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ABSTRACT

Forest fires have been common environmental issues that have

impacted millions of lives and natural resources. Thus, an in-depth

study of the behavior of wildfires is critical in devising preventive

strategies to control its rapid spread. However, despite a significant

amount of work that has been done in the literature, developing an

effective fire spread model is still a challenge.

Our goal is to design a model of forest fire propagation and

be able to simulate the behavior of cascading fires in the forest.

More specifically, we propose INCINERATE
1
, a fire simulator in

forest network graphs. A Linear Threshold model, together with

various mathematical models from literature, were employed in

this simulation that “determines” the behavior of fire propagation.

We then propose fire prevention strategies in order to mitigate the

damage of forest fires. In particular, we propose the FIGHTER
2
al-

gorithm, a neighborhood-based edge-removal scheme utilizing the

Girvan-Newman heuristic. It has been found that our edge-removal

algorithm in forest networks can reduce the impact of wildfires by

as much as 85% than if there were no preventive measures.

This paper discusses in-detail the models, algorithms and results

of our experiments, as well as suggested further research directions.
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1 INTRODUCTION

Efficient forest fire control is one of the most challenging and impor-

tant problems.Wildfires have resulted in irreversible environmental

and socio-economic damages across the world. According to the Na-

tional Interagency Fire Center, as of November 2020, wildfires have

burned more than 8 million acres in California [8]. A better under-

standing of fire propagation is needed to facilitate fire control and

mitigate those damages. A number of models have been developed

to simulate wildfire propagation in previous studies. In particular,

networks have been extensively applied. In this project, we focus

on simulating fire propagation through integrating topographical

and weather conditions in the model.

1
INCINERATE is a fire simulator we proposed and it stands for INformationCascades

In NEtworkX Representing A Forest of Trees Engulfed by flames

2
FIGHTER is a fire prevention algorithm that we have proposed and it stands for

Forest fire Inhibition via a Girvan-NewmanHeuristic Through a neighborhood-based

Edge-Removal Approach

2 PROBLEM DEFINITION

The focus of this project is on simulating fire propagation in lattice

networks (or grid networks). In particular, we aim to address the

following problems:

• Problem 1: Given an area, construct a lattice network 𝐺 ,

and transform elevation, slope, aspect and wind conditions

into the network through linear threshold model.

• Problem 2: Given a lattice network, simulate wildfire prop-

agation in the network.

• Problem 3: Propose fire prevention or intervention strate-

gies to decrease the total damage caused by fire.

3 RELATEDWORK

3.1 Forest Network

Hajian et al. [7] obtain the Voronoi-based network by dividing amap

into many homogeneous sub-regions. In their study, sub-regions

are derived by overlapping different fire environmental data layers

through Geographic Information System (GIS). An inside point is

assigned to represent each sub-region and Delaunay triangulation

is then employed to construct the network edges. The constructed

network owns significant accuracy and reality. However, most of

these data layers have not been made public, and the availability of

GIS applications is limited.

Based on the Cellular Automata (CA), another type of network

used in fire propagation modelling is through the use of a lattice

graph [9, 26]. It utilizes regularly-spaced sample points to repre-

sent landscapes. Fire propagates through the grid-cell basis. The

advantage of this network is that weather conditions as well as land

topography can easily be incorporated into the model [9, 26]. Pais

et al. [20] partitions off the forest landscape into a series of identi-

cal area square cells. In their study, topographic data and weather

conditions are integrated in the model to simulate fire growth.

3.2 Fire Propagation

Topography environment (e.g., elevation, slope, aspect) influences

fire behavior quantitatively [1, 5, 12, 13, 17, 22]. In particular, the

steeper the slope the faster the fire will spread [5, 12]. The aspect

determines the amounts of solar radiation, moisture, and wind a

slope receives. This could lead to varied temperatures and drier con-

ditions, which can also contribute to fire behavior directly through

different composition in vegetation and density [1, 5, 17]. Other

research discussed burn severity being negatively correlated with

elevation [13, 22].

Nelson et al. [18] analyze fire propagation and wind speed. Their

experiment suggests the fire spread rate is proportional to the

square of the wind speed. There are three types of fire, namely:

1
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Figure 1: The high-level framework to attempt to solve the problem as discussed in Section 2 involves four major steps: (1)

Acquisition and Analyses of Data, (2) Network Construction, (3) Experimentation, and (4) Conclusion and Recommendation.

surface fire, crown fire and underground fire. Under strong wind

conditions, the fire will burn to the crown and the fire spread rate

will increase [18]. Werth et al. [25] studies fire propagation and

wind direction. They point out the spread of fire is nearly round

under low wind, while under strong wind it is elliptical, and its

long axis is parallel to the direction of the leading wind.

3.3 Linear Threshold Model

The Linear Threshold (LT) model has been widely used in modelling

diffusion process. Pathak et al. [21] presented a generalized version

of the linear threshold model for simulating multiple cascades on a

network while allowing nodes to switch between them. It also has

been used in social networks. Chen et al. [4] proposed a scalable

algorithm to find a small set of most influential nodes under the

linear threshold model. In our work, we will employ this model in

the network to simulate fire propagation.

3.4 Intervention Strategies in Networks

Many studies in sociology have shown the important role of particu-

lar nodes and edges in spreading information in a complex network

[27]. For example, Liu et al.[16] provided the diffusion importance

of edges in his research on influence maximization. Thus, targeting

these edges is significant in the planning for the control of propa-

gation of critical pieces of information in a social or information

network [10]. In epidemics, there have been several containment

intervention strategies being proposed based on the idea of remov-

ing edges connecting different communities in order to efficiently

contain disease spread from one community to another [3, 14].

4 METHODOLOGY

In order to address the problems as discussed in Section 2, we take

the following steps:

(1) Secure the dataset, which is discussed briefly in Section 4.1.

(2) Leveraging this data, the network will then be constructed.

This process will be thoroughly covered in Section 4.2.

(3) After the network has been constructed, we can finally per-

form some simulations and run some tests. Section 5 should

be able to report the detailed analyses and results of the

performed experiments.

(4) Finally, we give some concluding remarks & recommenda-

tions on how the problem can be extended.

This high-level framework of our action plan can be seen visually

in Figure 1.

4.1 Dataset

The dataset used to construct the network is the ForestCoverType,

which contains tree observations (30 × 30 meter grid forest) of the

Roosevelt National Forest in Colorado. Each grid includes several

topographic data such as elevations, slopes and aspects [2].

4.2 Network Construction

Figure 2: Grid map of the Roo-

sevelt National Forest [24].

