## EECS4415: Big Data Systems



Data Ingestion and Data Quality

## **Big Data Technology & Analytics**

| Data<br>Ingestion<br>ETL, Distcp,<br>Kafka,<br>OpenRefine,<br> | Query & Exploration<br>SQL, Search, Cypher,                                |                                      |
|----------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|
|                                                                | Stream Processing Platforms<br>Storm, Spark,                               | Data                                 |
|                                                                | Batch Processing Platforms<br>MapReduce, SparkSQL, BigQuery, Hive, Cypher, | Serving<br>Bl, Cubes,<br>RDBMS, Key- |
|                                                                | Data Definition<br>SQL DDL, Avro, Protobuf, CSV                            | value Stores,<br>Tableau,            |
|                                                                | Storage Systems<br>HDFS, RDBMS, Column Stores, Graph Databases             |                                      |
| Computer P                                                     | latforms                                                                   |                                      |

Distributed Commodity, Clustered High-Performance, Single Node

## **Data Ingestion**

Analytics solutions start with data ingestion

Data integration challenges: volume (many similar integrations) variety (many different integrations) velocity (batch v.s real-time) (or all of the above)

#### **Needs of Data Analytics**



\* A theory in psychology proposed by Abraham **Maslow** in 1943. Needs lower down in the hierarchy must be satisfied before individuals can attend to needs higher up.

### **Challenge: Many Sources**



### **Challenge: Many Schemas**



Different structures Different manifest data types Different literal for same data type Different Keys

## **Challenge: Failures**



Failures when producers push data Failures storing received data Failures while transferring data over network

### **Data Bundle Semantics Examples**

| Full dumps  | All data is provided at once and replaces all previous data.                                                                        |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Incremental | Increments are provided in any order, data interval in an increment is provided as metadata. On an hourly, daily or weekly cadence. |
| Append      | Always appended at the end of the dataset. Order is assumed to be correct.                                                          |
| Stream      | Stream of incoming data as individual rows or in small batches. On a second, minute or hourly cadence.                              |

#### ETL: Extract, Transform, Load



Requires transforms to know what reporting, query to enable

#### **ELT: Extract, Load, Transform**



- Made possible by more powerful target systems
- Provides more flexibility at later stages than ETL

## **High Velocity Technologies**

| Kafka   | Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.                                                                                                      |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kinesis | Amazon Kinesis is a fully managed, cloud-based service for real-time data<br>processing over large, distributed data streams. Amazon Kinesis can<br>continuously capture and store terabytes of data per hour from hundreds<br>of thousands of sources. |
| S4      | S4 is a general-purpose, distributed, scalable, fault-tolerant, pluggable platform that allows programmers to easily develop applications for processing continuous unbounded streams of data.                                                          |
| Storm   | Apache Storm is a distributed realtime computation system. Storm makes it easy to reliably process unbounded streams of data, doing for realtime processing what Hadoop did for batch processing.                                                       |
| Samza   | Apache Samza is a distributed stream processing framework. It uses<br><u>Apache Kafka</u> for messaging, and <u>Apache Hadoop YARN</u> to provide fault<br>tolerance, processor isolation, security, and resource management.                           |

### Kafka Approach



| Scalability                     | Allows many producers and consumers.<br>Partitions are the unit of scale.            |
|---------------------------------|--------------------------------------------------------------------------------------|
| Schema Variety                  | Does not really solve this.                                                          |
| Network<br>Bottlenecks          | Can handle some variability without losing messages.                                 |
| Consumer<br>Bottlenecks         | Kafka acts as a buffer allowing producers and consumers to work at different speeds. |
| Bursts                          | Handles buffering of messages between producers and consumers.                       |
| Reliability, Fault<br>Tolerance | Allows reading of messages if a consumer fails.                                      |





- Data is produced in Bursts
- Consumers can only consume at a certain rate
- Dropping data can be a problem



## Data Quality

#### **Bad Data**

- Misspellings {Montgromery street}
- Outliers {1,2,4,2,4,123,3,4}
- Incorrect values {invalid zip, neg number}
- Missing values {6,7,4,3,,4,5,6}
- Incorrect values {94025, -345,96066,...}

## So, What is Data Quality?

#### It depends!

- Entry Quality: Is the record entered correctly?
- Process Quality: Was the record correct throughout the system?
- Identity Quality: Are similar entities resolved to be the same?
- Integration Quality: Is the data sufficiently integrated to answer relevant questions?
- Usage Quality: Is the data being used correctly?
  - Age Quality: Is the data new-enough to be trusted?

