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1. Introduction to Knowledge Graphs

2. Knowledge Graph completion

3. Path Queries

4. Conjunctive Queries

5. Query2Box: Reasoning with Box Embeddings
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¡ Knowledge in graph form
§ Capture entities, types, and relationships

¡ Nodes are entities
¡ Nodes are labeled with 
their types
¡ Edges between two nodes
capture relationships 
between entities
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¡ Node types: paper, title, author, conference, 
year 

¡ Relation types: pubWhere, pubYear, hasTitle, 
hasAuthor, cite
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¡ Node types: account, song, post, food, channel
¡ Relation types: friend, like, cook, watch, listen
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¡ Google Knowledge Graph 
¡ Amazon Product Graph
¡ Facebook Graph API 
¡ IBM Watson 
¡ Microsoft Satori 
¡ Project Hanover/Literome
¡ LinkedIn Knowledge Graph 
¡ Yandex Object Answer 
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¡ Serving information 
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¡ Question answering and conversation agents
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1. Introduction to Knowledge Graphs

2. Knowledge Graph completion

3. Path Queries

4. Conjunctive Queries

5. Query2Box: Reasoning with Box Embeddings
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¡ Publicly available KGs:
§ FreeBase, Wikidata, Dbpedia, YAGO, NELL, etc.

¡ Common characteristics:
§ Massive: millions of nodes and edges
§ Incomplete: many true edges are missing
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Given a massive KG, 
enumerating all the 

possible facts is 
intractable!

Can we predict plausible 
BUT missing links?



¡ Freebase
§ ~50 million entities
§ ~38K relation types
§ ~3 billion facts/triples

¡ FB15k/FB15k-237
§ A complete subset of Freebase, used by 

researchers to learn KG models
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93.8% of persons from Freebase 
have no place of birth and 78.5% 
have no nationality!

[1] Paulheim, Heiko. "Knowledge graph refinement: A survey of approaches and evaluation methods." Semantic web 8.3 (2017): 489-508.
[2] Min, Bonan, et al. "Distant supervision for relation extraction with an incomplete knowledge base." Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational 
Linguistics: Human Language Technologies. 2013.



¡ Given an enormous KG, can we complete the 
KG / predict missing relations?
§ links + type
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missing relation: genre



¡ Edges in KG are represented as triples (ℎ, 𝑟, 𝑡)
§ head (ℎ) has relation 𝑟 with tail (𝑡). 

¡ Key Idea: 
§ Model entities and relations in the 

embedding/vector space ℝ( . 
§ Given a true triple (ℎ, 𝑟, 𝑡), the goal is that the 

embedding of (ℎ, 𝑟) should be close to the 
embedding of 𝑡.
§ How to embed ℎ, 𝑟 ?
§ How to define closeness?

11/21/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14



¡ Symmetric Relations:
𝑟 ℎ, 𝑡 ⇒ 𝑟 𝑡, ℎ ∀ℎ, 𝑡

§ Example: Family, Roommate
¡ Composition Relations:

𝑟+ 𝑥, 𝑦 ∧ 𝑟/ 𝑦, 𝑧 ⇒ 𝑟1 𝑥, 𝑧 ∀𝑥, 𝑦, 𝑧
§ Example: My mother’s husband is my father.

¡ 1-to-N, N-to-1 relations:
𝑟 ℎ, 𝑡+ , 𝑟 ℎ, 𝑡/ , … , 𝑟(ℎ, 𝑡3) are all True.

§ Example: 𝑟 is “StudentsOf” 
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¡ Translation Intuition: 
For a triple (ℎ, 𝑟, 𝑡), 𝐡, 𝐫, 𝐭 ∈ ℝ(,

𝐡 + 𝐫 = 𝐭

Score function: 𝑓; ℎ, 𝑡 = ||ℎ + 𝑟 − 𝑡||
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𝐡 𝐭

𝐫 Obama
Nationality

American

Bordes, Antoine, et al. "Translating embeddings for modeling multi-relational data." Advances in neural information processing systems. 2013.

NOTATION: 
embedding 
vectors will 
appear in
boldface



¡ Translation Intuition: for a triple (ℎ, 𝑟, 𝑡), 
𝐡 + 𝐫 = 𝐭

Max margin loss:

ℒ = ?
(@,;,A)∈B,(@,;,AC)∉B

𝛾 + 𝑓;(ℎ, 𝑡) − 𝑓;(ℎ, 𝑡F) G

where 𝛾 is the margin, i.e., the smallest distance tolerated by the 
model between a valid triple and a corrupted one.
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Valid triple Corrupted triple

NOTE: check 
lecture 7 for a more 
in-depth discussion
of TransE!