To model wildfire propa-

gation in heterogeneous

forest landscapes, the ter-

rain of the Roosevelt Forest

in Colorado is tessellated

into a number of small

patches whose shape re-

semble squares as seen in

Figure 2 [24]. As such, the

terrain is transformed into

a lattice network 𝐺 (𝑁, 𝐸)
of dimension |𝑁 | × |𝑁 |,
where 𝑁 = {𝑣𝑘 }, with
𝑘 = 1, 2, ..., |𝑁 | is the set of
nodes (the terrain patches

or the forest nodes), and 𝐸

is the set of edges (links) between neighbor nodes (or neighboring

forests). In the context of forest fire propagation, these links will

serve as travelling routes for fire to spread from one forest to a

neighboring one.

Each node in the network graph has a state serving as one of its

node attributes. At time 𝑡 , a node can be in any one of the following

states: empty, not_burned, burning, or burnt. The "empty" repre-

sents areas where there are no trees (cannot be burned). The state

"not_burned" represents trees that are intact. The states "burning"

and "burnt" represent trees currently burning and have been burnt

down respectively. A user-defined parameter 𝜌 then determines

the forest density of our network, i.e. this density-factor controls

the percentage of the total areas in the network containing forests.

The deciding factor in the fire propagation process of the simu-

lation are numbers as computed by a linear threshold model (dis-

cussed in Section 4.3). Each node 𝑣𝑘 uses three topographic fea-

tures, namely the elevation, slope and aspect, as factors to compute

the node’s threshold 𝜃 . This indicates how easily 𝑣𝑘 would switch

from one state to another. Each edge (𝑣𝑘 , 𝑣𝑙 ) is weighted and the

weights 𝛽 can be calculated using wind and Euclidean distance

factors. Thus, the spatial distribution of fire propagates is converted

to a cascading problem in networks.

2
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4.3 The Modified Linear Threshold Model

A modified version of the LT model as discussed in Section 3.3

was employed in the simulation of the forest fire propagation. In

this diffusion-based network model, nodes can have two possible

states: active and inactive. Therefore, in the context of our forest

network, active nodes are those forests that are currently burning

(i.e. having ’burning’ state) while inactive ones are those that have

not yet been burnt (i.e. having ’not_burning’ state). Clearly, those

nodes in the system that are quoted as ’empty’ have no role to play

in this LT model. And those burnt out forests can be thought of as

’inactive’ in the LT model as fire has already been extinguished and

can no longer influence neighboring forests. However, these burnt

nodes, while considered inactive, ’loses’ their role to play in the LT

model as burnt out forests cannot go back to the burning state.

Each node then in the network has some uniformly random

𝜃 ∈ [0, 1] which serves as a threshold for when its state flips. One

tweak proposed by our team is that we can change the way we pick

these uniformly selected random numbers. A mathematical model

to compute these node thresholds is described in detail in Section

4.4. Then each edge in the (undirected) network will have some

randomly assigned weight 𝛽 ∈ [0, 1]. Similar to node thresholds,

we employ a more mathematical-based formula to calculate edge

weights as detailed in Section 4.5. Thus, for any inactive node (or

’not_burning’ forest) 𝑣 in the forest network, its state will switch

to an active (or burning) state if and only if the total weights of all

edges of 𝑒𝑢𝑣 is greater than the node threshold of forest 𝑣 , where 𝑢

is an active (burning) neighbor of 𝑣 . [11] Mathematically speaking:( ∑
𝑢∈[active neighbor of 𝑣 ]

𝑤𝑢,𝑣 > 𝜃𝑣

)
=⇒ switch state of 𝑣 (1)

The process initially begins with all nodes being inactive. A random

node in the network is then selected to be active and the diffusion

process happens for that node (cascading to its neighbors). To

translate this in the context of our forest network system, we begin

with an initial setup where no forests are burning. Then a forest is

selected at random, which serves as the ignition source of the forest

fires. Forest fire propagation should then begin to take into effect

and will cascade to its neighbors and to its neighbors’ neighbors,

according to the mathematical process as described by Eq. (1). This

cascading process is repeated and iteration terminates when any of

the following becomes true:

• If we have reached the maximum number of timestep itera-

tions, which can be parameterized

• When all inactive nodes in the network have been switched

to active, or in this case if all non-burning forests have turned

burning or have become burnt

• When there are no new nodes or forests that have become

active or have been switched to the burning state from the

previous iteration

The algorithms as discussed in Section 4.7 should give a better un-

derstanding of how the linear threshold model can be implemented

in the simulation of forest fire propagation.

The tweak that the team proposed to modify the method for

selecting node thresholds and edge weights is rooted from the limi-

tation of the basic LT model. In the basic model, node thresholds

and edge weights are selected uniformly at random. Here, the ra-

tionale for this choice of method of picking random values was

the lack of knowledge of the network, as identified by Kempe et

al. [11]. However, as we have additional knowledge on the context

of the network that we are modelling, then it may be imperative

to consider the various fire spread factors. This involves designing

mathematical models that can compute the node thresholds and

edge weight values. The LT model itself is designed to handle the

fire cascading effects, and so the only concern then is to model the

values for node thresholds and edge weights.

4.4 The Mathematical Formulation of the Node

Thresholds

In this section, we attempt to discuss thoroughly the mathematical

model behind the formulation of the nodes’ thresholds. Each node

in the network graph is assigned node threshold 𝜃 , which can be

calculated as:

𝜃 = − 1
𝜋
arctan(𝜙𝑠𝜉𝛼) + 0.5 (2)

Table 1 presents us with a tabulated summary of the node thresh-

old symbol, nomenclature, and formula for such parameters. For

instance, the slope coefficient 𝜙𝑠 can be obtained using the formula

𝜙𝑠 = 5.275(tan𝜙)2 (3)

where 𝜙 is the slope found in the ForestCoverType dataset [2].

The direct relationship between slope steepness and likelihood

of fire is dictated in this formula and that this is actually from a

portion of Rothermel’s fire spread model [23]. In fact, many pieces

of various existing fire propagation math models were used and

incorporated in our mathematical models. Another example can be

seen in the formula for calculating the elevation coefficient 𝜉 , which

was borrowed from Olabaria, et. al. [19] and can be calculated by:

𝜉 =
1

1 + ln(max{ℎ𝑒−6, 1})
(4)

where ℎ is the elevation value and again can be found in the Forest-

CoverType dataset [2]. It can be noticed that the elevation & likeli-

hood for fire are negatively-correlated. This means that the higher

the elevation values of a forest, the lower its risk for it to catch on

fire. The rationale behind such claim is that higher elevation lands

tend to receive less forest fuels than those in lower-elevated places.

As a result, higher places are less prone to catch fires than those in

the lower areas. Hence, this should clearly explain why elevation

presents itself to be an inverse factor in the mathematical model,

which was also observed by Olabaria, et. al [19].

