## Epidemic Spreading in Trajectory Networks

Tilemachos Pechlivanoglou, Jing Li, Jialing Sun, Farzaneh Heidari, Manos Papagelis

Presenter: Manos Papagelis

## YORK U



# **Background and Motivation**



## **Covid-19 (a global pandemic)**



**containment measures** physical distancing business, social life lockdown

#### side effects

economic downturn psychological well-being

need for more moderate contact-reduction policies



## **Mechanism of infectious disease spreading**







## **Revisiting epidemic concepts**







reproductive number

compartmental models (population-based) offline contact tracing



**Basic reproductive number**  $(R_0)$ 

The **expected** number of people that an individual infects

 $R_0 < 1$  infection dies out  $R_0 > 1$  infection persists

 $R_0 = p \times k$ 

**p**: transmission probability **k**: number of contacts

#### Ebola: 1.6-2









## (unrealistic) assumptions of R0

homogeneous population: all individuals are equally susceptible full population mixing: all individuals are equally likely to come into contact with each other

### more realistic epidemic models need to

integrate **heterogeneity** of individuals, e.g., different contact patterns monitor **actual contacts** of individuals



## **Offline contact tracing (through interviews)**

time-consuming
resource-intensive
lack of accuracy

\*\*\*\*\*\*\*\*\*\*\*\* \*\*\*\*\*\*\* missed contact known contacts \*\*\*\*\*\*\*\*\*\* known contacts missed contact

YORK

## **Digital contact tracing**



Enabled by mobile apps, geolocation devices, etc.

- ✓ addresses limitations of traditional contact tracing
- × privacy concern



## **Compartmental models**





## **SIR model**

Time  $t = \blacksquare$ 



Probability of being infected -  $\beta$ 

Probability of recovering -  $\gamma$ 



## Individual-based models





#### mobility network / contact network

**nodes**: individuals **edges**: social interaction **contagion**: stochastic infection due to spatial proximity



## **Models comparison**





#### reproductive number

very simple
 assumes full mixing
 ignores heterogeneity of individuals

#### compartmental

- learning transition
   probabilities (as a group)
- X ignores heterogeneity of individuals



#### individual-based

- ✓ best reflection of real life
- monitor individual transition between compartments
- X requires extensive, very detailed data

#### focus of this research



# **Research Questions**



## RQ1: How to take (mobility) heterogeneity into account?



model **relative risk** of individuals as a factor of **their contacts** over time



## **RQ2: How to model epidemic spreading?**



model epidemic spreading as **cascading** process in **dynamic spatiotemporal networks** 



## **RQ3: How to contain an epidemic?**



design **targeted network interventions** that aim at containing/controlling the contagious process



# **Problem Statement**



## **The Problem**

## Input

Historical data of individual trips (trajectories)

## Output

- Assess the relative risk of infection of individuals
- Assess the size of a disease outbreaks due to specific individuals
- Assess the impact of targeted non-pharmaceutical intervention strategies
- Provide support to health policy-making



# Methodology



## **Trajectories of individuals**





## **Proximity network**







## **Trajectory network**





# **Modeling risk of infection**



## Three (3) methods for measuring risk of infection

1+1+1+1 = 4 5+1+2+12 = 20

(1) # of contacts (node degree) (2) total contact time

(3) sum of contact times in geometric function

2(~

 $\checkmark$ 

 $\beta = 0.1$ 4-0.9<sup>5</sup>-0.9<sup>1</sup>-0.9<sup>2</sup>-0.9<sup>12</sup>  $\cong$  1.4

 intuitive
 doesn't consider time spent in contact considers contact timelong contacts skew result

 considers contact time
 very long contacts don't count as much



# **Modeling epidemic spreading**



## Simulating disease spreading on a trajectory network

#### we employ a stochastic agent-based SEIR network model

Each node (person) has a  $p_{u,v}$  chance to infect their neighbors

 $p_{u,v} = 1 - (1 - \beta)^k$ 

where

β: transmission probabilityk: duration (in timesteps)





## **Disease spreading**

# Timestamp: 1



U

## **Disease spreading**

# Timestamp: 2



U

## **Targeted network interventions**



## Intervention policy 1 (centralized): node immunization



GivReen addataeti of thighligesteris ketyessest



## Intervention policy 2A (individual): avoiding high-risk contacts



Sefecter and freme or vector by misking the second second



## Intervention policy 2B (individual): maintaining a "social bubble"



For every move paratic types at the full the a % exight bors by common eclears a ctsm (triangle a text sommon)



# **Experimental results**



## **Pedestrian simulation data**

map: YorkU campus map
(from OpenStreetMap)

**trips**: random individual trips based on **daily activity patterns** (with SUMO)

granularity level: min-by-min movement of 10k pedestrians over 30 days (with SUMO)

mobility network: spatiotemporal
network (10k nodes, ~56M edges)





## Modeling real-world activity patterns







hourly activity



## **Synthetic Data Generator**

# Simulation of Urban MObility (SUMO)

- designed for traffic/ pedestrian flow prediction
- supports real map analysis





## **Distribution of relative risks of individuals**



rrisk<sub>u</sub><sup>(3)</sup> more smooth a 3x higher risk than b



## Outbreaks due to "seed" nodes belonging to different risk groups





## **Direct vs secondary infections**





## **R**<sup>0</sup> distribution of individuals





## Intervention 1 vs null model (same # of random edges removed) node immunization





## Intervention 2A vs null model

#### avoiding high-risk contacts





## Intervention 2B vs null model

#### maintaining a "social bubble"



SEIR progress ( $\alpha = 20\%$ )



infections for varying  $\alpha$ 



## **Comparison of interventions**





## **Takeaway**



targeted intervention policies



## **Credits**



Tilemachos Pechlivanoglou



Jing Li

#### **Epidemic Spreading in Trajectory Networks**.

T. Pechlivanoglou, J. Li, J. Sun, F. Heidari, M. Papagelis. **Big Data Research** (BDR, Vol. 27, 100275, pp 1-15, 2022).



**Jialin Sun** 



Farzaneh Heidari



# Thank you!

Questions?

