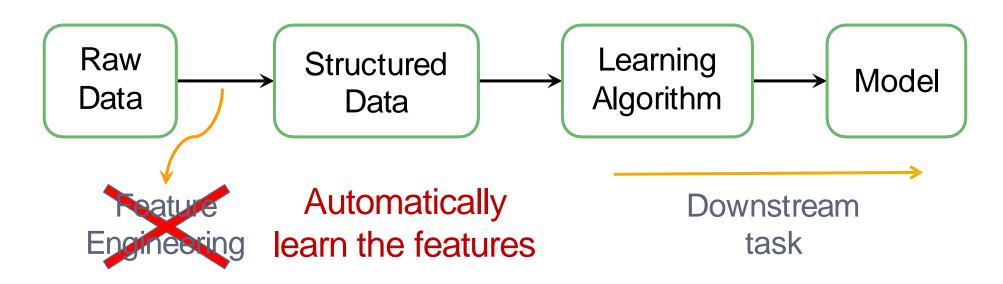
Graph Representation Learning

Deeksha Chandola

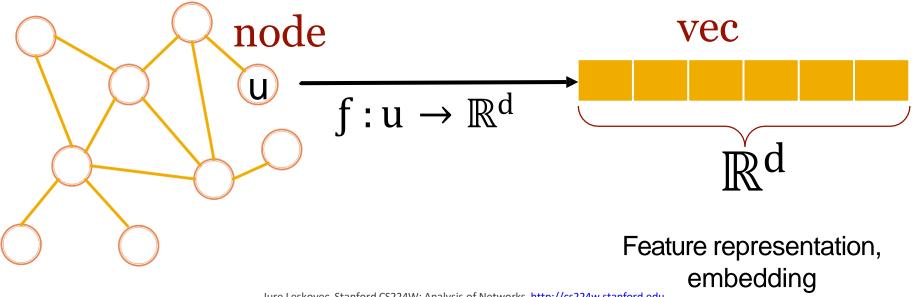
Machine Learning Lifecycle

(Supervised) Machine Learning Lifecycle requires feature engineering every single time!



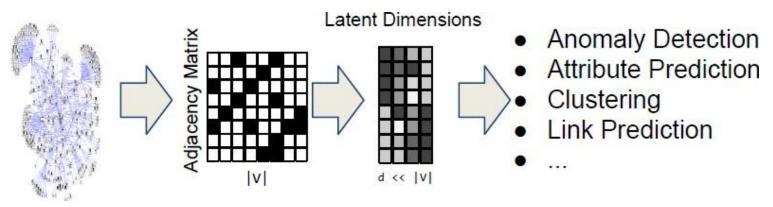
Feature Learning in Graphs

Goal: Efficient task-independent feature learning for machine learning in networks!



Why network embedding?

- Task: We map each node in a network into a low-dimensional space
 - Distributed representation for nodes
 - Similarity of embedding between nodes indicates their network similarity
 - Encode network information and generate node representation



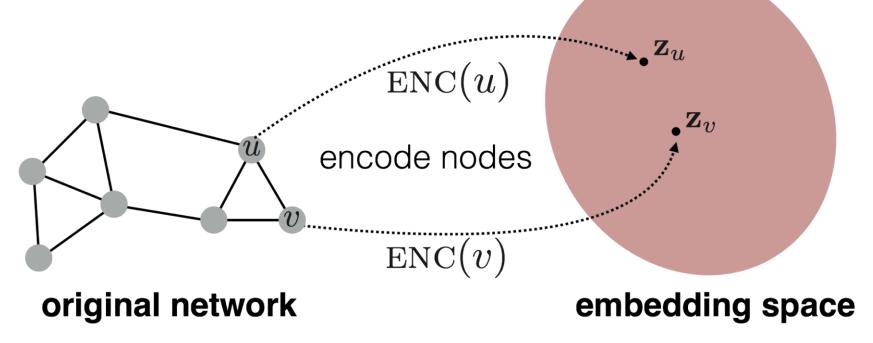
Node Embeddings

Assume we have a graph G:

- V is the vertex set.
- A is the adjacency matrix (assume binary).
- No node features or extra information is used!