We then turn our attention to the aspect coefficient 𝛼 . The study

by Estes et al. [5] provides us with information on how we can

obtain the aspect coefficient 𝛼 based on the aspect value 𝐴. It was

also be observed by Estes, et. al. that eastern aspect directions (with

𝐴 ∈ [22.5, 157.5)) has higher aspect coefficients 𝛼 , as indicated in

the lookup table Table 3 from Appendix C.4. Again the aspect

values can be found in the ForestCoverType dataset [2], whose

values range from 𝐴 ∈ [0, 360].

In the math formula for the node threshold found in Eq. (2), we

can see that the function applied is arctan(·) and the choice of such
function is arbitrary. In fact, any function would have worked so

3
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Table 1: Model Parameters used for the Node Threshold 𝜃 and the Edge Weight 𝛽

Symbol Nomenclature Formula Notes

𝜙𝑠 slope coefficient 5.275(tan𝜙)2 Rothermel [23]; 𝜙 is the slope in the ForestCoverType dataset [2]

𝜉 elevation coefficient

1

1 + ln(max{ℎ𝑒−6, 1})
Olabarria, et. al. [19]; ℎ is the elevation in the ForestCoverType dataset [2]

𝛼 aspect coefficient (See Table 3) Estes, et. al. [5]; See Appendix C.4 for the lookup table

𝜙𝑤 wind speed 𝛾 cos𝜏 Calculated; 𝛾 = random[0,𝜓 ] where𝜓 is user-defined; 𝜏 given in Eq. (7)

𝛿 node Euclidean distance

√
Δ2𝑥 + Δ2𝑦 Calculated: Δ denotes the horizontal (𝑥 ) and vertical (𝑦) node distances

as long as the function is monotonous. The range of the values

of arctan(·) ∈ [−𝜋
2
, 𝜋
2
], which should clearly explain the purpose

of
1

𝜋 that is merely used as a scaling factor. Hence this particular

constant can change depending on the choice of function used in

place of arctan(·). Furthermore, the additional 0.5 constant should

give an idea that it is a correction factor as the first term has range

of values from [−0.5, 0.5]. Hence, our mathematical model for node

threshold should be some number between [0, 1].

4.5 The Mathematical Formulation of Edge

Weights

Like the model used for formulating the node thresholds, we also

have a mathematical model to compute the edge weights in our

network. The weight 𝛽 of the edges can be computed as follows:

𝛽 = max

{
2

𝜋
arctan

(𝜙𝑤
𝛿

)
, 0.01

}
(5)

where the symbol, nomenclature and formulas can be found in Ta-

ble 1, similar to where the node threshold parameters are tabulated.

The parameter 𝜙𝑤 is the wind speed and can be expressed as a

function of the wind magnitude 𝛾 and wind direction 𝜏 :

𝜙𝑤 = 𝛾 cos𝜏 (6)

The wind direction 𝜏 (in degrees) can easily be computed using

relative locations on the forest map, which we define as:

𝜏 =

{
arctan(Δ𝑦/Δ𝑥) if Δ𝑥 ≠ 0

sgn(Δ𝑦) · 89.9o otherwise

(7)

This piecewise function avoids the division of zero problem when

Δ𝑥 = 0 and further ensures that cos𝜏 ≠ 0. The wind magnitude on

the other hand is a random number between [0,𝜓 ] where𝜓 is a user-

defined parameter that determines the max possible wind speed

at any given time 𝑡 . Finally the Euclidean distance 𝛿 , also based

from the positions of the nodes in the network, is a another factor

considered that should reduce the influence of fire propagation for

whenever there is a large distance between any two forests.

We have made a unanimous decision that edge weights cannot

be zero as that brings forth no effect towards fire propagation, for

any burning node. This is unrealistic and it may cause problems

during our simulations. As such, we ensured that if 𝜙𝑤 = 0 causing

arctan(·) to be zero, then we simply set 𝛽 = 0.01. Furthermore, we

use the max{·, ·} function to satisfy 0.01 ≤ 𝛽 ≤ 1.

4.6 Fire Prevention Strategies

After a simulation of the forest fire propagation (to be discussed

in Section 5), we desire to devise some schemes for how we could

control the fire spread, or at least decrease the total fire damage.

There are several ways to do so, such as through fire intervention,

fire prevention, etc. In our research project, we aim to focus on

strategies to prevent fire
3
. We could do either an edge-removal or

node-removal in our forest network. In the context of our forest

graph, removing nodes entail chopping down of trees or forests.

To avoid the cause of harm to the environment, we opt to turn our

focus on the removal of edges or cutting off links between forest

nodes, i.e. cutting off the path for where fire can travel. In our study,

we discuss some edge-removal strategies to target fire reduction in

our forest network (than if no prevention method was applied).

In our (incomplete) forest network, some (forest) nodes are easily

reachable from another; while not-so for others. The configuration

of the graph and the connectivity of the nodes play a big role in

reachability from one forest node to another. Because of this, we

can look at schemes that relate to shortest-path properties of the

forest graph. In particular, we may be interested in the graph’s

edge-betweenness. Recall the edge-betweenness of edge 𝑒𝑖 𝑗 to be the
number of node pairs (𝑢, 𝑣) such that edge 𝑒𝑖 𝑗 lies on the shortest

path between nodes 𝑢 and 𝑣 . As there can be several shortest paths

between𝑢 and 𝑣 , then the betweenness of 𝑒𝑖 𝑗 is the fraction of those

shortest paths that include 𝑒𝑖 𝑗 [15]. Betweenness can be further

used to detect communities, as discussed in the literature by Girvan,

et. al., and an algorithm they proposed is further described in detail

inAppendix A.2 [6]. Using the Girvan-Newman (GN) algorithm in

the edge-removal scheme for fire prevention is especially beneficial

in that (1) we are removing edges with the highest betweenness

scores (i.e. the paths for where fire are more likely to travel across),

and (2) isolating communities of forests (i.e. any removed "bridge"

prevents fire spread from one community to another).

The problem that can be foreseen in the use of GN algorithm to

counteract fire propagation is that although this scheme removes

edges with the highest betweenness scores that translate to paths of

higher likelihood for fire spread, it might not necessarily be the case

that such edges propagate through those paths. For instance, an

inactive node being considered to switch states because at least one

of its neighbors is burning does not mean that it will necessarily

flip its state. This is especially if its threshold is significantly high

3
Fire prevention deals with decreasing fire damage before fire could happen; fire

intervention does the same except in real time, when fire is already occurring.

