

Computer Platforms
Distributed Commodity, Clustered High-Performance, Single Node

Data
Ingestion
ETL, Distcp,
Kafka,
OpenRefine,
…

Data
Serving
BI, Cubes,
RDBMS, Key-
value Stores,
Tableau, …

Storage Systems
HDFS, RDBMS, Column Stores, Graph Databases

Data Definition
SQL DDL, Avro, Protobuf, CSV

Batch Processing Platforms
MapReduce, SparkSQL, BigQuery, Hive, Cypher, ...

Stream Processing Platforms
Storm, Spark, ..

Query & Exploration
SQL, Search, Cypher, …

Analytics solutions start with data ingestion

Data integration challenges:
volume (many similar integrations)
variety (many different integrations)
velocity (batch v.s real-time)
(or all of the above)

Maslow’s hierarchy of needs*

Data Quality, Structure, Data Ingest
Data, Persistence, Architecture, ETL

Visualization, Query, OLAP

Aggregation, Join, Filtering, Indexing

Prediction,
Clustering,
Classification

Hierarchy of effective analytics

Real-time, streaming

Basic needs

Understanding
needs

Predictive
needs

* A theory in psychology proposed by Abraham Maslow in 1943.
Needs lower down in the hierarchy must be satisfied before
individuals can attend to needs higher up.

Data Storage Systems

Business Systems

Web Logs

Email Logs

Transaction Logs

Data Management
Systems

Data Storage Systems

Business Systems

Web Logs

Email Logs

Transaction Logs

Data Management
Systems

Different structures
Different manifest data types
Different literal for same data type
Different Keys

Failures when producers push data
Failures storing received data
Failures while transferring data over network

Data Storage Systems

Business Systems

Web Logs

Email Logs

Transaction Logs

Data Management
Systems

Consumer 1

Consumer 2

Full dumps All data is provided at once and replaces all previous data.

Incremental Increments are provided in any order, data interval in an
increment is provided as metadata. On an hourly, daily or
weekly cadence.

Append Always appended at the end of the dataset. Order is assumed
to be correct.

Stream Stream of incoming data as individual rows or in small
batches. On a second, minute or hourly cadence.

● Prepare data before loading so that target system can
spend cycles on reporting, query, etc.

● Requires transforms to know what reporting, query to
enable

● Made possible by more powerful target systems

● Provides more flexibility at later stages than ETL

Kafka Kafka is a distributed, partitioned, replicated commit log service. It
provides the functionality of a messaging system, but with a unique
design.

Kinesis Amazon Kinesis is a fully managed, cloud-based service for real-time data
processing over large, distributed data streams. Amazon Kinesis can
continuously capture and store terabytes of data per hour from hundreds
of thousands of sources.

S4 S4 is a general-purpose, distributed, scalable, fault-tolerant, pluggable
platform that allows programmers to easily develop applications for
processing continuous unbounded streams of data.

Storm Apache Storm is a distributed realtime computation system. Storm
makes it easy to reliably process unbounded streams of data, doing for
realtime processing what Hadoop did for batch processing.

Samza Apache Samza is a distributed stream processing framework. It uses
Apache Kafka for messaging, and Apache Hadoop YARN to provide fault
tolerance, processor isolation, security, and resource management.

http://kafka.apache.org/
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

Scalability Allows many producers and consumers.
Partitions are the unit of scale.

Schema Variety Does not really solve this.

Network
Bottlenecks

Can handle some variability without
losing messages.

Consumer
Bottlenecks

Kafka acts as a buffer allowing
producers and consumers to work at
different speeds.

Bursts Handles buffering of messages between
producers and consumers.

Reliability, Fault
Tolerance

Allows reading of messages if a
consumer fails.

● Data is produced in Bursts
● Consumers can only

consume at a certain rate
● Dropping data can be a

problem

Misspellings {Montgromery street}
Outliers {1,2,4,2,4,123,3,4}
 Incorrect values {invalid zip, neg number}
Missing values {6,7,4,3,,4,5,6}
 Incorrect values {94025, -345,96066,…}

It depends!
 Entry Quality: Is the record entered correctly?
 Process Quality: Was the record correct throughout

the system?
 Identity Quality: Are similar entities resolved to be

the same?
 Integration Quality: Is the data sufficiently

integrated to answer relevant questions?
 Usage Quality: Is the data being used correctly?

