
Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas,
Univ. of Ioannina for slides

 The Influence Maximization Problem (IMP)
 (Or, how to create big cascades)
 (Or, finding the most influential set of nodes)

 IMP Hardness
 IMP Approximation
 Submodularity
 Hill Climbing Approximation Algorithm

 IMP Experiments and Remarks

 We are more influenced by our friends
than strangers

 68% of consumers consult
friends and family before
purchasing home electronics

50% do research online
before purchasing electronics

Identify influential
customers

These customers
endorse the product
among their friends

Convince them to
adopt the product –
Offer discount/free

samples

 Information epidemics:

 Which are the influential users?

 Which news sites create big cascades?

 Where should we advertise?

vs.

Which node shall we target?

 Independent Cascade Model
 Directed finite 𝑮 = (𝑽, 𝑬)

 Set 𝑺 starts out with new behavior
 Say nodes with this behavior are “active”

 Each edge (𝒗,𝒘) has a probability 𝒑𝒗𝒘
 If node 𝒗 is active, it gets one chance to

make 𝒘 active, with probability 𝒑𝒗𝒘
 Each edge fires at most once

 Does scheduling matter? No
 𝒖, 𝒗 both active, doesn’t matter which fires first

 But the time moves in discrete steps

 Initially some nodes S are active
 Each edge (𝒗,𝒘) has probability (weight) 𝒑𝒗𝒘

 When node v becomes active:
 It activates each out-neighbor 𝒘 with prob. 𝒑𝒗𝒘

 Activations spread through the network

0.4

0.4

0.4

0.4
0.2

0.2

0.2

0.4
0.3

0.3

0.3

0.3

0.3

0.3

0.2

e

g

f

c

b

a d

h

i

f

g

e

 S: is initial active set
 f(S): The expected size of final active set

 Set S is more influential if f(S) is larger
𝒇(𝒂, 𝒃) < 𝒇({𝒂, 𝒄}) < 𝒇({𝒂, 𝒅})

graph G
c

… influence set

Xu of node u

a

b

d

Problem: (k is user-specified parameter)

 Most influential set of
size k: set S of k nodes
producing largest
expected cascade size
f(S) if activated
[Domingos-Richardson ‘01]

 Optimization problem:)(max
k size of S

Sf

0.4

0.4

0.4

0.4 0.2

0.2

0.2

0.4
0.3

0.3

0.3

0.3

0.3

0.3

0.2

c

b
e

a d

g

f
h

i

Influence

set Xd of d

Influence

set Xa of a

Why “expected cascade size”? Xa is a result of a random process. So in

practice we would want to compute Xa for many realizations and then

maximize the “average” value f(S). For now let’s ignore this nuisance and

simply assume that each node a influences a set of nodes Xa

)()(SfSf i
Random

realizations i

 Problem: Most influential set of k nodes:
set S on k nodes producing largest expected
cascade size f(S) if activated

 The optimization problem:

 How hard is this problem?

 NP-COMPLETE!

 Show that finding most influential
set is at least as hard as a vertex cover

)(max
k size of S

Sf

 Vertex cover problem
(a known NP-complete problem):

 Given universe of elements 𝑼 = {𝒖𝟏, … , 𝒖𝒏}
and sets 𝑿𝟏, … , 𝑿𝒎 𝑼

 Are there k sets among X1,…, Xm such that
their union is U?

 Goal:
Encode vertex cover as an instance of)(max

k size of S

Sf

UX1
X2

X3

X4

 Let a vertex cover instance with sets X1,…, Xm

 Build a bipartite “X-to-U” graph:

 Vertex Cover as Influence Maximization in
X-to-U graph: There exists a set S of size k with
f(S)=k+n iff there exists a size k set cover

Construction:

• Create edge

(Xi,u) Xi uXi

-- directed edge

from sets to their

elements

• Put weight 1 on

each edge (the

activation is

deterministic)

u1

u2

u3

un

e.g.:

X1 = {u1, u2, u3}

1

1

1

X1

X2

X3

Xm

Note: Optimal solution is always a set of nodes Xi (we never influence nodes “u”)

This problem is hard in general, could be special cases that are easier.

 Extremely bad news:

 Influence maximization is NP-complete

 Next, good news:

 There exists an approximation algorithm!

