Disc Disc
—Fil— ~File= —File Fil

Node |

~

A

Data Replication for resilience and HA
Store anything
Runs on commodity hardware

Manages data automatically, blocks
hidden

What Problem Does it Solve?

Simplified model for managing data growth
Lowers management cost
Lowers hardware cost

Meet Resiliency and HA needs and lower cost

How does it work?

Simple API with an Object Abstraction
Data is partitioned, partitions are replicated
for resiliency and HA
Software layer
manages replication and data placement

automatically re-distributes data in case of
expansion, contraction or failure

Examples

OpenStack SWIFT based Storage.
HA, scalable storage with eventual consistency

HA, scalable storage with eventual consistency

HA, scalable storage with strong consistency

HA, scalable storage with strong consistency

OpenStack SWIFT based Storage.
HA, scalable storage with eventual consistency

Strong consistency offers up-to-date data but at the cost of high latency
Eventual consistency offers low latency but may reply to read requests with stale data since all nodes of the
database may not have the updated data.

CAP Theorem

It is impossible for a distributed data store to simultaneously
provide more than two out of the following three guarantees

Consistency /1/z ;
Availability V.
Partition Tolerance /Vz

Consistency: Every read receives the most recent write or an error

Availability: Every request receives a (non-error) response — without guarantee that it contains the
most recent write

Partition tolerance: The system continues to operate despite an arbitrary number of messages being
dropped (or delayed) by the network between nodes

CAP Theorem (Simplified)

Data Models A
Relational (Comparison) vailability
Key-value

Column-oriented/ Tabuler Each client can always read and write

AP

C
o
w
W
(W
|
(\
W

Partition

onsistency cP Tolerance
All clients always BigTable Rerkeley DE The system works well
have the same view Hypertable . ycheDE despite physical network

of the data HBase Redis partitions

Moving Large Data
Considerations

Moving Large Data

If data is distributed how can you leverage
parallelism?

What kind of source and sink is involved?

How do you use network bandwidth efficiently?
How to handle different formats and structures?

Large files take a long-time, how are failures
handled?

As a data scientist you need to understand how to think
about data transfer and movement

Performance Measures

Bandwidth measured in bits/sec is the maximum
transfer rate

Throughput is the actual rate that information is
transferred

Latency the delay between the sender and the
receiver, this is a function of the calls/signals travel
time and intermediate processing time

Jitter variation in the time of arrival at the receiver
of the information

Error rate # of corrupted bits as a percentage or
fraction of the total sent

Transfer Times

1 141 . Some info (for Disk storage we use base 10)
Limiting Factors: vte 8 bits
Available Network Bandwidth 1000 Bytes =1 Kilobyte
Read/Write performance 1000 Kilobytes = 1 Megabyte

1000 Megabytes = 1 Gigabyte

Error rates 1000 Gigabytes = 1 Terabyte

Example
How long would it take to transfer 2 TB file over a 100 Mbit / sec connection?

Answer
2TB = 2*1000%1000%¥1000%1000%*8 = 1.6E+13 bit
100 Mbit = 100*¥1000*1000 = 100000000

seconds = 1.6E+13 / 100000000 = 160000
hours = 160000/ 60/ 60 = 44 hours

Example Tools

Sqoop RDBMS, BDW to Hadoop

distcp2 HDFS to HDFS copy

Rsync FS to FS copy, FS to FS synchronization

Tools Comparison

Type(s) of source and
sink

Network usage

Level of parallelism

Structures and formats

Resilience to failures

RDBMS to HDFS

High

Low

Per table or free form
SQL

If task fails it will be
rolled back and result in a
partial export

A unix [linux system inter
transfer tool

Smart use of bandwidth
for sync

No built-in parallelism

Agnostic to file content

Need to be reinitiated/
restarted

HDFS to HDFS
Storage Service (53) to
HDFS

Uses available bandwidth

High. Configurable

Agnostic to structure in
files

High, will retry per job. If
one job fails it will be
restarted

Summary: Moving Large Data

Understand the bottleneck and your use case
Define your time constraints, can you move all
the data or do you need to segment

Pick the right tool

SQL DDL, Avro, Protobuf, CSV

Data Definition

When is Schema Applied?

