Information Networks
Review of Key Concepts
The “Age of Networks”

Technological Social Biological
why should we care about networks?
Why Networks? Why Now?

- **Universal language for describing complex data**
 - Networks from science, nature, and technology are more similar than one would expect

- **Shared vocabulary between fields**
 - Computer Science, Social science, Physics, Economics, Statistics, Biology

- **Data availability (computational challenges)**
 - Web/mobile, bio, health, and medical

- **Impact!**
 - Social networking, Social media, Brain, Drug design
 - We will never understand these systems unless we understand the networks behind them!
how do we reason about networks?
How do we reason about networks?

- **Empirical**: Study network data to find organizational principles
- **Mathematical models**: Probabilistic, graph theory
- **Algorithms**: Methods for analyzing graphs
What do we study in networks?

- **Structure and evolution**
 - What is the structure of a network?
 - Why and how did it become to have such structure?

- **Processes and dynamics**
 - Networks provide “skeleton” for spreading of information, behavior, diseases
What Have We Covered?

- **basic graph theory**
 - graphs, networks
 - bow-tie structure
- **network measurements**
 - degree distributions, power-laws
 - shortest paths, clustering coefficient
- **network models**
 - Erdos-Renyi model
 - small-world model
 - configuration model
 - scale-free networks
- **models of evolving graphs**
 - preferrential attachment model
 - microscopic/macroscopic evolution of networks
 - forest-fire model
- **community structure in networks**
 - Strength of weak ties, structural holes
 - community detection, Girvan-Newman algorithm
 - graph partitioning, graph cuts, conductance
 - spectral graph theory, spectral graph clustering
- **overlapping communities in networks**
 - cliques, clique percolation method
 - community-affiliation graph model
- **link analysis**
 - web search
 - hubs and authorities (HITS)
 - PageRank, topic-sensitive PageRank
- **link prediction**
 - neighborhood-based methods
 - node proximity based methods, supervised learning models, Facebook's "PYMK", Twitter's "WtF"
- **cascading behavior in networks**
 - Granovetter’s model, threshold model
 - game theoretic model
 - epidemic model on trees
 - disease spreading models (SIR, SIS, SIRS)
 - independent cascade model
 - influence maximization
 - outbreak detection
- **Advanced Topics: ML with Graphs**
 - network representation learning
 - graph neural networks
 - reasoning over knowledge graphs
 - applications of ML with graphs
Small-World Phenomena

- **Properties:**
 - Six degrees of separation
 - Networks have small diameters
 - Edges in the networks cluster
 - Large clustering coefficient

- **Models:**
 - Erdös-Renyi model
 - Baseline model for networks
 - The Small-World model
 - Small diameter and clustered edges

- **Algorithms:**
 - Decentralized search in networks
 - Kleinberg’s model and algorithm

\[C_1 = \frac{1}{3} \]

\[P(u \rightarrow v) \sim d(u, v)^{-\alpha} \]
Scale-Free Networks

- **Properties:**
 - **Power-law degrees**
 - Degrees are heavily skewed
 - **Network resilience**
 - Networks are resilient to random attacks

- **Models:**
 - Preferential attachment
 - Rich get richer

- **Algorithms:**
 - Hubs and Authorities
 - Recursive: \(a_i = \sum_{j \rightarrow i} h_j, \quad h_i = \sum_{i \rightarrow j} a_j \)
 - PageRank
 - Recursive formulation, Random jumps
Community Detection

- **Properties:**
 - Strength of weak ties
 - Core-periphery structure

- **Models:**
 - Community-affinity model

- **Algorithms:**
 - Spectral Clustering
 - Girvan-Newman (Betweenness centrality)
 - **Modularity:** \#edges within group – E[\#edges within group]
 - Clique Percolation Method
 - Overlapping communities
Network Evolution

- **Properties:**
 - Densification Power Law
 - $E(t) \propto N(t)^a$
 - Shrinking Diameter

- **Models:**
 - Microscopic Network Evolution
 - Exponential life-times, Evolving sleeping times
 - Random-Random edge attachment

- **Algorithms:**
 - Link prediction
Network Diffusion (1)

- **Properties:**
 - Node-to-node influence
 - Node threshold
 - Cascade spread

- **Models:**
 - Game theoretic model:
 - Payoffs, Competing products
 - Independent Cascade Model
 - Each node infects a neighbor with some probability

![Diagram of network diffusion with node influences and thresholds]
Algorithms:

- **Influence Maximization**
 - Set of k nodes producing largest expected cascade size if activated
 - Submodularity
 - Greedy hill-climbing

- **Outbreak Detection**
Map of Superpowers

Properties
- Small diameter, Edge clustering
- Scale-free
- Strength of weak ties, Core-periphery
- Densification power law, Shrinking diameters
- Information virality, reproductive number

Models
- Small-world model, Erdös-Renyi model
- Preferential attachment, Copying model
- Community-affiliation Graph Model
- Microscopic model of evolving networks
- Independent cascade model, Game theoretic model, SIR

Algorithms
- Decentralized search
- PageRank, Hubs and authorities
- Community detection: Girvan-Newman, Modularity
- Link prediction, Supervised random walks
- Influence maximization, Outbreak detection, LIM
Applying Your Superpowers
Applying Your Superpowers

- Social media analytics
- Viral marketing
Applying Your Superpowers

- Predicting epidemics: Ebola
Interactions of human diseases

Drug design
What’s Next?
What’s Next?

- **Project presentation**
 - Tue, Dec 8th, in-class
 - 9 minutes + 2 min QA
 - See course website for more info

- **Project final report**
 - Sun, Dec 20th Midnight (11:59PM)
 - see course website for more info

- **Final exam**
 - Tue, Dec 22nd, 9am-12pm
 - Short answers
 - Online (EClass)
What Next? Seminars

- **EECS6xxx: Data Analytics and Visualization**
 - Winter 2021, Project course
 - Data mining, graph mining, data visualization

- **Conferences / Journals:**
 - **Conferences**
 - **KDD**: Conf. on Knowledge Discovery & Data Mining
 - **WWW**: ACM World Wide Web Conference
 - **WSDM**: ACM Web search and Data Mining
 - **ICDM**: IEEE International Conference on Data Mining
 - **ICWSM**: AAAI Int. Conf. on Web-blogs & Social Media
 - **Journals**
 - **Complex Networks**: Journal of Complex Networks
 - **TKDD**: ACM Transactions on Knowledge Discovery from Data
 - **TKDE**: IEEE Transactions on Knowledge and Data Engineering
In Closing...

You have worked a lot...

...and (hopefully) learned a lot!
thank you & happy holidays