 For some inputs the algorithm won’t find globally
optimal solution/set OPT

 But we will also prove that the algorithm will never do
too badly either. More precisely, the algorithm will find
a set S where f(S) > 0.63*f(OPT), where OPT is the
globally optimal set.

 Consider a Greedy Hill Climbing
algorithm to find S:

 Input:
Influence set 𝑿𝒖 of each node 𝒖: 𝑿𝒖 =
{𝒗𝟏, 𝒗𝟐, … }

 If we activate 𝒖, nodes {𝒗𝟏, 𝒗𝟐, … } will eventually
get active

 Algorithm: At each iteration 𝒊 take the node 𝒖
that gives best marginal gain:
𝐦𝐚𝐱
𝒖
𝒇(𝑺𝒊−𝟏 {𝒖})

𝑆𝑖 … Initially active set

𝑓(𝑆𝑖) … Size of the union of 𝑋𝑢, 𝑢 ∈ 𝑆𝑖

Algorithm:
 Start with 𝑺𝟎 = { }
 For 𝒊 = 𝟏…𝒌

 Take node 𝒖 that max𝒇(𝑺𝒊−𝟏 {𝒖})

 Let 𝑺𝒊 = 𝑺𝒊−𝟏 {𝒖}

 Example:

 Eval. 𝑓 𝑎 ,… , 𝑓({𝑒}), pick max of them

 Eval. 𝑓 𝒅, 𝑎 , … , 𝑓({𝒅, 𝑒}), pick max

 Eval. 𝑓(𝒅, 𝒃, 𝑎}), … , 𝑓({𝒅, 𝒃, 𝑒}), pick max

a

b

c

a
b

c

d

d

f(Si-1{u})

e

e

 Claim: Hill climbing produces a solution S
where: f(S) (1-1/e)*f(OPT) (f(S)>0.63*f(OPT))
[Nemhauser, Fisher, Wolsey ’78, Kempe, Kleinberg, Tardos ‘03]

 Claim holds for functions f(·) with 2 properties:

 f is monotone: (activating more nodes doesn’t hurt)

if S T then f(S) f(T) and f({})=0

 f is submodular: (activating each additional node helps less)

adding an element to a set gives less improvement
than adding it to one of its subsets: S T

Gain of adding a node to a small set Gain of adding a node to a large set

f(S {u}) – f(S) ≥ f(T {u}) – f(T)

 Diminishing returns:
f(

·)

Set size |T|, |S|

Gain of adding a node to a small set Gain of adding a node to a large set

f(S {u}) – f(S) ≥ f(T {u}) – f(T)

f(S)

f(S {u})

f(T {u})
S T

f(T)

Adding u to T helps less

than adding it to S!

 We must show our f(·) is submodular:
 S T

 Basic fact 1:

 If 𝒇𝟏(𝒙), … , 𝒇𝒌(𝒙) are submodular,
and 𝒄𝟏, … , 𝒄𝒌 𝟎
then 𝑭 𝒙 = 𝒊 𝒄𝒊 ∙ 𝒇𝒊 𝒙 is also submodular
(Linear combination of submodular functions is a submodular function)

Gain of adding a node to a small set Gain of adding a node to a large set

f(S {u}) – f(S) ≥ f(T {u}) – f(T)

 S T:

 Basic fact 2: A simple submodular function

 Sets 𝑿𝟏, … , 𝑿𝒎

 𝒇 𝑺 = 𝒌∈𝑺𝑿𝒌 (size of the union of sets 𝑿𝒌, 𝒌𝑺)

 Claim: 𝒇(𝑺) is submodular!

S
T

u

Gain of adding u to a small set Gain of adding u to a large set

f(S {u}) – f(S) ≥ f(T {u}) – f(T)

S T

The more sets

you already

have the less

new area a

given set will

cover

 Proof strategy:

 We will argue that
influence maximization
is an instance of the
set cover problem:

 f(S) is the size of the
union of nodes influenced
by set S

 Note f(S) is “random” (a result of a random process)
so we need to be careful

 Principle of deferred decision to the rescue!

c

b
e

g

f
h

i

a d

)()(SfSf i
Random

realizations i

 Principle of deferred decision:

 Flip all the coins at the
beginning and record
which edges fire successfully

 Now we have a
deterministic graph!

 Def: Edge is live if it fired successfully

 That is, we remove edges that did not fire

 What is influence set 𝑿𝒖 of node 𝒖?

