Outbreak Detection In
Networks



Plan for Today

(1) New problem: Outbreak detection

(2) Develop an approximation algorithm
It is a submodular opt. problem!

(3) Speed-up greedy hill-climbing
Valid for optimizing general submodular functions
(i.e., also works for influence maximization)

(4) Prove a new “data dependent” bound

on the solution quality

Valid for optimizing any submodular function
(i.e., also works for influence maximization)

3/20/2017 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu



Detecting Contamination Outbreaks

3/2

0/2017

Given a real city water
distribution network

And data on how
contaminants spread
in the network

Detect the
contaminant as quickly
as possible

Problem posed by the
US Environmental
Protection Agency

Information Network Analysis, http://cs224w.stanford.edu



Detecting Information Outbreaks

Posts

Information
_—~ cascade

‘-‘//. - A
Time / o
ordered = |

hyperlinks

Which blogs should one read to

detect cascades as effectively
as possible?

3/20/2017 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 4



Detecting Information Outbreaks

Detect blue &
soon but miss red.

2 @ eative
mimons

TechCrunch
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Detect all
stories but late.
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General Problem

Both of these two are an instance of the
same underlying problem!

Given a dynamic process spreading over
a network we want to select a set of nodes
to detect the process effectively

Many other applications:
Epidemics
Influence propagation
Network security
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Water Network: Utility

impact
outbreak

- o

Set V of all
network junctions

High sensing quality f(S) = 0.9

Utility of placing sensors:

Water flow dynamics, demands of households, ...
For each subset S ¢ V compute utility f(S)

High impact

utbreak .
ntfamdination

Impact
outbre

NS Sensd
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early
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't throughl.f

Low sensing quality f(S)=0.01
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Problem Setting: Contamination

Given:
Graph G(V,E)
Data on how outbreaks spread over the G:

For each outbreak i we know the time T (i, u)
when outbreak i contaminates node u

ujil
Water distribution network Simulator of water consumption&flow
(physical pipes and junctions) (built by Mech. Eng. people)

We simulate the contamination spread for
every possible location.
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Problem Setting: Blogosphere

Given:
Graph G(V,E)
Data on how outbreaks spread over the G:

For each outbreak i we know the time T (i, u)
when outbreak i contaminates node u

oC
I . P $¥4

®e L4
I ¢ ; ‘o ¢
ee®

The network of Traces of the information flow
the blogosphere Collect lots of blogs posts and trace
hyperlinks to obtain data about information
flow from a given blog.
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Problem Setting

Given:
Graph G(V,E)
Data on how outbreaks spread over the G:

For each outbreak i we know the time T (i, u)
when outbreak i contaminates node u

Goal: Select a subset of nodes S that
maximizes the expected reward:

max f(5) = ) P(0) i(S)

SEV

Expectea reward for
detecting outbreak |

subject to: cost(S) <B
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Two Parts to the Problem

Reward
(1) Minimize time to detection
(2) Maximize number of detected propagations

(3) Minimize number of infected people
Cost (context dependent):

Reading big blogs is more time consuming

Placing a sensor in a remote location is expensive

Monitoring blue node saves more
people than monitoring the green node
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Objective functions are Submodular

- , ) R
Objective functions: ; ((5)) 'zsyffg;l_ynrfs)uc ion

1) Time to detection (DT)
How long does it take to detect a contamination?
Penalty for detecting at time t: ;(t) = min{¢t, T4}
2) Detection likelihood (DL)
How many contaminations do we detect?
Penalty for detecting at time t: ;(t) = 0, ;(00) = 1
Note, this is binary outcome: we either detect or not
3) Population affected (PA)

How many people drank contaminated water?

Penalty for detecting at time t: ;(t) = {# of infected
nodes in outbreak i by time t}.