4
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Algorithm 1: Incinerate (𝐺 (𝑁, 𝐸))
Input :The forest graph 𝐺 , with forest set 𝑁 and probable

fire path set 𝐸

Output : (None). The resultant forest graph of the cascading

Linear Threshold model

1 Γ ← {𝑓 | 𝑓 ∈ 𝑁 ∧ 𝑓 .fire_state = ’burning’ }

2 foreach 𝑣 in Γ do

3 Λ← 𝑣 .neighbors

4 if Λ = ∅ then

5 break

6 foreach 𝑛 in Λ do

7 Ψ← {𝑡 | 𝑡 ∈ 𝑛.neighbors ∧ 𝑡 .fire_state = ’burning’}
8 𝑠 ← 0

9 foreach 𝑢 in Ψ do

10 𝑠 = min(1, 𝑠 + 𝛽𝑢,𝑣)
11 if 𝑠 > 𝜃𝑛 then

12 𝑛.fire_state← ’burning’

enough and that its adjacent edges have significantly low valued-

weights. Another possibility is that the sequence of edges chosen by

GN might not be appropriate enough to cause a significant amount

of impact in impeding fire spread; in that a location-based scheme

would have been a critical criterion to consider. For instance, if GN

chooses an edge to remove that is located somewhere close to the

lower-leftmost part of the map as it has the highest betweenness

and that recalculating the betweenness scores causes GN to find the

new edge with the largest betweenness in the upper-rightmost area

of the map, then this definitely does not result into an improvement

of hindering fire propagation as the two successive edges removed

are distant of each other. Thus, we desire a method that chooses

edges that take location into account. In particular, we wish to

select an edge with a high betweenness score that is also proximate

to the edge that was previously pruned. For this, we propose the

FIGHTER algorithm and how it works is discussed further in Sec-

tion 4.7.2. Throughout the discussion of the proposed intervention

algorithm, we define a few terminologies, such as the edge distance.

Definition 4.1 (Edge Distance). The edge distance Δ between

two edges 𝑒𝑖 𝑗 and 𝑒𝑢𝑣 in the forest network is defined to be:

Δ(𝑒𝑖 𝑗 , 𝑒𝑢𝑣) = min{𝛿𝑖,𝑢 , 𝛿𝑖,𝑣, 𝛿 𝑗,𝑢 , 𝛿 𝑗,𝑣} (8)

where 𝛿𝑥,𝑦 is the Euclidean distance between nodes 𝑥 and 𝑦. In

other words, Δ is the shortest distance between one node of an

edge and another node of the other edge.

The notion of the edge distance will allow us to reason about the

location-based edge-removal in a forest network. Furthermore, it

is also critical to define what it means for an edge to be in the

(local) neighborhood of another edge. An edge 𝑒 ′ residing in the

neighborhood-ball of an edge 𝑒 that recently got pruned out of the

network is a necessary criterion in our edge-removal algorithm.

Definition 4.2 (Neighborhood-Ball of an Edge). .

The neighborhood-ball of an edge 𝑒 , denoted as 𝐵𝜆 , for a parame-

terized 𝜆 ∈ R+, is the region in the forest network consisting of all

edges 𝑒 ′ that are within an (edge) distance of 𝜆 from 𝑒 , i.e.

𝐵𝜆 (𝑒) = {𝑒 ′ | 𝑒 ′ ∈ 𝐸 ∧ Δ(𝑒, 𝑒 ′) < 𝜆} (9)

Algorithm 2: Simulate-Fire (𝐺 (𝑁, 𝐸), 𝑡 )
Input :Graph 𝐺 with set of nodes 𝑁 and set of edges 𝐸,

and the maximum iteration number 𝑡

Output : (None). The resultant 𝐺 with fire simulated

1 𝑢 ← pick a random forest ∈ 𝑁
2 𝑢.fire_state← ’burning’

3 𝐵 ← {𝑢}; 𝐵̂ ← ∅;𝑘 ← 1

4 while 𝑘 ≤ 𝑡 ∧ 𝐵 ≠ 𝐵̂ do

5 Incinerate(𝐺 (𝑁, 𝐸))
6 𝐵̂ ← 𝐵;𝐵 ← {𝑓 | 𝑓 ∈ 𝑁 ∧ 𝑓 .fire_state = ’burning’ }

7 𝑘 ← 𝑘 + 1

4.7 The Algorithms

In this section, we briefly discuss the main algorithms, INCINER-

ATE and FIGHTER, that were employed to solve the problem.

4.7.1 INCINERATE: Fire Simulation Algorithm
We first turn our attention to Algorithm 1 and Algorithm 2. It

can be observed that the INCINERATE algorithm is simply a sub-

routine of the main Simulate-Fire method. It can also be observed

that Simulate-Fire is simply the procedure that was discussed

in Section 4.3. In Lines 1-2, some random forest in 𝑁 is selected

at random and this will serve as the ignition source of fire in the

network. In Line 3, we introduce three new variables that represent

the set of currently burning forests 𝐵, the set of burning forests in

the previous timestep 𝐵̂, and the iterator 𝑘 . The cascading process

then comes into play in Lines 4-7 where the stopping criterion

is when either the max number of iterations has been reached

(parameterized by 𝑡 ; 𝑡 = ∞ for no specific max iterations), or when

the set of currently burning forests is the same set of burning forests

in the previous timestep (i.e. no new forests have switched to the

burning state). Exploring the while loop, in Line 5 we perform the

INCINERATE procedure of the graph 𝐺 (see below for details).

Then in Line 6, we let the current set of burning forests to be the

set of forests burning in the previous timestep. And then obtain the

new set of currently burning forests. Then increment our iterator

in Line 7 to prepare for the next iteration of the loop.

We then have a look at the INCINERATE sub-algorithm. In

Line 1, Γ will contain all those forest nodes that are burning. We

then operate a for-each loop in Lines 2-12, where for each burning

node 𝑣 in Γ, we do Lines 3-12. We gather all the neighbors of forest 𝑣

and store them into Λ. In Lines 4-5, we check if the burning forest 𝑣

does not have neighbors; in that case, we simply break off the loop.

Otherwise, in Lines 6-12, we take each of those neighbor nodes of

𝑣 that was stored in Λ. And then, for each node 𝑛 in Λ, we obtain
all neighbors of 𝑛 that are burning and store them in Ψ as seen in

Line 7. Lines 8-10 computes for the total sum of the weights of the

adjacent edges of 𝑛 and caps it off at 1, to keep the values within

[0, 1]. In Line 11-12, we check if the sum of those edges surpass the

node threshold of node 𝑛. If this is the case, then the forest node

𝑛 switches to the ’burning’ state. This is what is happening under

the hood of INCINERATE, which should give a clearer picture of

the main method Simulate-Fire.