 The set reachable by live-edge paths from 𝒖

c

b
e

g

f
h

i

a d

Influence sets

for realization 𝒊:
𝑋𝑎
𝑖 = {a,f,c,g}

𝑋𝑏
𝑖 = {b,c},

𝑋𝑐
𝑖 = {c}

𝑋𝑑
𝑖 = {d,e,h}

…

)()(SfSf i
Random

realizations i

 What is an influence set 𝑿𝒖?

 The set reachable by
live-edge paths from 𝒖

 What is now f(S)?

 fi(S) = size of the set
reachable by live-edge
paths from nodes in S

 For the i-th realization of coin flips
 𝑓𝑖(𝑆 = 𝑎, 𝑏) = 𝑎, 𝑓, 𝑐, 𝑔 ∪ 𝑏, 𝑐 = 5

 𝑓𝑖 𝑆 = 𝑎, 𝑑 = 𝑎, 𝑓, 𝑐, 𝑔} ∪ {𝑑, 𝑒, ℎ = 7

c

b
e

g

f
h

i

a d

Influence sets

for realization 𝒊:
𝑋𝑎
𝑖 = {a,f,c,g}

𝑋𝑏
𝑖 = {b,c},

𝑋𝑐
𝑖 = {c}

𝑋𝑑
𝑖 = {d,e,h}

)()(SfSf i
Random

realizations i

 Fix outcome 𝒊 ∈ 𝑰 of coin flips
 𝑿𝒗

𝒊 = set of nodes reachable from
𝒗 on live-edge paths

 𝒇𝒊(𝑺) = size of cascades from 𝑺
given coin flips 𝒊

 𝒇𝒊 𝑺 = 𝒗∈𝑺𝑿𝒗
𝒊 𝒇𝒊(𝑺)

is submodular!
 𝑿𝒗

𝒊 are sets, 𝒇𝒊(𝑺) is the size of their union
 Expected influence set size:
𝒇 𝑺 = 𝒊∈𝑰𝒇𝒊(𝑺) 𝒇(𝑺) is submodular!
 𝒇(𝑺) is a linear combination of submodular functions

c

a

b

d

e

f

Activate edges

by coin flipping

c

a

b

d

e

f

c

a

b

d

e

f

c

a

b

d

e

f

𝑿𝒂
𝟏

𝑿𝒂
𝟐

𝑿𝒂
𝟑

)()(SfSf i
Random

realizations i

 Find most influential set S of size k: largest
expected cascade size f(S) if set S is activated

 Want to solve:

c

a

b

d

e

f

Network, each edge

activates with prob. puv

Activate edges

by coin flipping

c

a

b

d

e

f

c

a

b

d

e

f

c

a

b

d

e

f
Multiple realizations i:

… influence set of node a

… influence set of node d

Consider S={a,d} then:

f1(S)=5, f2(S)=4, f3(S)=3

and f(S) = 12

Ii

i
kS

SfSf)()(max
 ||

Claim:
If f(S) is monotone and submodular.
Hill climbing produces a solution S
where: 𝒇 𝑺 𝟏 −

𝟏

𝒆
⋅ 𝒇(𝑶𝑷𝑻)

 In other words: 𝑓 𝑆 > 0.63 ⋅ 𝑓(𝑂𝑃𝑇)

 The setting:
 Keep adding nodes that give the largest gain
 Start with 𝑺𝟎 = {}, produce sets 𝑺𝟏, 𝑺𝟐, … , 𝑺𝒌
 Add elements one by one
 Let 𝑶𝑷𝑻 = {𝒕𝟏…𝒕𝒌} be the optimal set (OPT) of size 𝒌

 We need to show: 𝒇(𝑺) (𝟏 −
𝟏

𝒆
) 𝒇(𝑶𝑷𝑻)

 Define: Marginal gain: 𝜹𝒊 = 𝒇(𝑺𝒊) − 𝒇(𝑺𝒊−𝟏)
 Proof: 3 steps:

 0) Lemma: 𝑓(𝐴∪𝐵)−𝑓(𝐴) ≤ 𝑗=1
𝑘 [𝑓(𝐴∪ {𝑏𝑗})−𝑓(𝐴)]

 where: 𝐵 = {𝑏1, … , 𝑏𝑘} and 𝑓(⋅) is submodular

 1) 𝜹𝒊+𝟏 ≥
𝟏

𝒌
[𝒇 𝑶𝑷𝑻 − 𝒇(𝑺𝒊)]

