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1 INTRODUCTION
Efficient forest fire control is one of the most challenging and impor-

tant problems.Wildfires have resulted in irreversible environmental

and socio-economic damages across the world. According to the Na-

tional Interagency Fire Center, as of November 2020, wildfires have

burned more than 8 million acres in California [6]. A better under-

standing of fire propagation is needed to facilitate fire control and

mitigate those damages. A number of models have been developed

to simulate wildfire propagation in previous studies. In particular,

networks have been extensively applied. In this project, we focus

on simulating fire propagation through integrating topographical

and weather conditions in the model.

The remainder of this report is organized as follows: Section 2
defines the problem. The related work is presented in Section 3.
Section 4 presents the methodology. After showing the experiment

results in Section 5, we conclude in Section 6.

2 PROBLEM DEFINITION
The focus of this project is on simulating fire propagation in lattice

networks (or grid networks). In particular, we aim to address the

following problems:

• Problem 1: Given an area, construct a lattice network𝐺 , and

transform elevation, slope, aspect and wind conditions into

the network through linear threshold model.

• Problem 2: Given a lattice network, simulate wildfire propa-

gation in the network.

• Problem 3: Given a lattice network, model the effect of land-

marks such as roadways on wildfire propagation.

3 RELATEDWORK
3.1 Forest Network
Hajian et al. [5] obtain the Voronoi-based network by dividing amap

into many homogeneous sub regions. In their study, sub regions

are derived by overlapping different fire environmental data layers

through Geographic Information System (GIS). An inside point is

assigned to represent each sub region and Delaunay triangulation

is then employed to construct the network edges. The constructed

network owns significant accuracy and reality. However, most of

these data layers have not been made public, and the availability of

GIS applications is limited.

Based on the Cellular Automata (CA), another type of network

used in fire propagation modelling is lattice graph [7, 20]. It utilizes
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regularly spaced sample points to represent landscapes. Fire propa-

gates through the grid-cell basis. The advantage of this network is

that weather conditions as well as land topography can easily be

incorporated into the model [7, 20]. Pais et al. [14] partition off the

forest landscape into a series of identical area square cells. In their

study, topographic data and weather conditions are integrated in

the model to simulate fire growth.

3.2 Fire Propagation
Topography environment (e.g., elevation, slope, aspect) influences

fire behavior quantitatively[1, 4, 9–11, 16]. In particular, the steeper

the slope the faster the fire will spread [4, 9]. The aspect deter-

mines the amounts of solar radiation, moisture, and wind a slope

receives. This could lead to varied temperatures and drier condi-

tions, which can also contribute to fire behavior directly through

different composition in vegetation and density [1, 4, 11]. On the

other researches, discussed burn severity was negatively correlated

with elevation [10, 16].

Nelson et al. [12] analyze fire propagation and wind speed. Their

experiment suggests the fire spread rate is proportional to the

square of the wind speed. There are three types of fire, namely:

surface fire, crown fire and underground fire. Under strong wind

conditions, the fire will burn to the crown and the fire spread rate

will increase [12]. Werth et al. [19] studies fire propagation and

wind direction. They point out the spread of fire is nearly round

under low wind, while under strong wind it is elliptic, and its long

axis is parallel to the direction of the leading wind.

3.3 Linear threshold model
The Linear Threshold (LT) model has been widely used in modelling

diffusion process. Pathak et al. [15] present a generalized version

of the linear threshold model for simulating multiple cascades on a

network while allowing nodes to switch between them. It also has

been used in social networks. Chen et al. [3] proposed a scalable

algorithm to find a small set of most influential nodes under the

linear threshold model. In our work, we will employ this model in

the network to simulate fire propagation.

4 METHODOLOGY
In order to address the problems as discussed in Section 2, we take
the following steps:

(1) Secure the dataset, which is discussed briefly in Section 4.1.
(2) Leveraging this data, the network will then be constructed.