Schemas represent the logical view of data
We can apply them
When data is written

When data is read
The application of schema comes with trade-offs

Schema-on-Read

Data is stored without constraint
Store data without validation
Apply the plan to the data stream on every read
Extract the record from the data stream
Extract the details from the record
Validate the record

Examples of Schema-on-Read

File systems

The local disk on your computer
“Big Data Frameworks” —

Apache Hadoop _ Rely on runtime logic to apply
schema
Apache Spark L
Some NoSQL Databases
MongoDB __ Relyonself-describing data to

CouchDB apply schema

Example: Avro Schema

Consider this Avro schema expressed in JSON

"type": "record",
"name": "Person",
"fields": |
{"name": "userName", "type": "string"},
{"name": "favoriteNumber", "type": ["null", "long"]},

{"name": "interests","type":{"type":"array","items":"string"}}]

Other Schema-encod. Formats

Google protobuf
messagepack
Cap’n Proto
Parquet

Designed for large, column-oriented data

Trade-Offs in Schema-on-Read

Pros Cons
Data can be subject to Higher cost to read data

o) A |
varying interpretation ssemble records

)] . Validate records
Validation can be as strict as

Access details
needed No implicit guarantees about

Schema can mutate over time data contents

Schema-on-Write

Data is stored only if it fits constraints

Validate the schema before persisting
and type of attributes

uniqueness, size, etc.
Extract data quickly, without re-validation

Data shape, size, and location is already known

Examples of Schema-on-Write

Databases (Typically Relational or Object-Relational)
MySQL
PostgreSQL
Oracle Database
Microsoft SQL Server
and many more

Trade-Offs in Schema-on-Write

Pros cons
Data characteristics are :
uaranteed Schema must be provided
& . before data is written
Storage can be optimized to
speed retrieval Schema modifications may

Lower-cost reads cause writes to existing data

Multiple interpretations require
Duplicate definitions

Sometimes duplicate
materializations

BigTable: a Hybrid Approach

Column-Family Database
Organize data into a hierarchy

Columns = record details
Column families = groups of columns

Column families are schema-on-write
Columns are schema-on-read

Can add columns, interpret bytes variably
Examples:

Apache HBase
Apache Cassandra

Big Data Architectures

Elements of DAV Architecture

Collect/
Ingest
Data

Store
Raw
Data

Clean
Transfor
m

Data

Query
Data

Comput
e, Join,

Aggrega
te data

Analyze
Report

Difference in Approach

Traditional Approach
Structured & Repeatable Analysis

Business Users

Determine what »
question to ask ;‘

IT

Structures the data to
answer that question "

Monthly sales reports
Profitability analysis
Customer surveys

Notice the difference!

Big Data Approach
Iterative & Exploratory Analysis

DH
b T

Delivers a platform to
enable creative
discovery

s

)

Business

Explores what questions
could be asked
Brand sentiment
Product strategy
Maximum asset utilization
Preventative care

=

Traditional Business Warehouse

Data Staging
Sources Area Warehouse Users
Transaction data
Operational and Fact based
System
data model
New .
transactions Flet Elles

Analytics Data Mining

and facts

Big Data Analytics Architecture

Example:
Lambda Architecture

/'{ batch view I"‘.
Precomputed -
All data . - S
A information . »
[batch view J

\ 4

Merge

/{real time view I'—D
o~

Incremented
information

Other examples:
Kappa Architecture
Netflix Architecture

Lambda Architecture

Streaming
analytics

Kafka Cluster Storm ,//Servin DB(s)

processing_job N
input_topic < speed_table
Hadoop queriess| App
batch_table
processing_job
Key points:

Analytics Data

e Keep you data in Kafka and HDFS
e Low latency processing as a stream
® Re-process and batch processingin Hadoop

Ingest

Kappa Architecture

Transaction data
and Fact based
data model

Stream Processing

Kafka Cluster System /M\

“'-._________________..-f‘

. ; queries
job_version_n » output_table. n |e4———— App

input_topic r:ﬂ
\\‘“ job_version_n+1 & output_table_n+1

“'--.___________________._.\
// Key points:

New e Keep you data in Kafka Analytics Data
transaction e Treat everything as a Stream
s and facts ® Re-process stream by resetting offset

e Advantage: simplified architecture, everything is a stream

MapReduce, Spark, BigQuery, ...

Processing Platforms

Processing Platforms

Batch Processing
Google GFS/MapReduce (2003)
Apache Hadoop HDFS/MapReduce (2004)
SQL
BigQuery (based on Google Dremel, 2010)
Apache Hive (HiveQl) (2012)
Streaming Data
Apache Storm (2011) / Twitter Huron (2015)
Unified Engine (Streaming, SQL, Batch, ML)
Apache Spark (2012)

