Information Networks Review of Key Concepts

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides

The "Age of Networks"

Technological

Social

Biological

why should we care about networks?

Why Networks? Why Now?

Universal language for describing complex data

- Networks from science, nature, and technology are more similar than one would expect
- Shared vocabulary between fields
 - Computer Science, Social science, Physics, Economics, Statistics, Biology
- Data availability (/computational challenges)
 - Web/mobile, bio, health, and medical
- Impact!
 - Social networking, Social media, Brain, Drug design
 - We will never understand these systems unless we understand the networks behind them!

how do we reason about networks?

Reasoning About Networks

How do we reason about networks?

- Empirical: Study network data to find organizational principles
- Mathematical models: Probabilistic, graph theory
- Algorithms: Methods for analyzing graphs

Networks: Structure & Process

What do we study in networks?

- Structure and evolution
 - What is the structure of a network?
 - Why and how did it become to have such structure?

Processes and dynamics

 Networks provide "skeleton" for spreading of information, behavior, diseases

What Have We Covered?

basic graph theory

- graphs, networks
- bow-tie structure

network measurements

- degree distributions, power-laws
- shortest paths, clustering coefficient

network models

- Erdos-Renyi model
- small-world model
- configuration model
- scale-free networks

models of evolving graphs

- preferrential attachment model
- microscopic/macroscopic evolution of networks
- forest-fire model

community structure in networks

- Strength of weak ties, structural holes
- community detection, Girvan-Newman algorithm
- graph partitioning, graph cuts, conductance
- spectral graph theory, spectral graph clustering

overlapping communities in networks

- cliques, clique percolation method

link analysis

- web search
- hubs and authorities (HITS)
- PageRank, topic-sensitive PageRank

link prediction

- neighborhood-based methods
- node proximity based methods, supervised learning models, Facebook's "PYMK", Twitter's "WtF"

cascading behavior in networks

- Granovetter's model, threshold model
- game theoretic model
- epidemic model on trees
- disease spreading models (SIR, SIS, SIRS)
- independent cascade model
- influence maximization
- outbreak detection

Advanced Topics: Mobility + Epidemics

- mobility networks
- agent-based epidemic models
- modeling risk of infection due to mobility patterns
- network intervention strategies

community-affiliation graph model

How It All Fits Together

Map of Superpowers

Social media analytics

Viral marketing

Predicting epidemics: Ebola

Interactions of human diseases

Drug design

What's Next?

What's Next?

Project final report

Fri, Jun 14th Midnight (11:59PM)

- see course website for more info
- Project presentation
 - Thu, Jun 13th, in-class
 - 10 minutes + 3 min QA
 - See course website for more info

Final exam

- Wed, Jun 19th, 10:00-12:00
 - Short answers

What Next? Seminars

EECS6xxx: Data Analytics and Visualization

Data mining, graph mining, data visualization

Conferences / Journals:

Conferences

- KDD: Conf. on Knowledge Discovery & Data Mining
- **WWW**: ACM World Wide Web Conference
- WSDM: ACM Web search and Data Mining
- ICDM: IEEE International Conference on Data Mining
- ICWSM: AAAI Int. Conf. on Web-blogs & Social Media

Journals

- Complex Networks: Journal of Complex Networks
- **TKDD:** ACM Transactions on Knowledge Discovery from Data
- TKDE: IEEE Transactions on Knowledge and Data Engineering

You have worked a lot...

...and (hopefully) learned a lot!

thank you & happy holidays