### Data Quality as a Hierarchy



## **Data Quality Framework**

## **Quality Evaluation Framework**

#### Observation

- It's too expensive to clean all the data every way
- How do we decide what to clean?

#### We need **a framework** that helps to:

- Determine what issues might occur in the data
- Weight the criticality of the issues
- Profile the data to score quality

#### The framework allows:

- to approach quality as an ever-increasing standard
- To prioritize data cleaning activities

## **Quality Issues for Single Streams**

#### Definitional

| Constants               |
|-------------------------|
| Definition Mismatches   |
| Filler Containing Data  |
| Inconsistent Cases      |
| Inconsistent Data Types |
| Inconsistent Null Rules |

#### Incorrect

Invalid Keys

Invalid Values

Miscellaneous

**Missing Values** 

Orphans

Out of Range

#### Too-Soon-to-Tell

| _ |                            |
|---|----------------------------|
|   | Pattern Exceptions         |
|   | Potential Constants        |
|   | Potential Defaults         |
|   | Potential Duplicates       |
|   | Potential Invalids         |
|   | Potential Redundant Values |
| ſ | Potential Unused Fields    |
|   | Rule Exceptions            |
|   | Unused Fields              |
|   |                            |

## Weighting Issues

| Weight<br>Factor | Issue Type              |
|------------------|-------------------------|
| 1                | Constants               |
| 2                | Definition Mismatches   |
| 2                | Filler Containing Data  |
| 1                | Inconsistent Cases      |
| 2                | Inconsistent Data Types |
| 3                | Inconsistent Null Rules |
| 5                | Invalid Keys            |
| 5                | Invalid Values          |

- Issues should be weighted in the context of our system
- Invalid or missing data is most problematic
- Potentially issues can be weighted lower

## **Assessing Quality**

| Weight | Issue Type              | Disco<br>vered | Possible |
|--------|-------------------------|----------------|----------|
| 1      | Constants               | 1              | 59       |
| 2      | Definition Mismatches   | 4              | 59       |
| 2      | Filler Containing Data  | 1              | 59       |
| 1      | Inconsistent Cases      | 3              | 59       |
| 2      | Inconsistent Data Types | 15             | 59       |
| 3      | Inconsistent Null Rules | 6              | 59       |
| 5      | Invalid Keys            | 1              | 3        |
| 5      | Invalid Values          | 5              | 59       |

Any issue has a possible maximum

- This can be cardinality of
  - Rows
  - Keys
  - etc.

#### **Quality Score**

| Raw Score      | 91.3% |  |  |
|----------------|-------|--|--|
| Weighted Score | 90.4% |  |  |

## **Missing Values**

#### Nuclear Option: Listwise Removal

- If a record has a missing value → Ignore the entire record in analyses
- Softer Option: Pairwise Removal
  - If a record has a missing value → Ignore the record <u>iff</u> the missing value is in the analyzed set
- Infer Substitute Values
  - Statistical (Interpolation): predict new data points in the range of a set (Simple linear, Splines, Kriging)
  - Model-based: Impute missing values based on a model (EM algorithm, etc.)