This process will be thoroughly covered in Section 4.2.
(3) After the network has been constructed, we can finally per-

form some simulations and run some tests. Section 5 should
be able to report the detailed analyses and results of the

performed experiments.
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Figure 1: The high-level framework to attempt to solve the problem as discussed in Section ?? involves four major steps: (1)
Acquisition and Analyses of Data, (2) Network Construction, (3) Experimentation, and (4) Conclusion and Recommendation.

(4) Gaining some insights, we finally give some concluding re-

marks & recommendations on how the problem can be ex-

tended.

This high-level framework of our action plan can be seen visually

in Figure 1.

4.1 Dataset
The dataset that we use to construct the network is the Forest-
CoverType [2]. This dataset contains tree observations (30 meter

× 30 meter grids of forests) of the Roosevelt National Forest in

Colorado. Each grid includes several topographic data such as ele-

vations, slopes and aspects.

4.2 Network Constructing
To model wildfire propagation in heterogeneous forest landscapes,

the terrain of the Roosevelt Forest in Colorado is tessellated into

a number of small patches whose shape are squares as seen in

Figure 2 [18]. As such, the terrain is transformed into a lattice

network 𝐺 (𝑁, 𝐸) of dimension |𝑁 | × |𝑁 |, where 𝑁 = {𝑣𝑘 }, with
𝑘 = 1, 2, ..., |𝑁 | is the set of nodes (the terrain patches or the forest

nodes), and 𝐸 is the set of edges (links) between neighbor nodes.

In the context of forest fire propagation, these links will serve as

Figure 2: The above picture displays the gridmap of the Roo-
sevelt National Forest.

travelling routes for fire to spread from one forest to a neighboring

one.

Each node in the network graph has a state that serves as one

of its node attributes. At a time point 𝑡 , a node state can be in any

one of the following states: empty, not_burned, burning, or burnt.
The "empty" represents fire zones or areas where there are no trees

(cannot be burned). The state "not_burned" represents trees are

intact. The states "burning" and "burnt" represent trees currently

burning and have been burnt down respectively. A user-defined

density factor 𝜌 is then used to determine the forest density of

our network, where links between adjacently-placed neighboring

forests is determined by this probability factor.

The fire propagation probabilities are computed using a linear

threshold model. Each node 𝑣𝑘 uses three topographic features,

namely the elevation, slope and aspect, as factors to compute the

node’s threshold 𝜃 . This indicates how easily 𝑣𝑘 would switch from

one state to another. Each edge (𝑣𝑘 , 𝑣𝑙 ) is weighted and the weights
can be calculated using wind and Euclidean distance factors of 𝑣𝑘
and 𝑣𝑙 . More details on the linear threshold model, along with the

mathematical models, shall be explained in the next sections. Thus,

the spatial distribution of fire propagates is converted to a cascading

problem in networks.

4.3 The Modified Linear Threshold Model
A modified version of the LT model as discussed in Section 3.3
was employed in the simulation of the forest fire propagation. In

this probabilistic diffusion-based network model, nodes can have

two possible states: active and inactive. Therefore, in the context

of our forest network, active nodes are those forests that are cur-

rently burning (i.e. having ’burning’ state) while inactive ones are

those that have not yet been burnt (i.e. having ’not_burning’ state).

Clearly, those nodes in the system that are quoted as ’empty’ have

no role to play in this LT model. And those burnt out forests can

be thought of as ’inactive’ in the LT model as fire has already been

extinguished and can no longer influence neighboring forests. How-

ever, these burnt nodes while considered inactive loses their role to

play in the LT model as burnt out forests cannot go back to being

in the burning state.

