




Computer Platforms
Distributed Commodity, Clustered High-Performance, Single Node

Data 
Ingestion
ETL, Distcp, 
Kafka, 
OpenRefine, 
…

Data 
Serving
BI, Cubes, 
RDBMS, Key-
value Stores, 
Tableau, …

Storage Systems
HDFS, RDBMS, Column Stores, Graph Databases

Data Definition
SQL DDL, Avro, Protobuf, CSV

Batch Processing Platforms
MapReduce, SparkSQL, BigQuery, Hive, Cypher, ...

Stream Processing Platforms
Storm, Spark, ..

Query & Exploration
SQL, Search, Cypher, … 





Analytics solutions start with data ingestion

Data integration challenges:
volume (many similar integrations)
variety (many different integrations)
velocity (batch v.s real-time) 
(or all of the above)



Maslow’s hierarchy of needs*

Data Quality, Structure, Data Ingest 
Data, Persistence, Architecture, ETL

Visualization, Query, OLAP

Aggregation, Join, Filtering, Indexing

Prediction,
Clustering,
Classification

Hierarchy of effective analytics

Real-time, streaming

Basic needs

Understanding 
needs

Predictive 
needs

* A theory in psychology proposed by Abraham Maslow in 1943. 
Needs lower down in the hierarchy must be satisfied before 
individuals can attend to needs higher up.



Data Storage Systems

Business Systems

Web Logs

Email Logs

Transaction Logs

Data Management 
Systems



Data Storage Systems

Business Systems

Web Logs

Email Logs

Transaction Logs

Data Management 
Systems

Different structures
Different manifest data types
Different literal for same data type
Different Keys



Failures when producers push data
Failures storing received data
Failures while transferring data over network

Data Storage Systems

Business Systems

Web Logs

Email Logs

Transaction Logs

Data Management 
Systems

Consumer 1

Consumer 2



Full dumps All data is provided at once and replaces all previous data.

Incremental Increments are provided in any order, data interval in an 
increment is provided as metadata. On an hourly, daily or 
weekly cadence.

Append Always appended at the end of the dataset. Order is assumed 
to be correct.

Stream Stream of incoming data as individual rows or in small 
batches. On a second, minute or hourly cadence.



● Prepare data before loading so that target system can 
spend cycles on reporting, query, etc.

● Requires transforms to know what reporting, query to 
enable



● Made possible by more powerful target systems

● Provides more flexibility at later stages than ETL



Kafka Kafka is a distributed, partitioned, replicated commit log service. It 
provides the functionality of a messaging system, but with a unique 
design.

Kinesis Amazon Kinesis is a fully managed, cloud-based service for real-time data 
processing over large, distributed data streams. Amazon Kinesis can 
continuously capture and store terabytes of data per hour from hundreds 
of thousands of sources. 

S4 S4 is a general-purpose, distributed, scalable, fault-tolerant, pluggable 
platform that allows programmers to easily develop applications for 
processing continuous unbounded streams of data.

Storm Apache Storm is a distributed realtime computation system. Storm 
makes it easy to reliably process unbounded streams of data, doing for 
realtime processing what Hadoop did for batch processing. 

Samza Apache Samza is a distributed stream processing framework. It uses 
Apache Kafka for messaging, and Apache Hadoop YARN to provide fault 
tolerance, processor isolation, security, and resource management.

http://kafka.apache.org/
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html


Scalability Allows many producers and consumers. 
Partitions are the unit of scale.

Schema Variety Does not really solve this.

Network 
Bottlenecks

Can handle some variability without 
losing messages.

Consumer 
Bottlenecks

Kafka acts as a buffer allowing 
producers and consumers to work at 
different speeds.

Bursts Handles buffering of messages between 
producers and consumers.

Reliability, Fault 
Tolerance

Allows reading of messages if a 
consumer fails.



● Data is produced in Bursts
● Consumers can only 

consume at a certain rate
● Dropping data can be a 

problem





Misspellings {Montgromery street}
Outliers {1,2,4,2,4,123,3,4}
 Incorrect values {invalid zip, neg number}
Missing values {6,7,4,3,,4,5,6}
 Incorrect values {94025, -345,96066,…}



It depends!
 Entry Quality: Is the record entered correctly?
 Process Quality: Was the record correct throughout 

the system?
 Identity Quality: Are similar entities resolved to be 

the same?
 Integration Quality: Is the data sufficiently 

integrated to answer relevant questions?
 Usage Quality: Is the data being used correctly?