A sample simulation that employs these algorithms can be seen

in Figure 7 of Appendix C.1. Greater discussion can be found in

5
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Algorithm 3: Fighter (𝐺 (𝑁, 𝐸), 𝐾, 𝜆)
Input :Graph 𝐺 with set of nodes 𝑁 and set of edges 𝐸

where |𝐸 | ≥ 1, 𝐾 number of edges to remove (an

integer such that 0 < 𝐾 ≤ |𝐸 |), and threshold 𝜆 > 0

Output :𝐸 ′, the edges removed based on edge-betweenness

centrality and local neighborhood. The resultant 𝐺

is now 𝐺 ′ where 𝐺 ′ = 𝐺 (𝑁, 𝐸 \ 𝐸 ′).
1 Calculate-Edge-Betweenness(𝐺)
2 𝑒max ← Mth-Largest-Edge(𝐺, 1)
3 𝐵𝜆 ← {𝑒 | 𝑒 ∈ 𝐸 ∧ Edge-Distance(𝑒max, 𝑒) < 𝜆}
4 𝐸 ← 𝐸 \ {𝑒max}; 𝐸 ′ ← {𝑒max}
5 Calculate-Edge-Betweenness(𝐺)
6 𝑚 ← 1

7 while |𝐸 ′ | < 𝐾 ∧𝑚 ≤ |𝐵𝜆 | do
8 𝑒𝑚 ← Mth-Largest-Edge(𝐺,𝑚)
9 if Edge-Distance(𝑒max, 𝑒𝑚) < 𝜆 then

10 𝐵𝜆 ← {𝑒 | 𝑒 ∈ 𝐸 ∧ Edge-Distance(𝑒𝑚, 𝑒) < 𝜆}
11 𝐸 ← 𝐸 \ {𝑒𝑚}; 𝐸 ′ ← 𝐸 ′ ∪ {𝑒𝑚}
12 𝑒max ← 𝑒𝑚 ; 𝑚 ← 1

13 Calculate-Edge-Betweenness(𝐺)
14 else

15 𝑚 ←𝑚 + 1
16 return 𝐸 ′

Section 5. Furthermore, an equally important, yet less relevant al-

gorithm is the Simulate-Wind algorithm, which factors in the wind

component. See Appendix A.1 for a more in-depth exploration of

the algorithm and Appendix C.3 for a sample simulation.

4.7.2 FIGHTER: Fire Prevention Algorithm
In this section, we cover the FIGHTER algorithm, a neighborhood-

based edge-removal algorithm based on betweenness centrality

scores. We have discussed earlier in Section 4.6 that this algorithm

takes its inspiraton from a Girvan-Newman heuristic where we se-

quentially take off edges with the highest edge-betweenness scores

(while recalculating betweenness scores for whenever an edge is

pruned from the network). However, we did see some problems

with the GN approach. Hence, we propose an algorithm that takes

into account the local neighborhood of edges being removed from

the network as an additional basis for selecting edges to remove.

Referring to Algorithm 3, we do a somewhat similar approach

to GN. We first calculate the edge betweenness scores of all edges

in 𝐺 in Line 1. Then in lines 2-5, we take the edge in 𝐺 that has

the highest betweenness score and then assign this to 𝑒max

4
. We

then obtain the neighborhood-ball of this edge 𝑒max, as how we

defined a neighborhood-ball in Definition 4.2. We then remove

this edge from the set of edges and then create a set or list of edges

that have already been removed in 𝐸 (called 𝐸 ′). In line 6, we let

𝑚 = 1; we will increment this number in the while loop body of

lines 7-15 whenever we cannot take out the edge that has the𝑚th

largest edge-betweenness (due to the location-based factor that was

not satisfied). Otherwise, then we can reset𝑚 = 1 again as edge

betweenness for all edges in the network graph are recalculated.

4
Note that Mth-Largest-Edge(𝐺,𝑚) takes the edge in 𝐺 with 𝑚th largest edge

betweenness score.

Examining the loop body, there are two terminating conditions:

(1) when |𝐸 ′ | ≥ 𝐾 (i.e. the number of edges noted down already

exceeds the 𝐾 number of edges the user asked to remove), and (2) is

when𝑚 > |𝐵𝜆 |, which indicates that there are no more edges in the

neighborhood-ball of the most recent edge removed. So by (2), it is

clear that it is possible that the FIGHTER algorithm can remove

less than 𝐾 edges as requested by the user. In line 8, we obtain the

edge that has the𝑚th largest score based on betweenness centrality.

Then we check if this edge resides in the neighborhood-ball of the

previously pruned edge. If not (lines 14-15), then we check the edge

with the next largest edge-betweenness score (and keeping doing

so until we find the next edge having the highest betweenness that

is resiging in the neighborhood-ball). If it is (lines 9-13), then we

obtain the new neighborhood-ball, remove the edge from 𝐸 and

then add it onto the constructed set 𝐸 ′ of removed edges. In line

12, we update what was the most recent edge pruned from the

network and then reset𝑚 = 1. Finally we have to recalculate the

edge-betweenness for all edges as we pruned an edge from the

forest network. In line 16, simply return the set of edges removed.

By then, the graph 𝐺 should have 𝐾 (or less) edges removed, based

on the betweenness centrality scores and also on the basis of the

pruned edges’ local neighborhood.

4.7.3 Benefits and Limitations of the Algorithms
INCINERATE is a simple, straightforward simulator for propagat-

ing fire. However, it employs a decision-based cascading network-

ing model that is deterministic (i.e. its thresholds and weights are

calculated based on math formulas as opposed to stochastic), and

cannot be compared to the stochasticity of fire in real life.

FIGHTER (and GN) are also straightforward schemes that aids

in the prevention of fire. They are effective as they aim to remove

graph edges where fire is most likely to travel and we will see in

Section 5 that theyworkwell. However, such hypothetical methods

make it impossible to compare the models in the real world forest

network. Fire is irreversible and stochastic.

5 EXPERIMENTS / EVALUATION

5.1 The Network

The number of nodes in our network is parameterized. However, we

will be using the standardized |𝑁 | = 100 nodes for our experiments

unless otherwise specified
5
. Each node also has a chance to have

an edge with its adjacent nodes with probability 𝜌 , the network’s

density factor, which is standardized at 𝜌 = 0.8.

5.2 Experiments and Analyses

We have tested and run our simulations around 100 times. A sample

sequence of the simulations in Figure 7 of Appendix C.1.

5.2.1 Forest Damage Overtime
We have performed some experiments and simulations. Firstly, we

looked into the percentage of forests in the map that are both burn-

ing and burnt down overtime. A plot of this can be seen in Figure

3 and our team observed some interesting results. For one, which

may seem intuitive is that the percentage of damaged forests (which

5
Some simulations require more nodes to see more interesting analyses. In such cases,

we’ll use |𝑁 | = 400 nodes.
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Figure 3: This plot shows the percentage of the area dam-

aged overtime: the fraction of those forests burning, burnt

down, and those damaged (note that the total damage is sim-

ply the number of forests that are burning and the number

of forests that have been burnt.). |𝑁 | = 400 nodes in this case.

Figure 4: This plot shows the percentage of forests damaged

overitme for different values of the forest density factor 𝜌 .