Each node then in the network will have some uniformly random

probability 𝜃 ∈ [0, 1] which serves as a threshold for when its state

flips. One tweak proposed by our team is that we can change theway

we pick these uniformly selected random numbers. A mathematical

model to compute these node thresholds is described in full detail

in Section 4.4. Then each edge in the (undirected) network will

have some randomly assigned weight 𝛽 ∈ [0, 1]. Similar to node
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Table 1: Model Parameters used for the Node Threshold 𝜃 and the Edge Weight 𝛽

Symbol Nomenclature Formula Notes

𝐶𝑛 node stochastic component random[0, 1] -

𝜙𝑠 slope coefficient 5.275(tan𝜙)2 Rothermel [17]; 𝜙 is the slope in the ForestCoverType dataset [2]

𝜉 elevation coefficient

1

1 + ln(max{ℎ𝑒−6, 1})
Olabarria, et. al. [13]; ℎ is the elevation in the ForestCoverType dataset [2]

𝛼 aspect coefficient (See Table 2) Estes, et. al. [4]

𝐶𝑒 edge stochastic component random[0, 1] -

𝜙𝑤 wind speed random[0,𝜓 ] 𝜓 is the max speed as defined by the user

𝜏 wind direction arctan

(Δ𝑦
Δ𝑥

)
Calculated: Δ denotes the horizontal (𝑥 ) and vertical (𝑦) node distances

𝛿 node Euclidean distance

√
Δ2𝑥 + Δ2𝑦 Calculated: Δ denotes the horizontal (𝑥 ) and vertical (𝑦) node distances

thresholds, we detail in Section 4.5 the mathematical formula in

the calculation of edge weights. Thus, for any inactive node (or not

burning forest) 𝑣 in the forest network, its state will switch to an

active (or burning) state if and only if the total weights of all edges

of (𝑢, 𝑣) is greater than the node threshold of forest 𝑣 , where 𝑢 is

an active (burning) neighbor of 𝑣 . [8] Mathematically speaking:( ∑
𝑢∈[active neighbor of 𝑣 ]

𝑤𝑢,𝑣 > 𝜃𝑣

)
=⇒ switch state of 𝑣 (1)

The process initially begins with all nodes being inactive. A random

node is then selected to be active and the diffusion process happens

for that node (cascading to its neighbors). To translate this in the

context of our forest network system, we begin with an initial

setup where no forests are burning. Then a forest is selected at

random, which serves as the ignition source of the forest fires.

Forest fire propagation should then begin to take into effect and will

cascade to its neighbors and to its neighbors’ neighbors, according

to the mathematical process as described by Eq. (1). This cascading
process is repeated for all nodes in the network, and the following

are the stopping criteria for when this iterative process halts:

• If we have reached the maximum number of timestep itera-

tions, which can be parameterized

• When all nodes have been switched from inactive to active,

or in this case if all non-burning forests have turned burning

or have become burnt

• When no new node or forest has become active or have been

switched to the burning state

The algorithms as discussed in Section 4.6 should give a better un-

derstanding of how the linear threshold model can be implemented

in the simulation of forest fire propagation.

The tweak that the team proposed to modify the the method

for selecting node thresholds and edge weights is rooted from

the limitation of the basic LT model. In the basic model, node

thresholds and edgeweights are selected uniformly at random. Here,

the rationale for this choice of method of picking random values

was the lack of knowledge of the network, as identified by Kempe et

al. [8]. To some extent, the randomness of these probability values

check out due to the stochasticity of fire spread. Clearly, the LT

model can be utilized to model fire propagation but being able to

take into account the various fire spread factors involves designing

new mathematical models that can compute the node threshold

and edge weight values. These innovative models should also be

designed to preserve the model’s cascading effect.

4.4 The Mathematical Formulation of the Node
Thresholds

In this section, we attempt to discuss thoroughly the mathematical

model behind the formulation of the nodes’ thresholds. Each node

in the network graph is assigned node threshold 𝜃 , which can be

calculated as:

𝜃 =
1

𝜋
arctan(𝐶𝑛𝜙𝑠𝜉𝛼) + 0.5 (2)

While the node thresholds may appear to be as random as the basic

Linear Threshold model due to the stochastic component 𝐶𝑛 , the

various factors that affect the cause of fire (such as slope, elevation

and aspect reflected by the parameters 𝜙𝑠 , 𝜉, 𝛼 respectively) are

also taken into account in the formula. Table 1 presents us with a

tabulated summary of the node threshold symbol, nomenclature,

and formula for such parameters. For instance, the slope coefficient

𝜙𝑠 can be obtained using the formula

𝜙𝑠 = 5.275(tan𝜙)2 (3)

where 𝜙 is the slope found in the ForestCoverType dataset [2].