 2) 𝒇(𝑺𝒊+𝟏) = 𝟏 −
𝟏

𝒌
𝒇 𝑺𝒊 +

𝟏

𝒌
𝒇(𝑶𝑷𝑻)

 3) 𝒇 𝑺𝒌 ≥ 𝟏 −
𝟏

𝒆
𝒇(𝑶𝑷𝑻)

A

B

 𝑓(𝐴 ∪ 𝐵) − 𝑓(𝐴) ≤ 𝑗=1
𝑘 [𝑓(𝐴 ∪ {𝑏𝑗}) − 𝑓(𝐴)]

 where: 𝐵 = {𝑏1, … , 𝑏𝑘} and 𝑓(⋅) is submodular

 Proof:

 Let 𝑩𝒊 = {𝒃𝟏, … 𝒃𝒊}, so we have 𝑩𝟏, 𝑩𝟐, … , 𝑩𝒌(= 𝑩)

 𝑓 𝐴 ∪ B − 𝑓 𝐴 = 𝑖=1
𝑘 𝑓 𝐴 ∪ 𝐵𝑖 − 𝑓 𝐴 ∪ 𝐵𝑖−1

 = 𝑖=1
𝑘 𝑓 𝐴 ∪ 𝐵𝑖−1 ∪ 𝑏𝑖 − 𝑓 𝐴 ∪ 𝐵𝑖−1

 ≤ 𝑖=1
𝑘 𝑓 𝐴 ∪ {𝑏𝑖} − 𝑓 𝐴

𝑓 𝐴 ∪ 𝐵1 − 𝑓 𝐴 ∪ 𝐵0
+ 𝑓 𝐴 ∪ 𝐵2 − 𝑓 𝐴 ∪ 𝐵1
+ 𝑓 𝐴 ∪ 𝐵3 − 𝑓 𝐴 ∪ 𝐵2 …
+ 𝑓 𝐴 ∪ 𝐵𝑘 − 𝑓(𝐴 ∪ 𝐵𝑘−1)

Work out the sum.

Everything but 1st and

last term cancel out:

By submodularity

since AX {b} A{b}

 𝑓 𝑂𝑃𝑇 ≤ 𝑓 𝑆𝑖 ∪ 𝑂𝑃𝑇

 = 𝑓 𝑆𝑖 ∪ 𝑂𝑃𝑇 − 𝑓 𝑆𝑖 + 𝑓 𝑆𝑖

 ≤ 𝑗=1
𝑘 𝑓 𝑆𝑖 ∪ {𝑡𝑗} − 𝑓 𝑆𝑖 + 𝑓(𝑆𝑖)

 ≤ 𝑗=1
𝑘 𝛿𝑖+1 + 𝑓 𝑆𝑖

 = 𝑓 𝑆𝑖 + 𝑘 𝛿𝑖+1

 Thus: 𝑓 𝑂𝑃𝑇 ≤ 𝑓 𝑆𝑖 + 𝑘 𝛿𝑖+1

 𝜹𝒊+𝟏 ≥
𝟏

𝒌
[𝒇 𝑶𝑷𝑻 − 𝒇(𝑺𝒊)]

(by monotonicity)

(by prev. slide)

OPT = { t1, … tk }

tj is j-th element of the

optimal solution.

Rather than choosing tj
let’s greedily choose the

best element qi, which

gives a gain of i+1.

So, 𝒇 𝑺𝒊 ∪ 𝒕𝒋 ≤ 𝜹𝒊+𝟏.

This is the “hill-climbing”

assumption.

Remember: 𝜹𝒊 = 𝒇(𝑺𝒊) − 𝒇(𝑺𝒊−𝟏)

 We just showed: 𝛿𝑖+1 ≥
1

𝑘
[𝑓 𝑂𝑃𝑇 − 𝑓(𝑆𝑖)]

 What is 𝒇(𝑺𝒊+𝟏)?

