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▪ So far we have focused on “shallow” 

encoders, i.e. embedding lookups:

Dimension/size 

of embeddings

one column per node 

embedding 

matrix

embedding vector for a 

specific node
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▪ Limitations of shallow encoding:
▪ O(|V|) parameters are needed: there no 

parameter sharing and every node has its 
own unique embedding vector.  

▪ Inherently “transductive”: It is impossible 
to generate embeddings for nodes that 
were not seen during training.

▪ Do not incorporate node features: Many 
graphs have features that we can and 
should leverage.
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▪ We will now discuss “deeper” methods 

based on graph neural networks.

▪ In general, all of these more complex 

encoders can be combined with the 

similarity functions from the previous 

section.

complex function that 

depends on graph structure.



Outline for this Section
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▪ We will now discuss “deeper” methods 

based on graph neural networks.

1. The Basics

2. Graph Convolutional Networks (GCNs)

3. GraphSAGE
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The Basics: Graph Neural 

Networks
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Based on material from:
• Hamilton et al. 2017. Representation Learning on Graphs: Methods 

and Applications. IEEE Data Engineering Bulletin on Graph Systems.

• Scarselli et al. 2005. The Graph Neural Network Model. IEEE 

Transactions on Neural Networks. 

https://arxiv.org/abs/1709.05584
http://ieeexplore.ieee.org/document/4700287/
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▪ Assume we have a graph G:

▪ V is the vertex set.

▪ A is the adjacency matrix (assume binary).

▪ X ∈ R𝒎×|𝑽| is a matrix of node features.

▪ Categorical attributes, text, image data

– E.g., profile information in a social network.

▪ Node degrees, clustering coefficients, etc.

▪ Indicator vectors (i.e., one-hot encoding of 

each node)
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▪ Key idea: Generate node embeddings

based on local neighborhoods. 
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▪ Intuition: Nodes aggregate information 

from their neighbors using neural networks
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▪ Intuition: Network neighborhood defines a 

computation graph

Every node defines a unique 

computation graph!
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▪ Nodes have embeddings at each layer.

▪ Model can be arbitrary depth.

▪ “layer-0” embedding of node u is its input feature, i.e. xu.

Layer-2

Layer-1

Layer-0
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▪ Neighborhood aggregation can be 

viewed as a center-surround filter.

▪ Mathematically related to spectral graph 

convolutions (see Bronstein et al., 2017)

https://arxiv.org/abs/1611.08097
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???

?

?

?

what’s in the box!?

▪ Key distinctions are in how different 

approaches aggregate information across 

the layers.
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▪ Basic approach: Average neighbor information 

and apply a neural network.

1) average messages 

from neighbors 

2) apply neural network



average of neighbor’s 

previous layer embeddings

The Math
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▪ Basic approach: Average neighbor messages 

and apply a neural network.

Initial “layer 0” embeddings are 

equal to node features

kth layer 

embedding 

of v
non-linearity (e.g., 

ReLU or tanh)

previous layer 

embedding of v
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Need to define a loss function on 
the embeddings, L(zu)!

▪ How do we train the model to generate “high-

quality” embeddings?
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▪ After K-layers of neighborhood aggregation, 
we get output embeddings for each node.

▪ We can feed these embeddings into any loss 
function and run stochastic gradient descent 
to train the aggregation parameters. 

trainable matrices 

(i.e., what we learn) 
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▪ Train in an unsupervised manner using only the 

graph structure.

▪ Unsupervised loss function can be anything 

from the last section, e.g., based on

▪ Random walks (node2vec, DeepWalk)

▪ Graph factorization

▪ i.e., train the model so that “similar” nodes have 

similar embeddings.
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▪ Alternative: Directly train the model for a 

supervised task (e.g., node classification):

Human or 

bot?

Human or 

bot?

e.g., an online social 

network 
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▪ Alternative: Directly train the model for a 

supervised task (e.g., node classification):

output node 

embedding

classification 

weights

node class label

Human or 

bot?
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1) Define a neighborhood 

aggregation function.

2) Define a loss function on the 
embeddings, L(zu)
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3) Train on a set of nodes, i.e., a 
batch of compute graphs



Overview of Model
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4) Generate embeddings for nodes 
as needed

Even for nodes we never 
trained on!!!!
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▪ The same aggregation parameters are 
shared for all nodes.

▪ The number of model parameters is 
sublinear in |V| and we can generalize to 
unseen nodes!



Inductive Capability
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Inductive node embedding          generalize to entirely unseen graphs

e.g., train on protein interaction graph from model organism A and 

generate embeddings on newly collected data about organism B

train on one graph generalize to new graph

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018
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train with snapshot new node arrives
generate embedding 

for new node

Many application settings constantly encounter previously unseen nodes.

e.g., Reddit, YouTube, GoogleScholar, ….

Need to generate new embeddings “on the fly”

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018
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▪ Recap: Generate node embeddings by 

aggregating neighborhood information.