The direct relationship between slope steepness and likelihood

of fire is dictated in this formula and that this is actually from a

portion of Rothermel’s fire spread model [17]. In fact, many pieces

of various existing fire propagation math models were used and

incorporated in our mathematical models. Another example can

be seen for the formula for calculating the elevation coefficient 𝜉 ,

which was borrowed fromOlabaria, et. al. [13] and can be calculated

by:

𝜉 =
1

1 + ln(max{ℎ𝑒−6, 1})
(4)

where ℎ is the elevation value and again can be found in the Forest-
CoverType dataset [2]. It can be noted that Olabaria, et. al. has

formulated this mathematical expression based on their dataset,

with elevation values ℎ ∈ [0, 2300] [13] while the ForestCover-
Type dataset uses a different range of values for the elevation, with
ℎ ∈ [1859, 3858] [2]. That said, we can map the values of ℎ that

we have in our dataset and transform them into elevation values

used within Olabaria et al.’s elevation range [13]. A simple min-max

3
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Table 2: A Lookup Table for the Aspect Coefficient 𝛼 . Note
that the aspect value 𝐴 can be found under the ’Aspect’ at-
tribute in the ForestCoverType dataset [2].

Aspect Value 𝐴 Direction Aspect Coefficient 𝛼

𝐴 ∈ [0, 22.5) ∪ [337.5, 360] North -0.063

𝐴 ∈ [22.5, 67.5) North-East 0.349

𝐴 ∈ [67.5, 112.5) East 0.686

𝐴 ∈ [112.5, 157.5) South-East 0.557

𝐴 ∈ [157.5, 202.5) South 0.039

𝐴 ∈ [202.5, 247.5) South-West -0.155

𝐴 ∈ [247.5, 292.5) West -0.0252

𝐴 ∈ [292.5, 337.5) North-West -0.171

normalization technique can be employed for the purposes of this

simple transformation in order to utilize their formula. Addition-

ally, it can be noticed that the elevation and probability for fire

are negatively correlated variables. This means that the higher the

elevation values of a forest, the lower its risk for it to catch on fire.

The rationale behind such claim is that higher elevation lands tend

to receive less forest fuels than those in lower-elevated places. As

a result, higher places are less prone to catch fires than those in

the lower areas. Hence, this should clearly explain why elevation

presents itself to be an inverse factor in the mathematical model,

which was also observed by Olabaria, et. al [13].

We then turn our attention to the aspect coefficient 𝛼 . The study

by Estes et al. [4] provides us with information on how we can

obtain the aspect coefficient 𝛼 based on the aspect value 𝐴 . A

lookup table can be found on Table 2. Again the aspect values can

be found in the ForestCoverType dataset [2], whose values range
from 𝐴 ∈ [0, 360].

In the math formula for the node threshold found in Eq. (2), we
can see that the function applied is arctan(·) and the choice of such
function is arbitrary. In fact, any function would have worked so

as long as the function is monotonous. The range of the values

of arctan(·) ∈ [−𝜋
2
, 𝜋
2
], which should clearly explain the purpose

of
1

𝜋 that is merely used as a scaling factor. Hence this particular

constant can change depending on the choice of function used in

place of arctan(·). Furthermore, the additional 0.5 constant should

give an idea that it is a correction factor as the first term has range

of values from [−0.5, 0.5]. Hence, our mathematical model for node

threshold should be some valid probabilistic number between [0, 1].