This includes both those forests that are burning and those

that are burnt. |𝑁 | = 400 nodes in this case.

is simply the total number of burning and burnt forests) tends to

converge to 𝜌 , the density factor of the system. This suggests that

all (or perhaps almost all) of the forests will eventually be impacted

by fire, especially for higher values of 𝜌 that implies a more con-

nected forest network. Details on the analysis of 𝜌 will be discussed

in Section 5.2.2. Another thing to notice is that the number of

burning forests would initially be greater than the number of burnt

forests in the system until at some point before the number of burnt

forests will be larger. This we saw was always true and that there

seems to exist a time step threshold 𝑡 ′ such that past this point,

then the number of burnt forests is greater than the number of of

burning forests. Another clear observation is the shapes of the plots

for the number of burnt and damaged forests. They seem to follow

the same shape patten, with the exception that the number of burnt

forests is simply shifted to the right. And lastly, the percentage

of the burning forests will always have this shape: that is, it will

increase until it hits some threshold (say 𝜔) and then past this 𝜔 ,

it will either decline or it will plateau then decline. Afterwhich, it

will stagnate to 0 until the end of time. These are clear observations

and pretty much intuitive. Fire spreads, propagates and then dies.

5.2.2 The Density Factor of the Forest Network (𝜌)
The observations and analyses conducted from Figure 3 are more

or less the same for all simulations we have tested on. However, we

did notice changes for when we cranked up the density factor 𝜌 . In

Figure 4, we have attempted using various 𝜌 values. Aside from

𝜌 = 0.8, we also used 𝜌 = 1.0 and 𝜌 = 0.5. For the situation for when

𝜌 = 1.0, this suggests that the entire system is densely forested

and that all neighboring nodes/forests are connected together. As a

result, fire propagates at a much faster rate and it can be observed

from the plot that as early as time 𝑡 = 6, the entire forest system

has already burnt down. And we can see that this is not the case

for the other 𝜌 values. When 𝜌 = 0.8, it takes 14 time steps before

the entire forest system burns down. However, it is a different case

for when 𝜌 = 0.5. In this setting, roughly only half of the system is

forested. This implies that some forests may be disconnected from

others due to a great number of fire zones or areas that are not

burnable. As a result, forest fires do not propagate easily to all areas

and from the plot that we see in Figure 4 that roughly only 10% of

those forested areas have been damaged. It does not also support

the claim that the percentage of damaged areas approach 𝜌 in the

long run as this is not the case for when 𝜌 = 0.5. Perhaps this is the

case for all scenarios for when 𝜌 > 𝜌 ′ but not so for when 𝜌 ≤ 𝜌 ′
(such as when 𝜌 = 0.5), for some 𝜌 ′. Therefore, the plot as displayed
in Figure 4 verifies our hypothesis that the more connected and

the more dense the forest network is, the more likely it is for fire to

spread. Additionally, fire propagates at a much faster rate and more

forests will thus get destroyed at an earlier time point. Furthermore,

this implies that the density factor 𝜌 indeed does play a big role in

the simulation of spread of forest fires.

5.2.3 The Effect of Slopes on Forest Fire Propagation
From the literature, it has been observed that a higher slope implies

that it is more likely that fire propagates and at a much faster rate.

Let us test this. If we simulate the fire propagation three times

(the same starting graph initialization and configuration including

ignition source origin), keep all other factors constant and simply

changed the slope values for each of those runs (one will be the

original slope, the next simulation will have slopes that are twice as

large as the original, and the last simulation having slopes with half

as large as the original), then we can see from the result in Figure

5(a) that the observation from the literature has been validated.

This is because, overtime, we can see that the large-scaled slope (red

plot) produces more fire damage to the forest network. However, for

forests on lands with lower slopes (the green plot), we can observe

that the damage by fire propagation is not as great as the damage

for when the slope is larger. Another interesting observation is that

up to some certain timestep 𝑡 ′, the amount of fire damage to the

forest are almost approximately the same. In this case 𝑡 ′ ∼ 2.

5.2.4 The Effect of Elevations on Forest Fire Propagation
Based from the literature, it was observed that there was indirect

relationship between elevation and fire likelihood, i.e. higher el-

evation values indicate lower risk for fire propagation. We shall

test this. In Figure 5(b), we can see the results of our experiment.

Here, similar to the slope testing, we did the same for elevation

(with ×0.5, ×1.0 and ×2.0 scales to the original elevation). The ex-

perimental results validate the observation from literature where

lower elevation causes fire easily (more damage caused by fire as

shown by the red plot for half the original elevation value). The

green plot (double the original value) also indicates less damage to

7
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(a) (b) (c)

Figure 5: The above shows a plot overtime of the percentage of forests damaged for different (a) slope values, (b) elevation

values, and (c) presence of wind. We note that in testing the effect of one variable, we will keep other factors constant.

fire, as found in the literature. It is also interesting to note, like the

slope factor, that the damage caused by fire is almost approximately

the same from the initial time up until some time point 𝑡 ′. In our

plot in Figure 5(b), this would be about 𝑡 ′ ∼ 3.

5.2.5 The Effect of Wind on Forest Fire Propagation
By intuition (and observation of how fire behaves), wind brings

about great impact on the behavior of fire. Putting this onto the test

in our simulator, let us compare the simulation for when there is

wind component versus the simulation when wind is taken out of

the picture. The results are plotted in Figure 5(c). Notice how wind

can bring forth drastic damage to the forest by the fire propagation

(i.e. almost the entire forest network is burned). This is seen in the

red plot. On the other hand, the green plot which represents no

wind component, only has around 20-25% of the forest network

is damaged by fire. We can also observe that without wind, the

fire propagation process terminates and stablilizes at an early time

𝑡 = 3. Also, it is interesting to see that whether there is wind or no

wind from time 𝑡 = 0 up until some time 𝑡 ′ = 3, then the amount of

damage is not-so different. This is purely coincidental as wind is

varying (randomly) every 𝑇 timesteps (the simulation here could

possibly have 𝑇 = 2 perhaps).

5.2.6 Performance Analysis of Fire Prevention Strategies
The performance of our proposed FIGHTER algorithm is com-

pared with that of the performance of the benchmark algorithm

of Girvan-Newman. We also compare these algorithms with the

case for when no prevention methods were applied. In our simu-

lations
6
, we take a sample of 5 runs which we display as seen in

Table 2 (we use the same set of parameters in all 5 runs). It can be

observed that in all instances, applying the FIGHTER algorithm

can decrease the total fire damage to the forest network by the end

of the fire propagation simulation, than if no prevention algorithm

was applied. Girvan-Newman’s algorithm also (slightly) improved

the condition for where there was no prevention at all, i.e. it either

did better or the same but it never performed worse. A significant

observation that can be seen from Table 2 is that in 4 out of the 5

6
A prevention strategy 𝐴 is better than method 𝐵 if the total fire damage after a

simulation for when 𝐴 is applied is less than the total fire damage of 𝐵 for when

applying 𝐵 to the network. The same forest network configuration and ignition source

is used during simulations. Apart from fire damage criterion, we also check for the

number of timesteps before the process terminates, as seen in Table 2.

times of simulating fire propagation, our proposed FIGHTER al-

gorithm does at least as better than the Girvan-Newman approach.