¡ Who has won the Turing award?

¡ Who is a Canadian citizen?
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Win

Hinton
Bengio

Pearl

Turing
Award

Canada

Trudeau Bieber

𝐪

Answers!

Hinton
Bengio

Pearl

Turing
Award

Canada
Citizen

Trudeau Bieber

Answers!

𝐪



¡ Composition Relations:
𝑟+ 𝑥, 𝑦 ∧ 𝑟/ 𝑦, 𝑧 ⇒ 𝑟1 𝑥, 𝑧 ∀𝑥, 𝑦, 𝑧

¡ Example: My mother’s husband is my father.
¡ In TransE:

𝑟1 = 𝑟+ + 𝑟/ ü
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𝐱
𝐫+ 𝐫/

𝐫1

𝐲
𝐳



¡ Symmetric Relations:
𝑟 ℎ, 𝑡 ⇒ 𝑟 𝑡, ℎ ∀ℎ, 𝑡

¡ Example: Family, Roommate
¡ In TransE:

𝑟 = 0, ℎ = 𝑡 û
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𝐡 𝐭

𝐫

If we want TransE to handle symmetric 
relations 𝑟, for all ℎ, 𝑡 that satisfy 𝑟(ℎ, 𝑡), 
𝑟(𝑡, ℎ) is also True, which means ‖
‖

ℎ + 𝑟 −
𝑡 = 0 and 𝑡 + 𝑟 − ℎ = 0. Then 𝑟 = 0 and 
ℎ = 𝑡, however ℎ and 𝑡 are two different 
entities and should be mapped to different 
locations.



¡ 1-to-N, N-to-1, N-to-N relations.
¡ Example: (ℎ, 𝑟, 𝑡+) and (ℎ, 𝑟, 𝑡/) both exist in 

the knowledge graph, e.g., 𝑟 is “StudentsOf”

With TransE, 𝑡+ and 𝑡/ will map to the same 
vector, although they are different entities.

¡ 𝐭+ = 𝐡 + 𝐫 = 𝐭/
¡ 𝐭+ ≠ 𝐭/
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𝐡

𝐭+
𝐭/ 𝐫

𝐫contradictory!



¡ TransR: model entities as vectors in the entity 
space ℝ( and model each relation as vector 𝒓 in 
relation space ℝP with 𝐌; ∈ ℝP×( as the 
projection matrix.

¡ ℎS = 𝑀;ℎ, 𝑡S = 𝑀;𝑡
¡ 𝑓; ℎ, 𝑡 = ||ℎS + 𝑟 − 𝑡S||
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𝐡
𝐡S 𝐭S

𝐭

𝐫

Lin, Yankai, et al. "Learning entity and relation embeddings for knowledge graph completion." AAAI. 2015.



¡ Symmetric Relations:
𝑟 ℎ, 𝑡 ⇒ 𝑟 𝑡, ℎ ∀ℎ, 𝑡

¡ Example: Family, Roommate

𝑟 = 0, ℎS = 𝑀;ℎ = 𝑀;𝑡 = 𝑡Sü
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𝐡 𝐭S, ℎS

𝐭

𝑴;

For TransR, we can map ℎ and 𝑡 to the same 
location on the space of relation 𝑟. 



¡ 1-to-N, N-to-1, N-to-N relations
¡ Example: If (ℎ, 𝑟, 𝑡+) and (ℎ, 𝑟, 𝑡/) exist in the 

knowledge graph.

We can learn 𝑀; so that 𝑡S = 𝑀;𝑡+ = 𝑀;𝑡/, note 
that 𝑡+ does not need to be equal to 𝑡/!
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𝐡
𝐡S 𝐭S

𝐭+

𝐭/
𝐫



¡ Composition Relations:
𝑟+ 𝑥, 𝑦 ∧ 𝑟/ 𝑦, 𝑧 ⇒ 𝑟1 𝑥, 𝑧 ∀𝑥, 𝑦, 𝑧

¡ Example: My mother’s husband is my father.