While the mathematical formula is not as perfect as it is com-

pared to existing models, it is a good place to start. In fact, it may

be that this particular model would have to be redesigned in our

next steps in order to reduce the contribution of the stochasticity

component.

4.5 The Mathematical Formulation of Edge
Weights

Like the mathematical model used for modelling the node thresh-

olds, we also have a mathematical model used to compute the

weights of edges in our network graph. The weight 𝛽 of the edges

can be computed as follows:

𝛽 = arctan

(𝐶𝑒𝜙𝑤 cos𝜏

𝛿

)
(5)

where the symbol, nomenclature and formulas can be found in Ta-
ble 1, similar to where the node threshold parameters are tabulated.

Similar to the modelling of node thresholds, the modelling of edge

weights also relies on a stochastic component 𝐶𝑒 ∈ [0, 1] chosen
uniformly at random and is independent from the𝐶𝑛 choices for the

two nodes {𝑛𝑖 , 𝑛 𝑗 } connected by the edge (𝑛𝑖 , 𝑛 𝑗 ). Again, the model

is not perfect and a more robust math formula may be designed as

a next step. The parameter 𝜙𝑤 is the wind speed and is a random

number between [0,𝜓 ] where𝜓 is a user-defined parameter that

determines the maximum possible wind speed at any given time

𝑡 . The factor cos𝜏 gives contribution to the angle direction of the

wind speed, where the angle 𝜏 can easily be computed based on

the positions of the nodes in the network graph. And finally the

Euclidean distance 𝛿 , also based from the positions of the nodes in

the network, is a another factor considered that should reduce the

influence of fire propagation spread for whenever there is a large

distance between any two forests.

4.6 The Algorithms
In this section, we briefly discuss the algorithms employed in solv-

ing the problem at hand. We first turn our attention to Algorithm
1 and Algorithm 2. It can be observed that the Ignite algorithm

is simply a sub-routine of the main Simulate-Fire method. It can

also be observed that Simulate-Fire is simply the procedure that

was discussed in Section 4.3. In Lines 1-2, some random forest in

𝑁 is selected at random and this will serve as the ignition source

of fire in the network. In Line 3, we introduce three new variables

that represent the set of currently burning forests 𝐵, the set of

burning forests in the previous timestep 𝐵̂, and the iterator 𝑘 . The

cascading process then comes into play in Lines 4-7 where the stop-

ping criterion is when either the number of iterations has reached

the maximum (parameterized by 𝑡 ), or when the set of currently

burning forests is the same set of burning forests in the previous

timestep (i.e. no new forests have switched to the burning state).

Exploring the while loop, in Line 5 we perform the Ignite proce-

dure of the graph 𝐺 (see below for details). Then in Line 6, we let

the current set of burning forests to be the set of forests burning

in the previous timestep. And then obtain the new set of currently

burning forests. Then increment our iterator in Line 7 to prepare

for the next iteration of the loop.

We then have a look at the Ignite sub-algorithm. In Line 1, Γ
will contain all those forest nodes that are burning. We then operate

a for-each loop in Lines 2-12, where for each burning node 𝑣 in

Γ, we do Lines 3-12. We gather all the neighbors of forest 𝑣 and

store them into Λ. In Lines 4-5, we check if the burning forest 𝑣

does not have neighbors; in that case, we simply break off the loop.

Otherwise, in Lines 6-12, we take each of those neighbor nodes

of 𝑣 that was stored in Λ. And then, for each 𝑛 in Λ, we obtain

all neighbors of 𝑛 that are burning and store them in Ψ as seen

in Line 7. Lines 8-10 computes for the total sum of the weights of

the adjacent edges of 𝑛 and caps it off at 1, to keep the probability

values within [0, 1]. In Line 11-12, we check if the sum of those

edges surpass the node threshold of node 𝑛. If this is the case, then

4
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Algorithm 1: Ignite (𝐺 (𝑁, 𝐸))
Input :The forest graph 𝐺 , with forest set 𝑁 and probable

fire path set 𝐸

Output : (None). The resultant forest graph of the cascading

Linear Threshold model

1 Γ ← {𝑓 | 𝑓 ∈ 𝑁 ∧ 𝑓 .fire_state = ’burning’ }

2 foreach 𝑣 in Γ do
3 Λ← 𝑣 .neighbors

4 if Λ = ∅ then
5 break
6 foreach 𝑛 in Λ do
7 Ψ← {𝑡 | 𝑡 ∈ 𝑛.neighbors ∧ 𝑡 .fire_state = ’burning’}
8 𝑠 ← 0