▪ Age Quality: Is the data new-enough to be trusted?



Things we check in single 
record sets and data streams.  
Fixes can be automatic and 
independent.

Things we check in architecture.  
Fixes can be costly!

Things we check across many data sets.  
Fixes may need extra intelligence.

Things we check in the organization.  
Fixes may be non-technical.





Observation
 It’s too expensive to clean all the data every way
 How do we decide what to clean?

We need a framework that helps to:
 Determine what issues might occur in the data
 Weight the criticality of the issues
 Profile the data to score quality

The framework allows:
 to approach quality as an ever-increasing standard
 To prioritize data cleaning activities



Constants

Definition Mismatches

Filler Containing Data

Inconsistent Cases

Inconsistent Data Types

Inconsistent Null Rules

Invalid Keys

Invalid Values

Miscellaneous

Missing Values

Orphans

Out of Range

Pattern Exceptions

Potential Constants

Potential Defaults

Potential Duplicates

Potential Invalids

Potential Redundant Values

Potential Unused Fields

Rule Exceptions

Unused Fields

Definitional Incorrect Too-Soon-to-Tell



 Issues should be weighted 
in the context of our system

 Invalid or missing data is 
most problematic 

 Potentially issues can be 
weighted lower

Weight 
Factor

Issue Type

1 Constants

2 Definition Mismatches

2 Filler Containing Data

1 Inconsistent Cases

2 Inconsistent Data Types

3 Inconsistent Null Rules

5 Invalid Keys

5 Invalid Values



 Any issue has a 
possible maximum

 This can be 
cardinality of

▪ Rows

▪ Keys

▪ etc.

Weight Issue Type Disco
vered

Possible

1 Constants 1 59

2 Definition Mismatches 4 59

2 Filler Containing Data 1 59

1 Inconsistent Cases 3 59

2 Inconsistent Data Types 15 59

3 Inconsistent Null Rules 6 59

5 Invalid Keys 1 3

5 Invalid Values 5 59

Raw Score 91.3%

Weighted Score 90.4%

Quality Score





 Nuclear Option: Listwise Removal
▪ If a record has a missing value → Ignore the entire 

record in analyses
 Softer Option: Pairwise Removal
▪ If a record has a missing value → Ignore the record iff

the missing value is in the analyzed set
 Infer Substitute Values
▪ Statistical (Interpolation): predict new data points in 

the range of a set (Simple linear, Splines, Kriging)

▪ Model-based: Impute missing values based on a model 
(EM algorithm, etc.) 





What is it?
The task of finding records in a data 
set that refer to the same entity 
across different data sources

Problems
 Attributes/records not matching 

100%
 How to apply to different/ 

changing data sets
 Missing values
 Data quality, errors etc.
 Semantic relations



 Normalize data
 Link records on a table
 Link records cross tables









Deterministic
 rules + record level match

Fuzzy
 Match similar values and records and attempt 

to determine if match, no match or possible 
match



Deterministic: rules + attribute level match

if a.SSN == b.SSN => match
if (missing(a.SSN) or missing(b.SSN)) =>

if ((a.dob == b.dob) and (a.zip == b.zip) and (a.sex == b.sex)) => match



Fuzzy: similarity of attribute + distance of 
record + match thresholds + learning

SSN Name DOB Place of Birth

605782877 Nilsson 1/14/76 Sainte-Paul

<missing> Smith 8/8/68 Barstow

762009827 Smyth <m>/8/68 Barstow

720384793 Carlson 8/8/68 Barstow

<missing> Nilson 1/14/76 Minnesota

<missing> Nilsson 1/13/76 Saint-Paul

if (a.SSN == b.SSN) true
else  

Name  

DOB  POB  

a  

b  

match,
non-match,
possible match   



Recall vs Precision

Fuzzy + rules => practice

“Generate rules” by 
using machine learning 



 Levenshtein Distance (Edit Distance)
 Jaro Distance
 Jaro-Winkler Distance



 Minimum number of single character edits:

▪ Insert

▪ Delete

▪ Substitute

Stokcholm -> Stockholm 
sanfransicso-> san francisco
sanfransicso-> San Francisco

{Distance = 2}
{Distance = 4}
{Distance = 6}



distance



Hamming Distance
Damerau-Levenshtein Distance
Longest Common Substring Distance
Cosine Distance
Jaccard Distance
Jaro Distance
N-grams





 Assume you want to link records across sources 
that do not share a common record key 

▪ These records may have data quality issues

 How would you create such linkage using fuzzy 
and deterministic methods?