▪ Age Quality: Is the data new-enough to be trusted?

Things we check in single
record sets and data streams.
Fixes can be automatic and
independent.

Things we check in architecture.
Fixes can be costly!

Things we check across many data sets.
Fixes may need extra intelligence.

Things we check in the organization.
Fixes may be non-technical.

Observation
 It’s too expensive to clean all the data every way
 How do we decide what to clean?

We need a framework that helps to:
 Determine what issues might occur in the data
 Weight the criticality of the issues
 Profile the data to score quality

The framework allows:
 to approach quality as an ever-increasing standard
 To prioritize data cleaning activities

Constants

Definition Mismatches

Filler Containing Data

Inconsistent Cases

Inconsistent Data Types

Inconsistent Null Rules

Invalid Keys

Invalid Values

Miscellaneous

Missing Values

Orphans

Out of Range

Pattern Exceptions

Potential Constants

Potential Defaults

Potential Duplicates

Potential Invalids

Potential Redundant Values

Potential Unused Fields

Rule Exceptions

Unused Fields

Definitional Incorrect Too-Soon-to-Tell

 Issues should be weighted
in the context of our system

 Invalid or missing data is
most problematic

 Potentially issues can be
weighted lower

Weight
Factor

Issue Type

1 Constants

2 Definition Mismatches

2 Filler Containing Data

1 Inconsistent Cases

2 Inconsistent Data Types

3 Inconsistent Null Rules

5 Invalid Keys

5 Invalid Values

 Any issue has a
possible maximum

 This can be
cardinality of

▪ Rows

▪ Keys

▪ etc.

Weight Issue Type Disco
vered

Possible

1 Constants 1 59

2 Definition Mismatches 4 59

2 Filler Containing Data 1 59

1 Inconsistent Cases 3 59

2 Inconsistent Data Types 15 59

3 Inconsistent Null Rules 6 59

5 Invalid Keys 1 3

5 Invalid Values 5 59

Raw Score 91.3%

Weighted Score 90.4%

Quality Score

 Nuclear Option: Listwise Removal
▪ If a record has a missing value → Ignore the entire

record in analyses
 Softer Option: Pairwise Removal
▪ If a record has a missing value → Ignore the record iff

the missing value is in the analyzed set
 Infer Substitute Values
▪ Statistical (Interpolation): predict new data points in

the range of a set (Simple linear, Splines, Kriging)

▪ Model-based: Impute missing values based on a model
(EM algorithm, etc.)

What is it?
The task of finding records in a data
set that refer to the same entity
across different data sources

Problems
 Attributes/records not matching

100%
 How to apply to different/

changing data sets
 Missing values
 Data quality, errors etc.
 Semantic relations

 Normalize data
 Link records on a table
 Link records cross tables

Deterministic
 rules + record level match

Fuzzy
 Match similar values and records and attempt

to determine if match, no match or possible
match

Deterministic: rules + attribute level match

if a.SSN == b.SSN => match
if (missing(a.SSN) or missing(b.SSN)) =>

if ((a.dob == b.dob) and (a.zip == b.zip) and (a.sex == b.sex)) => match

Fuzzy: similarity of attribute + distance of
record + match thresholds + learning

SSN Name DOB Place of Birth

605782877 Nilsson 1/14/76 Sainte-Paul

<missing> Smith 8/8/68 Barstow

762009827 Smyth <m>/8/68 Barstow

720384793 Carlson 8/8/68 Barstow

<missing> Nilson 1/14/76 Minnesota

<missing> Nilsson 1/13/76 Saint-Paul

if (a.SSN == b.SSN) true
else

Name

DOB POB

a

b

match,
non-match,
possible match

Recall vs Precision

Fuzzy + rules => practice

“Generate rules” by
using machine learning

 Levenshtein Distance (Edit Distance)
 Jaro Distance
 Jaro-Winkler Distance

 Minimum number of single character edits:

▪ Insert

▪ Delete

▪ Substitute

Stokcholm -> Stockholm
sanfransicso-> san francisco
sanfransicso-> San Francisco

{Distance = 2}
{Distance = 4}
{Distance = 6}

distance

Hamming Distance
Damerau-Levenshtein Distance
Longest Common Substring Distance
Cosine Distance
Jaccard Distance
Jaro Distance
N-grams

 Assume you want to link records across sources
that do not share a common record key

▪ These records may have data quality issues

 How would you create such linkage using fuzzy
and deterministic methods?