9 foreach 𝑢 in Ψ do
10 𝑠 = min(1, 𝑠 + 𝛽𝑢,𝑣)
11 if 𝑠 > 𝜃𝑛 then
12 𝑛.fire_state← ’burning’

Algorithm 2: Simulate-Fire (𝐺 (𝑁, 𝐸), 𝑡 )
Input :Graph 𝐺 with set of nodes 𝑁 and set of edges 𝐸

Output : (None). The resultant 𝐺 with wind simulated

1 𝑢 ← pick a random forest ∈ 𝑁
2 𝑢.fire_state← ’burning’

3 𝐵 ← {𝑢}; 𝐵̂ ← ∅;𝑘 ← 1

4 while 𝑘 ≤ 𝑡 ∧ 𝐵 ≠ 𝐵̂ do
5 Ignite(𝐺 (𝑁, 𝐸))
6 𝐵̂ ← 𝐵;𝐵 ← {𝑓 | 𝑓 ∈ 𝑁 ∧ 𝑓 .fire_state = ’burning’ }

7 𝑘 ← 𝑘 + 1

Algorithm 3: Simulate-Wind (𝐺,𝜓 )

Input :Graph 𝐺 , and a maximum possible speed𝜓

Output : (None). The resultant 𝐺 with wind simulated

1 𝛾 ← random[0,𝜓 ]
2 𝑛 ← pick a random forest, with 𝑝𝑜𝑠 = (𝑛𝑥 , 𝑛𝑦)
3 𝑟1, 𝑟2 ← {𝑎, 𝑏 | 𝑎, 𝑏 ∈ random(Z+)}
4 Ω ← [𝑛𝑥 − 𝑟1, 𝑛𝑥 + 𝑟1] × [𝑛𝑦 − 𝑟2, 𝑛𝑦 + 𝑟2]
5 𝐸

update
← {(𝑛𝑖 , 𝑛 𝑗 ) | 𝑛𝑖 , 𝑛 𝑗 ∈ Ω}

6 Δ(𝐺, 𝐸
update

, ’wind’, 𝛾)

the forest node 𝑛 switches to the ’burning’ state. This is what is

happening under the hood of Ignite, which should give a clearer

picture of the main method Simulate-Fire.

Not only did our team simulate fire but also the wind (it shall be

discussed in later sections that wind has not yet been incorporated

to the modelling for edge weights due to some constraints). How-

ever, we shall discuss the algorithm of Simulate-Wind as seen

in Algorithm 3. We take a graph 𝐺 as input, along with the user-

defined parameter𝜓 , which should act as the maximum possible

wind speed. In Line 1, we pick that wind speed 𝛾 ∈ [0,𝜓 ] which
will be picked uniformly at random. In Line 2, we pick a forest

𝑛 in the network at random and we suppose that it has position

(𝑛𝑥 , 𝑛𝑦). We then pick in Line 3 a pair of positive integers at ran-

dom (𝑟1, 𝑟2). Ideally, we want to pick values within the range of

our network lattice. However, we have uplifted this restriction by

allowing out-of-bounds results while getting the wind simulation

to still working properly. By Line 4, we determine the Area of Effect

(AoE). This is simply an elliptical region for where all edges lying

in this particular region will experience changes to the wind condi-

tions. At closer inspection the region bounded by Ω seems to be

rectangular; however what this area presents is actually elliptical in

shape and that only the ranges of the major and minor axes of the

ellipse are presented. In Line 5, we store all those edges within the

elliptical boundary into the set 𝐸
update

. And then in Line 6 apply

those changes to the Graph 𝐺 , i.e. update the ’wind’ attribute of

the edges in 𝐸
update

from 𝐺 with the randomly selected 𝛾 value.