Clean each 
single 
source

Common 
identifier
attribute?

Yes

No
Select set of 
comparable 
attributes

Join on that 
attribute

Calculate 
similarity, 
identify 
similar, 
“mark”

Join on 
“mark” 
attribute



 Defining similarity is application specific
 Assume you have no common, unique key
 What can you do to identify similar record in 

different (or the same) source
 Example: 

▪ Cosine similarity for numeric /continuous 
attributes

▪ Edit distance for strings

▪ Jaccard for binary or categorical values



We map columns:
a2<->b5
a3<->b3
a5<->b6

Compare record 1 from table 1, with record 100 from table 5.
Are they representing the same entity?
Are the attributes continuous, categorical, string, etc.?

a1       a2        a3        a4        a5 b1       b2        b3        b4         b5        b6
t1.1 t5.100



For continuous 
attributes we can 
calculate cosine 
distance



String: calculate an {edit} distance.

Categorical: bit vectors (0/1) for different/same





Score = cosine distance of continuous attributes + 
normalized score of string similarities + 
weighted score of categorical values

score = w1*(cd(cont(r1,r5)))+w2*(ed(r1.an,ry.by))+w3*(compare(r1.ak,r5.al))

Ps. this just an illustration, how to model similarity is application specific.

You define score ranges for same, possibly same, not same using thresholds

Cosine distance 





Entity matching can be very computationally 
intensive. How to scale it?

Understand basic scaling techniques
Understand the techniques pros and cons



 Polynomial complexity
 N*M record comparisons
 Expensive comparison 

operations
 May require multiple 

passes over the data

Size N Size M



Precision and Recall Efficiency

MB of processed data/ 
cost of infrastructure

Processing Time



Efficiency Improvements

Reduce # of 
Comparisons

Reduce comparison 
complexity

Blocking

Sliding 
window Clustering

Canopy Filtering: 
Decision tree

Feature
Selection



Sliding Window
 Create key from relevant data
 Sort on key
 Compare records in sliding window

Pros: Fewer comparison
Cons: Sensitivity to key selection, 

missed matches



Blocking
 Define a blocking key
 Create blocks
 Compare within blocks

Pros: fewer comparisons
Cons: missed matches



Clustering
 Similarity is transitive
 a->b->c 
 Union-find algorithm

Pros: Fewer comparison
Cons: Potentially complex 

computation



Canopy Clustering
 Records can belong to multiple 

canopies
 Cluster into canopies using 

“cheap” algorithm

Pros: Fewer comparison
Cons: Sensitivity to key selection, 

missed matches

1. Begin with the set of data points to be clustered.

2. Remove a point from the set, beginning a new 'canopy'

3. For each point left in the set, assign it to the new canopy if the 

distance less than the loose distance

4. If the distance of the point is additionally less than the tight 

distance , remove it from the original set

5. Repeat from step 2 until there are no more data points in the 

set to cluster

6. Clustered canopies are sub-clustered using an expensive but 

accurate algorithm



Decision Tree 



Speed up

Scale-up Scale-out Algorithm

Hadoop
Bigger 
Servers





 OpenRefine (ex Google Refine)

▪ Watch Introduction (6:48) 

▪ https://www.youtube.com/watch?v=B70J_H_zAWM

▪ Install Open Refine (and Java if needed)

▪ http://openrefine.org/

▪ Download a data set

▪ City of Berkeley Employee Salaries - 2013 Data from the link:

https://data.cityofberkeley.info/Economic-Data/City-of-Berkeley-
Employee-Salaries-2013/ifen-52iq

▪ Create a new OpenRefine Project and load the data

▪ Try to answer a few Questions below

https://www.youtube.com/watch?v=B70J_H_zAWM
http://openrefine.org/
https://data.cityofberkeley.info/Economic-Data/City-of-Berkeley-Employee-Salaries-2013/ifen-52iq


Q1: Who gets the highest base pay in the city?

Q2: Who gets the highest 'total pay + benefits' 
in the city?

Q3: Group all police related job titles to a 
'Police' job title

Q4: Export all information related to 'Police' 
jobs to a new CSV file