Each relation has different space.
It is not naturally compositional for multiple 
relations! û
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Embedding Entity Relation 𝒇𝒓(𝒉, 𝒕)
TransE ℎ, 𝑡 ∈ ℝ( 𝑟 ∈ ℝ( ||ℎ + 𝑟 − 𝑡||
TransR ℎ, 𝑡 ∈ ℝ( 𝑟 ∈ ℝP,𝑀; ∈ ℝP×( ||𝑀;ℎ + 𝑟 −𝑀;𝑡||
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Embedding Symmetry Composition One-to-many

TransE û ü û

TransR ü û ü



1. Introduction to Knowledge Graphs

2. Knowledge Graph completion

3. Path Queries

4. Conjunctive Queries

5. Query2Box: Reasoning with Box Embeddings
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¡ Can we do multi-hop reasoning, i.e., answer 
complex queries efficiently on an incomplete, 
massive KG?
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Query  Types Examples

One-hop Queries Where did Hinton graduate?

Path Queries Where did Turing Award winners graduate?

Conjunctive Queries Where did Canadians with Turing Award graduate?

EPFO Queries Where did Canadians with Turing Award or Nobel graduate?



¡ We can formulate link prediction problems as 
answering one-hop queries.

¡ Link prediction: Is link (ℎ, 𝑟, 𝑡) True?

¡ One-hop query: Is 𝑡 an answer to query (ℎ, 𝑟)?
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¡ Generalize one-hop queries to path queries by 
adding more relations on the path.

¡ Path queries can be represented by
𝑞 = 𝑣\, 𝑟+, … , 𝑟3

𝑣\ is a constant node, answers are denoted by 𝑞 .

Computation graph of 𝑞:

Computation graph of path queries is a chain.
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𝑉?𝑣\

𝑟+ 𝑟/ 𝑟3…



“Where did Turing Award winners graduate?”
¡ 𝑣\ is “Turing Award”.
¡ 𝑟+, 𝑟/ is (“win”, “graduate”).

Given a KG, how to answer the query?
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Win Graduate

𝑉 𝑉?
Turing 
Award



¡ Answer path queries by traversing the KG.
“Where did Turing Award winners graduate?”
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Turing 
Award

The anchor node is Turing Award.



¡ Answer path queries by traversing the KG.
“Where did Turing Award winners graduate?”
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Turing 
Award

Win

Pearl

Hinton

Bengio

Start from the anchor node “Turing Award” 
and traverse the KG by the relation “Win”, 
we reach entities {“Pearl”, “Hinton”, 
“Bengio”}.



¡ Answer path queries by traversing the KG.
“Where did Turing Award winners graduate?”
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Turing 
Award

Win

Pearl

Graduate EdinburghHinton

McGill

Bengio

Cambridge

NYU

Answers!
Start from nodes {“Pearl”, “Hinton”, “Bengio”} 
and traverse the KG by the relation 
“Graduate”, we reach entities {“NYU”, 
“Edinburgh”, “Cambridge”, “McGill”}. These are 
the answers to the query!



¡ Answer path queries by traversing the KG.
“Where did Turing Award winners graduate?”

What if KG is incomplete?
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Turing 
Award

Win

Pearl

Graduate EdinburghHinton

McGill

Bengio

Cambridge

NYU

Answers!



¡ Can we first do link prediction and then 
traverse the completed (probabilistic) KG?

¡ No! The completed KG is a dense graph!
¡ Time complexity of traversing a dense KG with 
𝑉 entities to answer (𝑣\, 𝑟+, … , 𝑟3) of length 
𝑛 is 𝒪 𝑉 3 .
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𝑟/

𝑣\

𝑟+
𝑣+

𝑣/

𝑣|b|

…

𝑣/

𝑣|b|

…

𝑣+

…

…



¡ Key idea: embed queries!
§ Generalize TransE to multi-hop reasoning. 

Given a path query 𝑞 = 𝑣\, 𝑟+, … , 𝑟3 ,

𝐪 = 𝐯\ + 𝐫+ + ⋯+ 𝐫3
¡ Is 𝑣 an answer to 𝑞? 
§ Do a nearest neighbor search for all 𝑣 based on 
𝑓e 𝑣 = ||𝐪 − 𝐯||, time complexity is 𝒪(𝑉).
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𝐯𝒂
𝐪

𝐫+ 𝐫/
𝐫3…

Guu, Kelvin, John Miller, and Percy Liang. "Traversing knowledge graphs in vector space." arXiv preprint arXiv:1506.01094 (2015).
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