Clean each
single
source

Common
identifier
attribute?

Yes

No
Select set of
comparable
attributes

Join on that
attribute

Calculate
similarity,
identify
similar,
“mark”

Join on
“mark”
attribute

 Defining similarity is application specific
 Assume you have no common, unique key
 What can you do to identify similar record in

different (or the same) source
 Example:

▪ Cosine similarity for numeric /continuous
attributes

▪ Edit distance for strings

▪ Jaccard for binary or categorical values

We map columns:
a2<->b5
a3<->b3
a5<->b6

Compare record 1 from table 1, with record 100 from table 5.
Are they representing the same entity?
Are the attributes continuous, categorical, string, etc.?

a1 a2 a3 a4 a5 b1 b2 b3 b4 b5 b6
t1.1 t5.100

For continuous
attributes we can
calculate cosine
distance

String: calculate an {edit} distance.

Categorical: bit vectors (0/1) for different/same

Score = cosine distance of continuous attributes +
normalized score of string similarities +
weighted score of categorical values

score = w1*(cd(cont(r1,r5)))+w2*(ed(r1.an,ry.by))+w3*(compare(r1.ak,r5.al))

Ps. this just an illustration, how to model similarity is application specific.

You define score ranges for same, possibly same, not same using thresholds

Cosine distance

Entity matching can be very computationally
intensive. How to scale it?

Understand basic scaling techniques
Understand the techniques pros and cons

 Polynomial complexity
 N*M record comparisons
 Expensive comparison

operations
 May require multiple

passes over the data

Size N Size M

Precision and Recall Efficiency

MB of processed data/
cost of infrastructure

Processing Time

Efficiency Improvements

Reduce # of
Comparisons

Reduce comparison
complexity

Blocking

Sliding
window Clustering

Canopy Filtering:
Decision tree

Feature
Selection

Sliding Window
 Create key from relevant data
 Sort on key
 Compare records in sliding window

Pros: Fewer comparison
Cons: Sensitivity to key selection,

missed matches

Blocking
 Define a blocking key
 Create blocks
 Compare within blocks

Pros: fewer comparisons
Cons: missed matches

Clustering
 Similarity is transitive
 a->b->c
 Union-find algorithm

Pros: Fewer comparison
Cons: Potentially complex

computation

Canopy Clustering
 Records can belong to multiple

canopies
 Cluster into canopies using

“cheap” algorithm

Pros: Fewer comparison
Cons: Sensitivity to key selection,

missed matches

1. Begin with the set of data points to be clustered.

2. Remove a point from the set, beginning a new 'canopy'

3. For each point left in the set, assign it to the new canopy if the

distance less than the loose distance

4. If the distance of the point is additionally less than the tight

distance , remove it from the original set

5. Repeat from step 2 until there are no more data points in the

set to cluster

6. Clustered canopies are sub-clustered using an expensive but

accurate algorithm

Decision Tree

Speed up

Scale-up Scale-out Algorithm

Hadoop
Bigger
Servers

 OpenRefine (ex Google Refine)

▪ Watch Introduction (6:48)

▪ https://www.youtube.com/watch?v=B70J_H_zAWM

▪ Install Open Refine (and Java if needed)

▪ http://openrefine.org/

▪ Download a data set

▪ City of Berkeley Employee Salaries - 2013 Data from the link:

https://data.cityofberkeley.info/Economic-Data/City-of-Berkeley-
Employee-Salaries-2013/ifen-52iq

▪ Create a new OpenRefine Project and load the data

▪ Try to answer a few Questions below

https://www.youtube.com/watch?v=B70J_H_zAWM
http://openrefine.org/
https://data.cityofberkeley.info/Economic-Data/City-of-Berkeley-Employee-Salaries-2013/ifen-52iq

Q1: Who gets the highest base pay in the city?

Q2: Who gets the highest 'total pay + benefits'
in the city?

Q3: Group all police related job titles to a
'Police' job title

Q4: Export all information related to 'Police'
jobs to a new CSV file