Entity Resolution/ Record Linkage

## **Entity Resolution/Record Lineage**



#### What is it?

The task of finding records in a data set that refer to the same entity across different data sources

#### Problems

- Attributes/records not matching 100%
- How to apply to different/ changing data sets
- Missing values
- Data quality, errors etc.
- Semantic relations

### **Core Problems (to address)**

- Normalize data
- Link records on a table
- Link records cross tables



#### Customer (source 1)

| CID | Name            | Street      | City                 | Sex |
|-----|-----------------|-------------|----------------------|-----|
| 11  | Kristen Smith   | 2 Hurley Pl | South Fork, MN 48503 | 0   |
| 24  | Christian Smith | Hurley St 2 | S Fork MN            | 1   |

#### Client (source 2)

| Cno | LastName | FirstName | Gender | Address                                      | Phone/Fax                      |
|-----|----------|-----------|--------|----------------------------------------------|--------------------------------|
| 24  | Smith    | Christoph | М      | 23 Harley St, Chicago<br>IL, 60633-2394      | 333-222-6542 /<br>333-222-6599 |
| 493 | Smith    | Kris L.   | F      | 2 Hurley Place, South<br>Fork MN, 48503-5998 | 444-555-6666                   |

#### Customers (integrated target with cleaned data)

| No | LName | FName      | Gender | Street              | City          | State | ZIP            | Phone            | Fax              | CID | Cno |
|----|-------|------------|--------|---------------------|---------------|-------|----------------|------------------|------------------|-----|-----|
| 1  | Smith | Kristen L. | F      | 2 Hurley<br>Place   | South<br>Fork | MN    | 48503-<br>5998 | 444-555-<br>6666 |                  | 11  | 493 |
| 2  | Smith | Christian  | М      | 2 Hurley<br>Place   | South<br>Fork | MN    | 48503-<br>5998 |                  |                  | 24  |     |
| 3  | Smith | Christoph  | М      | 23 Harley<br>Street | Chicago       | IL    | 60633-<br>2394 | 333-222-<br>6542 | 333-222-<br>6599 |     | 24  |

#### **Types of Problems**



## Single-source Cleaning

## **Single Source Problems**

| Scope/Prob | lem                             | Dirty Data                                                                      | Reasons/Remarks                                                         |
|------------|---------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Attribute  | Missing values                  | phone=9999-999999                                                               | unavailable values during data entry<br>(dummy values or null)          |
|            | Misspellings                    | city="Liipzig"                                                                  | usually typos, phonetic errors                                          |
|            | Cryptic values,                 | experience="B";                                                                 |                                                                         |
|            | Abbreviations                   | occupation="DB Prog."                                                           |                                                                         |
|            | Embedded values                 | name="J. Smith 12.02.70 New York"                                               | multiple values entered in one attribute<br>(e.g. in a free-form field) |
|            | Misfielded values               | city="Germany"                                                                  |                                                                         |
| Record     | Violated attribute dependencies | city="Redmond", zip=77777                                                       | city and zip code should correspond                                     |
| Record     | Word                            | name <sub>1</sub> = "J. Smith", name <sub>2</sub> ="Miller P."                  | usually in a free-form field                                            |
| type       | transpositions                  |                                                                                 | -                                                                       |
|            | Duplicated records              | emp <sub>1</sub> =(name="John Smith",);<br>emp <sub>2</sub> =(name="J. Smith",) | same employee represented twice due to some data entry errors           |
|            | Contradicting                   | emp <sub>1</sub> =(name="John Smith", bdate=12.02.70);                          | the same real world entity is described by                              |
|            | records                         | emp <sub>2</sub> =(name="John Smith", bdate=12.12.70)                           | different values                                                        |
| Source     | Wrong references                | emp=(name="John Smith", deptno=17)                                              | referenced department (17) is defined but wrong                         |

| Scope/Probl | em                  | Dirty Data                                            | Reasons/Remarks                         |
|-------------|---------------------|-------------------------------------------------------|-----------------------------------------|
| Attribute   | Illegal values      | bdate=30.13.70                                        | values outside of domain range          |
| Record      | Violated attribute  | age=22, bdate=12.02.70                                | age = (current date - birth date)       |
|             | dependencies        |                                                       | should hold                             |
| Record      | Uniqueness          | emp <sub>1</sub> =(name="John Smith", SSN="123456")   | uniqueness for SSN (social security     |
| type        | violation           | emp <sub>2</sub> =(name="Peter Miller", SSN="123456") | number) violated                        |
| Source      | Referential         | emp=(name="John Smith", deptno=127)                   | referenced department (127) not defined |
|             | integrity violation |                                                       |                                         |