Observation:
In all cases detecting sooner does not hurt!
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Structure of the Problem

Observation: Diminishing returns

Placement S={s_, s.}

1 52 Placement S'={s , s,, s, 5,}
I Adding s'helps a lot I Adding s”helps
very little
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Objective functions are Submodular

Claim: ForallA € B € V and sensors s € V\B

f(AUtsh) — f(A) = f(BU {s}) — f(B)

Proof: All our objectives are submodular

Fix cascade/outbreak i
Show f;(A) = m;(0) — m;(T(A,1i)) is submodular
Consider A € B C V and sensor s € V\B

When does node s detect cascade i?
We analyze 3 cases based on when s detects outbreak i
(1) T(s,i) = T(A,i): s detects late, nobody benefits:

fi(Au{s}) = f;(4),also f;(BU{s}) = f;(B) and so
fi(A v {S}) ﬁ(A) =0= ﬁ(B U {S}) ﬁ(B)

3/20/2017 Leskovec, Stanford CS224W: Social and Infor on Network Analysis, http://cs224w.stanford.edu



Objective functions are Submodular

Remember4 € B

Proof (contd.):

(2)T(B,i) < T(s,i) <T(A,i): s detects after B but before A
s detects sooner than any node in 4 but after all in B.
So s only helps improve the solution A (but not B)

filAu ts}) = fi(A) 2 0 = fi(B U {s}) — fi(B)

(3)T(s,i) < T(B,i): s detects early
fi(Au {s}) — f;(4) = [m;(0) — m;(T(s,D))]| = fi(A) =
|[7:(00) — m;(T(s,1))| = fi(B) = fi(BU {s}) — f;(B)

Ineqaulity is due to non-decreasingness of f;(+), i.e., f;(4) < f;(B)
So, fi(-) is submodular!
So, f(-) is also submodular £(S) = ZP(i)fi(S)
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Background: Submodular functions

What do we know about

Hill-climbing optimizing submodular

ceward functions?
a d A hill-climbing (i.e., greedy) is near

: 1
] b . optimal: (1 — Z) - OPT
But:
C e
c (1) This only works for unit cost

d case! (each sensor costs the same)
o For us each sensor s has cost c(s)

(2) Hill-climbing algorithm is slow
At each iteration we need to re-evaluate
marginal gains of all nodes

Runtime O(|V| - K) for placing K sensors
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Add sensor with
highest marginal gain



CELF: Algorithm for optimizing
submodular functions under
cost constraints




Towards a New Algorithm

Consider the following algorithm to solve
the outbreak detection problem:
Hill-climbing that ignores cost
Ignore sensor cost
Repeatedly select sensor with highest marginal gain

Do this until the budget is exhausted
Q: How well does this work?
A: It can fail arbitrarily badly! ®

Next we come up with an example where Hill-
climbing solution is arbitrarily away from OPT
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Problem 1: Ignoring Cost

Bad example when we ignore cost:
n sensors, budget B
S,: reward r, cost B
S, .S, rewardr — g, cost 1

Hill-climbing always prefers more expensive sensor
s41 with reward r (and exhausts the budget).

It never selects cheaper sensors with reward r — &
—> For variable cost it can fail arbitrarily badly!

Idea: What if we optimize benefit-cost ratio?

_ fAi—1 U{s}) — f(Ai-1) Greedily pick sensor
S; = arg r?eaVX c(s) s; that maximizes
benefit to cost ratio.
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Problem 2: Benefit-Cost

Benefit-cost ratio can also fail arbitrarily badly!
Consider: budget B:
2 sensors s, and s,:
Costs: c(s,) = &, ¢c(s,) =B
Only 1 cascade: f(s,) = 2¢, f(s,) =B
Then benefit-cost ratio is:
B/c(s;) =2 and B/c(s,) =1
So, we first select s, and then can not afford s,

—->We get reward 2€ instead of B! Now send € = 0
and we get arbitrarily bad solution!

This algorithm incentivizes choosing nodes with very low cost, even when slightly
more expensive ones can lead to much better global results.
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Solution: CELF Algorithm

CELF (Cost-Effective Lazy Forward-selection)
A two pass greedy algorithm:

Set (solution) S': Use benefit-cost greedy
Set (solution) $'': Use unit-cost greedy

Final solution: S = arg max(f(S'), f(§'))

How far is CELF from (unknown) optimal
solution?
Theorem: CELF is near optimal [krause&Guestrin, ‘05]

CELF achieves %2(1-1/e) factor approximation!

This is surprising: We have two clearly suboptimal solutions, but taking the best of
them always gives us a near-optimal solution.
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Speeding-up Hill-Climbing:
Lazy Evaluations

-



Background: Submodular functions

Hill-climbing
reward
a d
b b a
C €
C
d
€

Add sensor with
highest marginal gain

What do we know about
optimizing submodular
functions?

A hill-climbing (i.e., greedy) is near
optimal (1 — i) - OPT

But:
(2) Hill-climbing algorithm is slow!