A sample simulation that employs these algorithms can be seen

in Figure 3 and Figure 6. A more thorough discussion of these

simulations can be seen in Section 5.

5 EXPERIMENTS / EVALUATION
5.1 The Network
The graph has 100 nodes in the experiments, but the size is scalable.

Each node has a chance to have an edge to its adjacent nodes

with probability 𝜌 , the network’s density factor. The standard base

density factor chosen for all experiemnts is 𝜌 = 0.8.

5.2 Experiments
All experiments were conducted on a MacBook Pro with Dual-Core

Intel Core i5 CPU @ 2.3 GHz and 8GB memory, using Python 3.7.4.

All models are generated by the NetworkX package. Experiments

and results are tested and validated using a MacBook Air with

Dual-Core Intel Core i5 CPU @ 1.6 GHz and 8GB memory.

We have tested and run the forest fire propagation algorithm in

our forest network system around 100 times. A sample sequence of

the changes to the forest system can be observed in Figure 3.

5.3 Analyses
We have performed some experiments and simulations. Firstly, we

looked into the percentage of forests in the map that are both burn-

ing and burnt down overtime. A plot of this can be seen in Figure
4 and our team observed some interesting results. For one, which

may seem intuitive is that the percentage of damaged forests (which

is simply the total number of burning and burnt forests) tends to

converge to 𝜌 , the density factor of the system. This suggests that

all (or perhaps almost all) of the forests will eventually be impacted

by the fire, especially for higher values of 𝜌 that implies a more

connected forest network. Details on the analysis of 𝜌 will be dis-

cussed later. Another thing to notice is that the number of burning

forests would initially be greater than the number of burnt forests

in the system until at some point before the number of burnt forests

will be larger. This we saw was always true and that there seems

to exist a time step threshold 𝑡 ′ such that past this point, then the

number of burnt forests is greater than the number of of burning

forests. Another clear observation is the shapes of the plots for the

number of burnt and damaged forests. They seem to follow the

same shape patten, with the exception that the number of burnt
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Figure 3: This is a sample run of the forest fire propagation simulation (sequence begins in the upper left corner going across,
then down). The figure in the upper left corner panel is the initial state of the system where none of the forests are damaged
(all non-burnt forests are green and all those fire zones whose states will never change are black). In the figure beside it shows
a randomly selected node in the forest (colored yellow) where it serves as the source of the fire. In the sequences that follow,
we see that fire propagates accordingly to our algorithms (where orange nodes represent forests that are burning and brown
nodes represent forests that are burnt out). In the final few panels of the simulation, we have seen that the number of burning
forests has remained the same and therefore serves as the stopping criterion of the fire propagating algorithm.
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Figure 4: The above shows a plot overtime comparing the
percentage of the area damaged: the fraction of those forests
burning, the fraction of those that are burnt down, and the
fraction of those that have been damaged (note that the total
damage is simply the number of forests that are burning and
the number of forests that have been burnt.

forests is simply shifted to the right. And lastly, the percentage

of the burning forests will always have this shape: that is, it will

increase until it hits some threshold (say 𝜆) and then past this 𝜆, it

will either decline or it will plateau then decline. Afterwhich, it will

stagnate to 0 until the end of time. These are clear observations

and pretty much intuitive. Fire will spread out, propagate and then

just die out.

More or less, the observations and analyses conducted from

Figure 4 are pretty much the same (or almost the same) for almost

all runs and experiments we have tested on. However, we did notice

changes for when we attempted to crank up the density factor 𝜌 .