### **Deterministic vs. Fuzzy Methods**

#### Deterministic

rules + record level match

#### Fuzzy

 Match similar values and records and attempt to determine if *match*, *no match* or *possible match*

## **Deterministic Approach**

#### **Deterministic:** rules + attribute level match

| Data Set | # | SSN       | Name           | DOB        | Sex    | ZIP   |
|----------|---|-----------|----------------|------------|--------|-------|
|          | 1 | 000956723 | Smith, William | 1973/01/02 | Male   | 94701 |
| Sot A    | 2 | 000956723 | Smith, William | 1973/01/02 | Male   | 94703 |
| Sel A    | 3 | 000005555 | Jones, Robert  | 1942/08/14 | Male   | 94701 |
|          | 4 | 123001234 | Sue, Mary      | 1972/11/19 | Female | 94109 |
| Set P    | 1 | 000005555 | Jones, Bob     | 1942/08/14 |        |       |
| Sel D    | 2 |           | Smith, Bill    | 1973/01/02 | Male   | 94701 |

if a.SSN == b.SSN => match if (missing(a.SSN) or missing(b.SSN)) => if ((a.dob == b.dob) and (a.zip == b.zip) and (a.sex == b.sex)) => match

#### Fuzzy Approach

# **Fuzzy:** similarity of attribute + distance of record + match thresholds + learning



match,

#### Fuzzy Approach

**Recall vs Precision** 

Fuzzy + rules => practice

"Generate rules" by using machine learning



### **Similarity Metrics**

- Levenshtein Distance (Edit Distance)
- Jaro Distance
- Jaro-Winkler Distance

#### Levenshtein Distance/ Edit Dist.

- Minimum number of single character edits:
  - Insert
  - Delete
  - Substitute

Stokcholm -> Stockholm sanfransicso-> san francisco sanfransicso-> San Francisco {Distance = 2} {Distance = 4} {Distance = 6}

#### Levenshtein

#### Steps 1 and 2

|   |   | G | U | Μ | B | 0 |
|---|---|---|---|---|---|---|
|   | 0 | 1 | 2 | 3 | 4 | 5 |
| G | 1 |   |   |   |   |   |
| Α | 2 |   |   |   |   |   |
| М | 3 |   |   |   |   |   |
| В | 4 |   |   |   |   |   |
| 0 | 5 |   |   |   |   |   |
| L | 6 |   |   |   |   |   |

| Step | Description                                                                                |
|------|--------------------------------------------------------------------------------------------|
| 1    | Set n to be the length of s.                                                               |
|      | Set m to be the length of t.                                                               |
|      | If $n = 0$ , return m and exit.                                                            |
|      | If $m = 0$ , return n and exit.                                                            |
|      | Construct a matrix containing 0m rows and 0n columns.                                      |
| 2    | Initialize the first row to 0n.                                                            |
|      | Initialize the first column to 0m.                                                         |
| 3    | Examine each character of s (i from 1 to n).                                               |
| 4    | Examine each character of t (j from 1 to m).                                               |
| 5    | If s[i] equals t[j], the cost is 0.                                                        |
|      | If s[i] doesn't equal t[j], the cost is 1.                                                 |
| 6    | Set cell d[i,j] of the matrix equal to the minimum of:                                     |
|      | a. The cell immediately above plus 1: d[i-1,j] + 1.                                        |
|      | b. The cell immediately to the left plus 1: d[i,j-1] + 1.                                  |
|      | c. The cell diagonally above and to the left plus the cost: d[i-1,j-1] + cost.             |
| 7    | After the iteration steps (3, 4, 5, 6) are complete, the distance is found in cell d[n,m]. |

#### Steps 3 to 6 When i = 1

|   | 0 | <b>G</b><br>1 | U<br>2 | М<br>3 | В<br>4 | 0<br>5 |  |
|---|---|---------------|--------|--------|--------|--------|--|
| G | 1 | 0             |        |        |        |        |  |
| Α | 2 | 1             |        |        |        |        |  |
| М | 3 | 2             |        |        |        |        |  |
| В | 4 | 3             |        |        |        |        |  |
| 0 | 5 | 4             |        |        |        |        |  |
| L | 6 | 5             |        |        |        |        |  |