This is an indication that the method that we propose gives some

promising results. In particular, Simulation 1 in Table 2 shows

the best results performed by our FIGHTER algorithm, in that

it was able to reduce the total fire damage by about 85% than if

there was no fire prevention strategy applied. Our edge-removal

algorithm for this particular simulation forced an early stopping

for the fire propagation process, stabilizing the conditions as early

as time 𝑡 = 3, compared to when no fire prevention is at play at

time 𝑡 = 8. Comparing this improvement brought by the Girvan-

Newman heuristic where there was only about 15% reduction rate

to the total fire damage in the forest network. We can see a plot,

Parameters: 𝐾 = 5, 𝜆 = 75 meters

Prevention Number of Timesteps Total Fire

Methodology before Termination Damage (%)

None 8 65.9%

Girvan-Newman 8 55.3%

Fighter 3 9.41%

None 7 61.5%

Girvan-Newman 7 48.8%

Fighter 7 48.8%

None 5 57.6%

Girvan-Newman 5 57.6%

Fighter 5 40.0%

None 6 67.1%

Girvan-Newman 6 22.4%

Fighter 6 67.1%

None 6 96.7%

Girvan-Newman 6 96.7%

Fighter 6 83.0%

Table 2: Results of a sample of five simulations for the var-

ious methods of fire prevention strategies. The algorithm

highlighted in yellow gives the best performing prevention

scheme for each simulation.

8



Forest Fire Modelling and Analytics: A Comprehensive Study EECS 4414, Information Networks, Final Project

Figure 6: This plot shows the percentage of forests damaged

overtime based on the various fire prevention strategies dis-

cussed. Note that configuration of the initial forest network

(including the ignition source) are all the same across all

schemes. This is the plot for Simulation 1 in Table 2.

displaying the performances of these algorithms on this particular

simulation in Figure 6. Based on the results of our simulations, we

came up with some theorems. The first one in particular relates to

the set of edges as removed by FIGHTER and by the GN.

Theorem5.1. Let𝐺 be a forest network graph. Let𝐺𝐹 be the forest

network graph after removing a set of edges F from𝐺 according to

the FIGHTER algorithm. Let𝐺𝐺 be the forest network graph after

removing a set of edges G from𝐺 according to the Girvan-Newman

approach. Then F = G if and only if the following hold:

(1) 𝐺𝐹 = 𝐺𝐺

(2) The performance of both intervention strategies are the same

A short proof of these algorithms is written on Appendix B.

Now, we introduce another theorem as a result of our findings in

our experiments. This theorem relates to the neighborhood-ball

threshold radius 𝜆 parameter in our proposed method.

Theorem 5.2. If 𝜆 → ∞, i.e. the neighborhood-ball of any edge

covers the entire network space, then F = G.

6 CONCLUSIONS

In the simulation of forest fire propagation, we begin by construct-

ing a lattice network while incorporating topographic features such

as elevation, slope and aspect in our networks. Our fire simulator,

INCINERATE, works under the modified Linear Threshold model.

We then look into some strategies for fire prevention, such as the

use of Girvan-Newman’s approach and our proposed FIGHTER

algorithm, both of which rely on betweenness. Additionally, our

proposed method relies on (local) neighborhood-based criterion.

A possible future work could involve examining how the hyper-

parameters 𝐾 and 𝜆 are tuned in our proposed method. We do not

wish to choose a 𝐾 that is small enough that it brings little to no

impact on the fire propagation; nor select a 𝐾 large enough that

disconnects the majority of our forest network. We also hope to

be not too strict by choosing small 𝜆, in that there may only be a

limited number of edges to choose from within the neighborhood-

ball that have high betweenness scores. However, we also hope

to be not too lenient that we consider large 𝜆 values where the

neighborhood-ball considers the entire forest network (thus reduc-

ing to the GN algorithm by Theorem 5.2). Additionally, we may

want to investigate intervention methods as well.

� GITHUB REPOSITORY

Visit https://github.com/techGIAN/ForestFireAnalytics for
the full code of our project.

§ MACHINE SPECIFICATIONS

All experiments were conducted on a MacBook Pro with Dual-Core

Intel Core i5 CPU @ 2.3 GHz and 8GB memory, using Python 3.7.4.

All models are generated by the NetworkX package. Experiments

and results are tested and validated using a MacBook Air with

Dual-Core Intel Core i5 CPU @ 1.6 GHz and 8GB memory.
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APPENDIX

A SUPPLEMENTARY ALGORITHMS

In this section of the appendix, we discuss further in detail some

algorithms implemented in the project that did not seem to be

relevant towards the problem described.

A.1 The Simulate-Wind Algorithm

In this section, we discuss how wind is simulated during fire simu-

lation. See Algorithm 4. We take a graph 𝐺 as input, along with

the user-defined parameter𝜓 , which should act as the maximum

possible wind speed. In Line 1, we pick that wind speed 𝛾 ∈ [0,𝜓 ]
which will be picked uniformly at random. In Line 2, we pick a

forest 𝑛 in the network at random and we suppose that it has posi-

tion (𝑛𝑥 , 𝑛𝑦). We then pick in Line 3 a pair of positive integers at

random (𝑟1, 𝑟2). Ideally, we want to pick values within the range of

our network lattice. However, we have uplifted this restriction by

allowing out-of-bounds results while getting the wind simulation

to still working properly. By Line 4, we determine the Area of Effect

(AoE). This is simply an elliptical region for where all edges lying

in this particular region will experience changes to the wind condi-

tions. At closer inspection the region bounded by Ω seems to be

rectangular; however what this area presents is actually elliptical in

shape and that only the ranges of the major and minor axes of the

ellipse are presented. In Line 5, we store all those edges within the

elliptical boundary into the set 𝐸
update

. And then in Line 6 apply

those changes to the Graph 𝐺 , i.e. update the ’wind’ attribute of

the edges in 𝐸
update

from 𝐺 with the randomly selected 𝛾 value.