In Figure 5, we have attempted using various 𝜌 values. Aside from

𝜌 = 0.8, we also used 𝜌 = 1.0 and 𝜌 = 0.5. For the situation for when

𝜌 = 1.0, this suggests that the entire system is densely forested

and that all nodes/forests are connected together. As a result, fire

propagates at a much faster rate and it can be observed from the

Figure 5: The above shows a plot overtime of the percentage
of forests damaged for different values of the forest density
factor 𝜌 . This includes both those forests that are burning
and those that are burnt.

plot that as early as time 𝑡 = 6, the entire forest system has already

burnt down. And we can see that this is not the case for the other

𝜌 values. When 𝜌 = 0.8, it takes 14 time steps before the entire

forest system burns down. However, it is a different case for when

𝜌 = 0.5. In this setting, roughly only half of the system is forested.

This implies that some forests may be disconnected from others

due to a great number of fire zones or areas that are not burnable.

As a result, forest fires do not propagate easily to all areas and from

the plot that we see in Figure 5 that roughly only 10% of those

forested areas have been damaged. It does not also support the

claim that the percentage of damaged areas approach 𝜌 in the long

run as this is not the case for when 𝜌 = 0.5. Perhaps this is the

case for all scenarios for when 𝜌 > 𝜌 ′ but not so for when 𝜌 ≤ 𝜌 ′

(such as when 𝜌 = 0.5). Therefore, the plot as displayed in Figure
5 verifies our hypothesis that the more connected and the more

dense the forest network is, the more likely it is for fire to spread.

Additionally, fire propagates at a much faster rate and more forests

will thus get destroyed at an earlier time point. Furthermore, this

implies that the density factor 𝜌 indeed does play a big role in the

simulation of spread of forest fires.

We have also explored on the simulation of wind to the forest

network, in accordance with Algorithm 3. An example of this

simulation that runs over 3 time steps can be seen in Figure 6. In

Figure 6: Wind simulation in the Forest Network where
wind conditions change at every 𝑡 = 1 time steps (only the
initial and final lattice network is shown after 3 timesteps).
The edges in cyan color indicate that there were changes
with the wind condition at any given time from the initial
time of simulation.

7



EECS 4414, Nov 2020, Toronto, ON, Canada Gian Alix, Baoqi Yu, and Jing Li

the simulation for some 𝑡 timestep, the algorithm chooses a random

forest in the network which acts as the center or the "eye" of the

area affected by the wind, and nearby edges of the node in the

network are considered affected by the change of wind conditions.

As one could imagine, this is similar to how wind behaves in a

storm or typhoon.

6 CONCLUSIONS
As recap of the work completed, we have constructed a lattice net-

work to simulate forest fire propagation and have also incorporated

topographic features such as elevation, slope and aspect in networks

under the modified Linear Threshold model. Forest fire propagation

has been simulated several times under the algorithm described

by the LT model, using probabilities that can be computed using

the mathematical models as proposed by the team. Various testing

and experiments have been conducted and insightful results have

been reported. One remarkable result that validates our intuitive

hypothesis is that the the forest network density factor 𝜌 plays a

significant role in the proprgation of forest fires.

Unfortunately, we have not yet incorporated wind into the com-

putation of edge weights. This limitation is due to the fact that our

team may still need an in-depth review of the model for the edge

weights and that further testing may still be required. Upon careful

consideration, it was decided that wind factors are left out at this

stage of our project. However, we still plan on incorporating this

component as wind is an important variable that plays a critical role

in the simulation of forest fires. We expect the wind phenomenon

to materialize in our next steps. For now, we were able to simulate

wind (without fire) as a stepping stone to achieve our desired goal

and this ability to do so should still prove to be significant.

For our next steps, in addition to the wind factor, we identify

three extensions to our problem: (1) determine how landmarks such

as roadways and villages can affect wildfire propagation, (2) model

a more realistic setup such as long-range spotting fires, multiple

ignition sources, and forest growth (i.e. burnt out forests grow trees

that can still change state to ’burning’), and (3) propose further

intervention strategies to reduce the spread of wildfires.
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