#### Steps 3 to 6 When i = 2

|   |   | G | U | M | B | 0 |
|---|---|---|---|---|---|---|
|   | 0 | 1 | 2 | 3 | 4 | 5 |
| G | 1 | 0 | 1 |   |   |   |
| Α | 2 | 1 | 1 |   |   |   |
| Μ | 3 | 2 | 2 |   |   |   |
| B | 4 | 3 | 3 |   |   |   |
| 0 | 5 | 4 | 4 |   |   |   |
| L | 6 | 5 | 5 |   |   |   |

#### Steps 3 to 6 When i = 3

|   |   | G | U | M | B | 0 |
|---|---|---|---|---|---|---|
|   | 0 | 1 | 2 | 3 | 4 | 5 |
| G | 1 | 0 | 1 | 2 |   |   |
| Α | 2 | 1 | 1 | 2 |   |   |
| M | 3 | 2 | 2 | 1 |   |   |
| В | 4 | 3 | 3 | 2 |   |   |
| 0 | 5 | 4 | 4 | 3 |   |   |
| L | 6 | 5 | 5 | 4 |   |   |

#### Steps 3 to 6 When i = 4

|   |   | G | U | M | B | 0 |
|---|---|---|---|---|---|---|
|   | 0 | 1 | 2 | 3 | 4 | 5 |
| G | 1 | 0 | 1 | 2 | 3 |   |
| Α | 2 | 1 | 1 | 2 | 3 |   |
| M | 3 | 2 | 2 | 1 | 2 |   |
| В | 4 | 3 | 3 | 2 | 1 |   |
| 0 | 5 | 4 | 4 | 3 | 2 |   |
| L | 6 | 5 | 5 | 4 | 3 |   |

#### Steps 3 to 6 When i = 5

|   |   | G | U | M | В | 0 |   |
|---|---|---|---|---|---|---|---|
|   | 0 | 1 | 2 | 3 | 4 | 5 |   |
| G | 1 | 0 | 1 | 2 | 3 | 4 |   |
| Α | 2 | 1 | 1 | 2 | 3 | 4 |   |
| Μ | 3 | 2 | 2 | 1 | 2 | 3 |   |
| В | 4 | 3 | 3 | 2 | 1 | 2 |   |
| 0 | 5 | 4 | 4 | 3 | 2 | 1 |   |
| L | 6 | 5 | 5 | 4 |   | 2 |   |
|   |   |   |   |   |   |   | - |
|   |   |   |   |   |   |   |   |

distance

## **Other Algorithms**

- Hamming Distance
- Damerau-Levenshtein Distance
- Longest Common Substring Distance
- Cosine Distance
- Jaccard Distance
- Jaro Distance
- N-grams

## **Multi-source Cleaning**

### Summary of problem

- Assume you want to link records across sources that do not share a common record key
  - These records may have data quality issues
- How would you create such linkage using fuzzy and deterministic methods?

### **Multi Source Approach**



### Fuzzy Methods, Multi-records

- Defining similarity is application specific
- Assume you have no common, unique key
- What can you do to identify similar record in different (or the same) source
- Example:
  - Cosine similarity for numeric /continuous attributes
  - Edit distance for strings
  - Jaccard for binary or categorical values

## Principle (No unique key)



We map columns: a2<->b5 a3<->b3 a5<->b6

Compare record 1 from table 1, with record 100 from table 5. Are they representing the same entity? Are the attributes continuous, categorical, string, etc.?