At each iteration we need to re-
evaluate marginal gains of all nodes

Runtime O(|V| - K) for placing K
Sensors
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Speeding up Hill-Climbing

In round i + 1: So far we picked S; = {s;, ..., s;}
Now pick s;,q1 = argmax f(S; U {u}) — f(S;)

This is our old friend — greedy hill-climbing algorithm.
It maximizes the “marginal benefit”

6;(w) = f(S;U {u}) — f(Si)
By submodularity property:
FS;u{ud) —£(S) = F(S; ufu}) —£(S;) fori <

Observation: By submodularity:

For every u

o;(u) = oj(u) fori < jsince S, S; > 5 (U)
Marginal benefits o,(u) only shrink! q

(as i grows) Activating node u in step i helps

more than actlvatlng it at step | (j>I)
ure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 24



Lazy Hill Climbing

Idea:
Use o; as upper-bound on &; (j >i)  marginal gain

Lazy hill-climbing: a s,={a}
Keep an ordered list of marginal b

benefits g, from previous iteration

Re-evaluate 9, only for top node ]

Re-sort and prune .

f(S vtup)=f(5) 2 AT C{u)) =f(T)  scr
017 Jure Leskovec, Stanford CS22 | and Information Network Analysis, http://cs224w.stanford.edu 25
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Lazy Hill Climbing

Idea:
Use o; as upper-bound on &; (j >i)  marginal gain

Lazy hill-climbing: a s,={a}
Keep an ordered list of marginal b

benefits g, from previous iteration

Re-evaluate 9, only for top node ]

Re-sort and prune .

f(S vtup)=f(5) 2 AT C{u)) =f(T)  scr
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Lazy Hill Climbing

Idea:
Use o; as upper-bound on &; (j >i)  marginal gain

Lazy hill-climbing: a s,={a}
Keep an ordered list of marginal d S,={a,b}

benefits g, from previous iteration |

Re-evaluate 9, only for top node

e

Re-sort and prune 5

f(S U{U}) f(5) >f(TU{u}) f(T) scT

3/20/201 tanford CS224W: Social and Infor ork Analysis, http://cs stanford.edu



CELF: Scalability

| | | CELF (using Lazy

400 i
—~ i Exhaustive search - '
%0 Al subeets A evalu.atlon) runs
g ; - 700 times faster
@ | Nai ' 1
o 200 : greedy —»" - than greedy hill-
> .' 7 climbing algorithm
€ 100 I e CELF, -
e A X CELF + Bounds
/ e
e S S S
2 4 6 8 10

Number of blogs selected
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Data Dependent Bound on the
Solution Quality
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Solution Quality

Back to the solution quality!

The (1-1/e) bound for submodular functions
is the worst case bound (worst over all
possible inputs)

Data dependent bound:

Value of the bound depends on the input data
On “easy” data, hill climbing may do better than 63%

Can we say something about the solution
quality when we know the input data?
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Data Dependent Bound

Suppose S is some solutionto f(S) s.t. |S| < k

f(S) is monotone & submodular
Let OPT = {t,, ..., t,} be the OPT solution
Foreach u leté(u) = f(Su{u}) — f(S)
Order 6(u) sothat 6(1) >46(2) > ...

Then: f(OPT) < f(S) + XX, 8(i)

Note:

This is a data dependent bound (0(u) depends on input data)
Bound holds for any algorithm

Makes no assumption about how S was computed

For some inputs it can be very “loose” (worse than 63%)

ure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu



Data Dependent Bound

Claim:
Foreachulet 6(u) = f(SU{u}) — f(S)
Order 6(u) sothat 6(1) > 6(2) > ...
Then: f(OPT) < f(S) + XX, 8(i)

Proof:

f(OPT) < f(OPT US) = f(S) + &, [f(S U

(we proved this
last time)

Instead of taking t,eOPT (of benefit §(¢;)),
we take the best possible element (5(i))
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Case Study: Water distribution
network & blogs
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Case Study: Water Network

Real metropolitan area
water network

V =21,000 nodes
E = 25,000 pipes

Use a cluster of 50 machines for a month
Simulate 3.6 million epidemic scenarios
(random locations, random days, random

time of the day)

3/20/2017 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 34



Bounds on the Optimal Solution

Solution quality F(A)

3/20/2017

Higher is better

“Offline”
1.2 - the (1-1/e) bound

N\

Data-dependent

'