▪ Allows for parameter sharing in the encoder.

▪ Allows for inductive learning.

▪ We saw a basic variant of this idea…

now we will cover some state of the art 

variants from the literature. 



Neighborhood Aggregation
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???

?

?

?

What else can we put in 

the box?

▪ Key distinctions are in how different 

approaches aggregate messages
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Graph Convolutional 

Networks

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Based on material from:
• Kipf et al., 2017. Semisupervised Classification with Graph Convolutional 

Networks. ICLR.

https://arxiv.org/abs/1609.02907


Graph Convolutional Networks
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▪ Kipf et al.’s Graph Convolutional 

Networks (GCNs) are a slight variation 

on the neighborhood aggregation idea:

https://arxiv.org/abs/1609.02907


Graph Convolutional Networks
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same matrix for self and 

neighbor embeddings
per-neighbor normalization

Basic Neighborhood Aggregation

GCN Neighborhood Aggregation

VS.
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▪ Empirically, they found this configuration to 
give the best results. 
▪ More parameter sharing.

▪ Down-weights high degree neighbors.

use the same transformation 

matrix for self and neighbor 

embeddings

instead of simple average, 

normalization varies across 

neighbors
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1. The Basics

2. Graph Convolutional Networks

3. GraphSAGE
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GraphSAGE

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Based on material from:
• Hamilton et al., 2017. Inductive Representation Learning on Large Graphs. 

NIPS.

https://arxiv.org/abs/1706.02216
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???

?

?

?

▪ So far we have aggregated the neighbor 
messages by taking their (weighted) 
average, can we do better?
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Any differentiable function 

that maps set of vectors to a 

single vector.



▪ Simple neighborhood aggregation:

▪ GraphSAGE:

GraphSAGE Differences
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generalized aggregation

concatenate self embedding and 

neighbor embedding 



GraphSAGE Variants
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▪ Mean:

▪ Pool

▪ Transform neighbor vectors and apply symmetric 

vector function.

▪ LSTM:

▪ Apply LSTM to random permutation of neighbors.

element-wise mean/max



Summary so far
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▪ Graph convolutional networks

▪ Average neighborhood information and 

stack neural networks.

▪ GraphSAGE

▪ Generalized neighborhood aggregation.



This Talk

▪ 1) Node embeddings
▪ Map nodes to low-dimensional 

embeddings.

▪ 2) Graph neural networks
▪ Deep learning architectures for graph-

structured data

▪ 3) Applications
Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 40
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Application

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018
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Decagon: 
A Graph Convolutional 

Approach to 

Polypharmacy Side Effects

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Based on material from:
• Zitnik et al. 2018. Modeling polypharmacy side effects with graph 

convolutional networks. Bioinformatics & ISMB.

https://arxiv.org/abs/1802.00543
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Patient’s side effectsIndividual medications

Polypharmacy side effectDrug combination

Goal: Predict side effects of taking multiple drugs.

No side effect

No side effect
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s

▪ Polypharmacy is common to treat complex 
diseases and co-existing conditions

▪ High risk of side effects due to interactions

▪ 15% of the U.S. population affected

▪ Annual costs exceed $177 billion

▪ Difficult to identify manually:
▪ Rare, occur only in a subset of patients 

▪ Not observed in clinical testing



Modeling Polypharmacy
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▪ Systematic experimental screening of 
drug interactions is challenging

▪ Idea: Computationally screen/predict 
polypharmacy side effects
▪ Use molecular, pharmacological and patient 

population data

▪ Guide strategies for combination treatments 
in patients



Data: Heterogeneous Graphs
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Drugs

Genes



Task Description
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▪ Predict labeled edges between drugs

▪ i.e., predict the likelihood that an edge 

(𝑐, 𝑟2, 𝑠) exists

▪ Meaning: Drug combination (𝑐, 𝑠)
leads to polypharmacy side effect 𝑟2



Neural Architecture: Encoder
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▪ Input: graph, additional node 

features

▪ Output: node embeddings



Making Edge Predictions
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▪ Input: Query drug pairs 

and their embeddings

▪ Output: predicted edges 



Experimental Setup
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▪ Data:
▪ Molecular: protein-protein interactions and drug 

target relationships

▪ Patient data: Side effects of individual drugs, 
polypharmacy side effects of drug combinations

▪ Setup: 
▪ Construct a heterogeneous graph of all the data

▪ Train: Fit a model to predict known associations of 
drug pairs and polypharmacy side effects

▪ Test: Given a query drug pair, predict candidate 
polypharmacy side effects



Prediction Performance
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▪ Up to 54% improvement over baselines

▪ First opportunity to computationally flag 

polypharmacy side effects for follow-up analyses

AUROC AUPRC AP@50

Decagon (3-layer) 0.834 0.776 0.731

Decagon (2-layer) 0.809 0.762 0.713

RESCAL 0.693 0.613 0.476

Node2vec 0.725 0.708 0.643

Drug features 0.736 0.722 0.679