#### **Continuous Attributes**

#### For **continuous attributes** we can calculate cosine distance



```
Let d1 = 20 30 40

Let d2 = 10 30 50

Cosine Similarity (d1, d2) = dot(d1, d2) / ||d1|| ||d2||dot(d1, d2)

||d1|| = sqrt((20)^2 + (30)^2 + (40)^2) = 53.8516480713

||d2|| = sqrt((10)^2 + (30)^2 + (50)^2) = 59.160797831

Cosine Similarity (d1, d2) = 3100 / (53.8516480713) * (59.160797831

= 3100 / 3185.90646441

= 0.97303547189
```

#### **String**: calculate an {edit} distance.

**Categorical**: bit vectors (0/1) for *different/same* 

### For sets of binary or categorical

The **Jaccard distance**, which measures *dis*similarity between sample sets, is complementary to the Jaccard coefficient and is obtained by subtracting the Jaccard coefficient from 1, or, equivalently, by dividing the difference of the sizes of the union and the intersection of two sets by the size of the union:

$$d_J(A,B) = 1 - J(A,B) = \frac{|A \cup B| - |A \cap B|}{|A \cup B|}.$$

#### **Example Record Similarity**



score =  $w_1^*(cd(cont(r_1,r_5)))+w_2^*(ed(r_1.a_n,ry.by))+w_3^*(compare(r_1.a_k,r_5.a_l))$ Cosine distance

Ps. this just an illustration, how to model similarity is application specific.

You define score ranges for same, possibly same, not same using thresholds

## Scaling Record Linkage



# Entity matching can be very computationally intensive. How to scale it?

Understand basic scaling techniques
 Understand the techniques pros and cons

### Scale/Efficiency Issues



- Polynomial complexity
- N\*M record comparisons
- Expensive comparison operations
- May require multiple passes over the data

#### Concerns

#### **Precision and Recall**

#### Efficiency

#### **Processing Time**





MB of processed data/ cost of infrastructure





### Ways to Cope With Complexity



#### **Sliding Window**

- Create key from relevant data
- Sort on key
- Compare records in sliding window

Pros: Fewer comparisonCons: Sensitivity to key selection, missed matches



#### Blocking

- Define a blocking key
- Create blocks
- Compare within blocks

**Pros**: fewer comparisons **Cons**: missed matches





| <br> | <br> |
|------|------|
| <br> | <br> |
|      |      |
|      |      |
|      |      |



| <br> |
|------|
| _    |

#### Clustering

- Similarity is transitive
- a->b->c
- Union-find algorithm

Pros: Fewer comparison
Cons: Potentially complex computation



#### **Canopy Clustering**

- Records can belong to multiple canopies
- Cluster into canopies using "cheap" algorithm

Pros: Fewer comparisonCons: Sensitivity to key selection, missed matches



- 1. Begin with the set of data points to be clustered.
- 2. Remove a point from the set, beginning a new 'canopy'
- 3. For each point left in the set, assign it to the new canopy if the distance less than the loose distance
- 4. If the distance of the point is additionally less than the tight distance , remove it from the original set
- 5. Repeat from step 2 until there are no more data points in the set to cluster
- 6. Clustered canopies are sub-clustered using an expensive but accurate algorithm

## **Reduce Comparison Complexity**

#### **Decision Tree**





Figure 2: The rule set produced by translating the information in the induced decision tree.



- then class=matched-yes with certainty factor 0.933
- if name-edit-distance >= 4.5
  - then class=matched-no with certainty factor 1.0

Figure 3: The rule set produced by simplifying the initial rule set.

### **Processing Time**



Data cleaning Hands-on Activity

## **Cleaning Tools**

- OpenRefine (ex Google Refine)
  - Watch Introduction (6:48)
    - https://www.youtube.com/watch?v=B70J\_H\_zAWM
  - Install Open Refine (and Java if needed)
    - <u>http://openrefine.org/</u>
  - Download a data set
    - City of Berkeley Employee Salaries 2013 Data from the link: <u>https://data.cityofberkeley.info/Economic-Data/City-of-Berkeley-Employee-Salaries-2013/ifen-52iq</u>
  - Create a new OpenRefine Project and load the data
  - Try to answer a few Questions below

**Q1**: Who gets the highest base pay in the city?

**Q2**: Who gets the highest 'total pay + benefits' in the city?

**Q3**: Group all police related job titles to a 'Police' job title

**Q4**: Export all information related to 'Police' jobs to a new CSV file