Algorithm 4: Simulate-Wind (𝐺,𝜓 )

Input :Graph 𝐺 , and a maximum possible speed𝜓

Output : (None). The resultant 𝐺 with wind simulated

1 𝛾 ← random[0,𝜓 ]
2 𝑛 ← pick a random forest, with 𝑝𝑜𝑠 = (𝑛𝑥 , 𝑛𝑦)
3 𝑟1, 𝑟2 ← {𝑎, 𝑏 | 𝑎, 𝑏 ∈ random(Z+)}
4 Ω ← [𝑛𝑥 − 𝑟1, 𝑛𝑥 + 𝑟1] × [𝑛𝑦 − 𝑟2, 𝑛𝑦 + 𝑟2]
5 𝐸

update
← {(𝑛𝑖 , 𝑛 𝑗 ) | 𝑛𝑖 , 𝑛 𝑗 ∈ Ω}

6 Δ(𝐺, 𝐸
update

, ’wind’, 𝛾)

Algorithm 5: Girvan-Newman (𝐺 (𝑁, 𝐸), 𝐾 )
Input :Graph 𝐺 , with node set 𝑁 and edge set 𝐸 where

|𝐸 | ≥ 1, and 𝐾 is an integer denoting how many

edges to remove where 0 < 𝐾 ≤ |𝐸 |
Output :𝐸 ′, the set of removed edges. Also 𝐺 is now 𝐺 ′

where 𝐺 ′ = 𝐺 (𝑁, 𝐸 \ 𝐸 ′) and the edges removed

are based on edge-betweenness centrality scores

1 Calculate-Edge-Betweenness(𝐺)
2 𝐸 ′ ← {}
3 while |𝐸 ′ | < 𝐾 ∧ 𝐸 ≠ ∅ do

4 𝑒max ← Mth-Largest-Edge(𝐺, 1)
5 𝐸 ← 𝐸 \ {𝑒max}; 𝐸 ′ ← 𝐸 ′ ∪ {𝑒max}
6 Calculate-Edge-Betweenness(𝐺)
7 return 𝐸 ′

A.2 The Girvan-Newman Algorithm

The Girvan-Newman algorithm is a popular method in detecting

communities. We employ this algorithm in the detecting ’forest

communities’ that we can isolate in our forest network. The al-

gorithm is straight-forward as seen in Algorithm 5; we begin by

calculating the betweenness of all edges in the forest graph 𝐺 on

line 1. In line 2, we create an empty set 𝐸 ′, the set of edges that
we intend to remove from 𝐺 according to the Girvan-Newman

heuristic. Lines 3-6 is a loop where we terminate whenever the 𝐾

edges have already been removed from the graph 𝐺 or when there

are no more edges in the graph to remove. In the loop body, take

the edge with largest betweenness score, remove that and add it to

the set 𝐸 ′. Recalculate the betweenness scores of all edges in the

graph, then repeat the process until termination. In the end at line

7, return the set of edges removed from 𝐺 , which is 𝐸 ′.

B PROOFS OF THEOREMS

In this section, we discuss the proofs covered in this paper.

B.1 Proof of Theorem 5.1

Proof. (=⇒), the set of nodes of 𝐺 remains unchanged as we

only had removed edges to produce 𝐺𝐹 and 𝐺𝐺 . Clearly, if F and

G are the same set of edges, then we get the same graph when

removing F from the set of edges in 𝐺 and when removing G
from the set of edges in 𝐺 . Because we are removing the same

set of edges, this should also imply that the performance of both

intervention algorithms will have to be the same according to how

we defined "performance" in Footnote 6 in page 8. This is due to

the deterministic nature of the Linear Threshold Model and the

deterministic formula for calculating node thresholds and edge

weights.

(⇐=), it is clear that if 𝐺𝐹 = 𝐺𝐺 , then the set of edges removed

from𝐺 to produce𝐺𝐹 have to be same (not necessarily in the same

order as we are dealing with sets) as the set of edges from taken

out from 𝐺 to produce 𝐺𝐺 . Hence F = G. □

B.2 Proof of Theorem 5.2

Proof. The FIGHTER algorithm simply does not consider the

fact that it uses a neighborhood-based edge-removal approachwhen

𝜆 →∞ (as it considers the entire forest space) and simply takes into

account the betweenness score factor. Hence this method reduces

to GN’s approach. Therefore the set of edges FIGHTER removes

is the same as the set of edges GN will prune (and in the same exact

order of selection as well!). Thus F = G.

The converse is not true, however. If F = G, this does not say
anything about how large our neighborhood-balls must be. It may

be possible that 𝜆 is small and that F = G, i.e. the edges as removed

by the GN are proximate each other within a distance of 𝜆. □

C ADDITIONAL FIGURES AND TABLES

C.1 Incinerate Forest Fire Simulation

We see in this section an example of the simulation run for INCIN-

ERATE, as detailed in Algorithm 1.
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Figure 7: This is a sample run of the forest fire propagation simulation (sequence begins in the upper left corner going across,

then down). The figure in the upper left corner panel is the initial state of the system where none of the forests are damaged

(all non-burnt forests are green and all those fire zones whose states will never change are black). In the figure beside it shows

a randomly selected node in the forest (colored yellow) where it serves as the source of the fire. In the sequences that follow,

we see that fire propagates accordingly to our algorithms (where orange nodes represent forests that are burning and brown

nodes represent forests that are burnt out). In the final few panels of the simulation, we have seen that the number of burning

forests has remained the same and therefore serves as the stopping criterion of the fire propagating algorithm.
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C.2 Node-Labelled Forest Network

Figure 8: The Forest Network (using 100 nodes), in a square

grid lattice. Nodes are labelled sequentially beginning from

1, starting from the bottom up, then left going right until

all rows/columns are filled up. Edges are withheld for easier

readability of node labels.

C.3 Simulate-Wind Simulation

Figure 9: Wind simulation in the Forest Network where

wind conditions change at every 𝑡 = 1 time steps (only the

initial and final lattice network is shown after 3 timesteps).

The edges in cyan color indicate that there were changes

with the wind condition at any given time from the initial

time of simulation.

We have also explored on the simulation of wind to the forest

network, in accordance with Algorithm 4. An example of this

simulation that runs over 3 time steps can be seen in Figure 9. In

the simulation for some 𝑡 timestep, the algorithm chooses a random

forest in the network which acts as the center or the "eye" of the

area affected by the wind, and nearby edges of the node in the

network are considered affected by the change of wind conditions.

As one could imagine, this is similar to how wind behaves in a

storm or typhoon.

C.4 Aspect Coefficient Lookup Table

We can find the aspect coefficient values from this lookup table, as

described by the mathematical model in Section 4.4.

Aspect Value 𝐴 Direction Aspect Coefficient 𝛼

𝐴 ∈ [0, 22.5) ∪ [337.5, 360] North -0.063

𝐴 ∈ [22.5, 67.5) North-East 0.349

𝐴 ∈ [67.5, 112.5) East 0.686

𝐴 ∈ [112.5, 157.5) South-East 0.557

𝐴 ∈ [157.5, 202.5) South 0.039

𝐴 ∈ [202.5, 247.5) South-West -0.155

𝐴 ∈ [247.5, 292.5) West -0.0252

𝐴 ∈ [292.5, 337.5) North-West -0.171

Table 3: A Lookup Table for the Aspect Coefficient 𝛼 . Note

that the aspect value 𝐴 can be found under the ’Aspect’ at-

tribute in the ForestCoverType dataset [2].
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