Hill Climbing

10

15

Number of sensors placed

Data-dependent bound is much tighter

(gives more accurate estimate of alg. performance)
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[w/ Ostfeld et al., J. of Water Resource Planning]

Heuristic Placement

0.8

0.6

/_Population Iflow

Reduction in population affected
(@)
N
|

Diameter

0 5 10
Number of sensors

Placement heuristics perform Proteo

much worse

Author Score
CELF 26
Sandia 21
U Exter 20
Bentley systems 19
Technion (1) 14
Bordeaux 12
U Cyprus 11
U Guelph 7
U Michigan 4

20 Michigan Tech U 3
Malcolm 2

2

Technion (2) 1

Battle of Water Sensor
Networks competition
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Water: Placement visualization

Different objective functions give different
sensor placements

Population affected Detection likelihood
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Water: Scalability

2300 F
S : /Exhaustive search ’
= ', (All subsets) /‘
= ! )

| , |
E 200 : Naive )’/
£ ! greedy ,/"‘
+ |

.~ CELF

®)) o | | )
< 100r, ™ CELF + Bounds
- ! \
C |
3 |
e 0-

2 4 6 8 10
Number of sensors selected

CELF is 10 times faster than greedy
hill-climbing!
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Question...
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Detecting information outbreaks

Detect blue &

soon but miss red.

3/20/2017 Jure

Leskovec, Stanford CS224W: Social and Information Netwotk Analysis, http://cs224w.stanford.edu
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Detect all
stories but late.
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Case study 2: Cascades in blogs

Crawled 45,000 blogs for 1 year

Obtained 10 million posts

And identified 350,000 cascades

Cost of a blog is the number of posts it has

2N ~ B,
UGN B, Py 3 Py
12 'u-.\ngf-” "-\\pz?y‘ / §
\1 \2 Pey \Pey
n ) /7N )
i ] \ 1 e N ‘l )/ \.‘
\2/?\P4/1/\ \p5}+_“‘—‘*\p% ) ‘\p_69 : "‘-\\pﬁ@‘
s |B
"‘\p_%z/l B4 2 /\p69 | BG




Blogs: Solution Quality

Online bound turns out to be much tighter!
Based on the plot below: 87% instead of 32.5%

g ' Offline bound
Q ine boun
>
c 1+ Online _
S bound
(1))
508 Our bound
O
506 CELF
S 04 CELF l
O luti
502 solution |
@
o’ . | | | |
0 20 40 60 80 100

Number of blogs
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 Heuristic Selection

0.8

CELF

06- Blog out-links
In—links

Reduction in population affected
o
»
|

. All oqﬁtlinks o © B
0.2 | ——# Posts ~
_~Random
et -
0 20 40 60 80 100

Number of blogs

Heuristics perform much worse!
One really needs to perform the optimization
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Blogs: Cost of a Blog

CELF has 2 sub-algorithms. Which wins?

Unit cost:

CELF picks large
popular blogs

Cost-benefit:

Cost proportional
to the number of
posts

We can do much

Reduction in population affected

Optim'izing
benefit/gost ratio

R

Ignoriﬁg cost
in optimization

oR

2 3
Cost (number of posts)

better when considering costs
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Blogs: Cost of a Blog

Problem: Then CELF
picks lots of small
blogs that participate
in few cascades

300

250r
200! Score 1(S)=0.4
We pick best solution '/
that interpolates
between the costs

Number of blogs
o
o

50+
We can get good l‘ (9702 ™\ _
solutions with few % 5000 10000 15000

Number of post

blogs and few posts JTRErOTROSE
Each curve represents a set of
solutions S with the same final

reward f(S)
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Reduction in population affected

Blogs: Generalization to Future

0.2 ‘ : ‘
Optimizing on future,
0.15 Result o‘x‘n future
0.1+ Optimizing on historic, ]

Result on future

0.05

400 600 800
Cost

0 200

1000

o
N

o
N
(O

0.05

Reduction in population affected
O

Optimizing on future,
Result on future
\

\

A
N

Optimizing'on historic,
Resu‘lt on futulre

600 800
Cost

|
200 400

We want to generalize well to future (unknown)

cascades

Limiting selection to bigger blogs improves

generalization!
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Blogs: Scalability

[Leskovec et al., KDD ‘07]
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Number of blogs selected

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

6

8

10

CELF runs 700
times faster than
simple hill-
climbing
algorithm
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