 𝑓 𝑆𝑖+1 = 𝑓 𝑆𝑖 + 𝛿𝑖+1

 ≥ 𝑓 𝑆𝑖 +
1

𝑘
𝑓 𝑂𝑃𝑇 − 𝑓 𝑆𝑖

 = 1 −
1

𝑘
𝑓 𝑆𝑖 +

1

𝑘
𝑓(𝑂𝑃𝑇)

 What is 𝒇(𝑺𝒌)?

 Claim:

Proof by induction:
 𝒊 = 𝟎:

 𝑓 𝑆0 = 𝑓({}) = 0

 1 − 1 −
1

𝑘

0
𝑓 𝑂𝑃𝑇 = 0

)(
1

11)(OPTf
k

Sf

i

i

 Given that this is true for Si:

Proof by induction:
 At 𝒊 + 𝟏:

 𝑓 𝑆𝑖+1 ≥ 1 −
1

𝑘
𝑓 𝑆𝑖 +

1

𝑘
𝑓 𝑂𝑃𝑇

 ≥ 1 −
1

𝑘
1 − 1 −

1

𝑘

𝑖
𝑓 𝑂𝑃𝑇 +

1

𝑘
𝑓 𝑂𝑃𝑇

 = 1 − 1 −
1

𝑘

𝑖+1
𝑓(𝑂𝑃𝑇)

)(
1

11)(OPTf
k

Sf

i

i

𝑓 𝑆𝑖+1 ≥ 1 −
1

𝑘
𝑓 𝑆𝑖 +

1

𝑘
𝑓(𝑂𝑃𝑇)

Two slides ago we showed:

the claim

 Thus:

𝒇 𝑺 = 𝒇 𝑺𝒌 ≥ 𝟏 − 𝟏 −
𝟏

𝒌

𝒌

𝒇 𝑶𝑷𝑻

 So:

𝒇 𝑺𝒌 ≥ 𝟏 −
𝟏

𝒆
𝒇(𝑶𝑷𝑻)

≤
𝟏

𝒆

qed.

We just proved:
 Hill climbing finds solution S which

f(S) (1-1/e)*f(OPT) i.e., f(S) 0.63*f(OPT)

 This is a data independent bound

 This is a worst case bound

 No matter what is the input data,
we know that the Hill-Climbing will never
do worse than 0.63*f(OPT)

 How to evaluate ƒ(S)?
 Still an open question of how to compute it

efficiently
 But: Very good estimates by simulation
 Repeating the diffusion process often enough

(polynomial in n; 1/ε)

 Achieve (1± ε)-approximation to f(S)

 Generalization of Nemhauser-Wolsey proof:
Greedy algorithm is now a (1-1/e- ε′)-
approximation

 A collaboration network: co-authorships in
papers of the arXiv high-energy physics theory:

 10,748 nodes, 53,000 edges

 Example cascade process: Spread of new scientific
terminology/method or new research area

 Independent Cascade Model:

 Case 1: Uniform probability p on each edge

 Case 2: Edge from v to w has probability
1/deg(w) of activating w.

 Simulate the process 10,000 times for each
targeted set

 Every time re-choosing edge outcomes randomly

 Compare with other 3 common heuristics

 Degree centrality: Pick nodes with highest degree

 Distance centrality: Pick nodes in the “center” of
the network

 Random nodes: Pick a random set of nodes

puv = 0.01 puv = 0.10

Uniform edge firing probability puv

f(
S

k
)

f(
S

k
)

k k

puv=1/deg(v)

Non-uniform edge firing probability puv

k

f(
S

k
)

 Notice: Greedy approach is slow!

 For a given network G, repeat 10,000s of times:

 Flip coin for each edge and determine influence sets under
coin-flip realization i

 Each node u is associated with 10,000s influence sets Xu
i

 Greedy’s complexity is 𝑶(𝒌 ⋅ 𝒏 ⋅ 𝑹 ⋅ 𝑴)

 𝑛 … number of nodes in G

 𝑘 … number of nodes be selected/influenced

 𝑅 … number of simulation rounds

 𝑚 … number of edges in G

 Many researchers have since proposed
heuristics that work well in practice and run
faster than the greedy algorithm

[Chen, Wang, Yang, KDD ‘09]

 More realistic marketing:

 Different marketing actions increase likelihood of
initial activation, for several nodes at once

 Study more general influence models

 Find trade-offs between generality and feasibility

 Deal with negative influences

 Model competing ideas

 Obtain more data (better models) about how
activations occur in real social networks