Embedding Nodes

 Goal is to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the original network



Two Key Components

- Encoder maps each node to a low-dimensional
 - vector

d-dimensional ENC(v) = $\mathbf{Z}\mathbf{v}$ embedding

node in the input graph

 Similarity function specifies how relationships in vector space map to relationships in the original network

 $\begin{array}{c} \text{similarity}(u,v) \approx \mathbf{z}_v^\top \mathbf{z}_u \\ \text{Similarity of } u \text{ and } v \text{ in} \\ \text{the original network} \end{array} \quad \begin{array}{c} \text{dot product between node} \\ \text{embeddings} \end{array}$

Learning Node Embeddings

- 1. **Define an encoder** (i.e., a mapping from nodes to embeddings)
- 2. Define a node similarity function (i.e., a measure of similarity in the original network).
- 3. Optimize the parameters of the encoder so that:

similarity $(u, v) \approx \mathbf{z}_n^\top \mathbf{z}_u$

in the original network

Similarity of the embedding

"Shallow" Encoding

 Simplest encoding approach: encoder is just an embedding-lookup

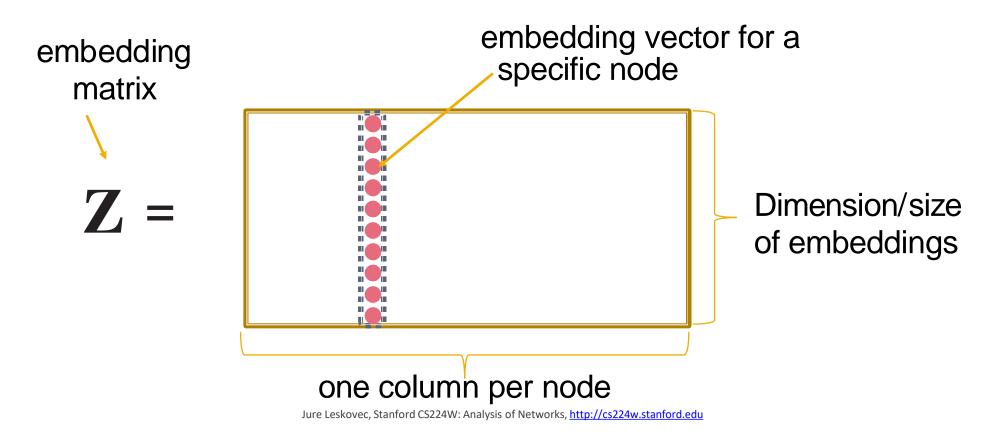
$$ENC(v) = \mathbf{Z}v$$

 $\mathbf{Z} \in \mathbb{R}^{d imes |\mathcal{V}|}$ merical of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ in the set of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ is a set of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ is a set of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ is a set of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ is a set of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ is a set of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ is a set of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ is a set of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ is a set of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ is a set of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ is a set of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ is a set of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ is a set of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ is a set of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ is a set of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ is a set of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ is a set of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ is a set of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ is a set of (\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}) of $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ is a set of (\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}) of (\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}) is a set of (\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}) of (\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}) is a set of (\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}) of (\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}) is a set of (\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}) of (\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}) is a set of (\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}) of (\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}) of (\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}) is a set of (\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}) of (\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}) is a set of (\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}) of (\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}) is a set of (\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}) of (\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}) is a set of (\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}) of (\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}) is a set of (\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}) of (\mathbf{

matrix, each column is node embedding [what we learn!] indicator vector, all zeroes except a one in column indicating node *v*

"Shallow" Encoding

- Simplest encoding approach: encoder is just an embedding-lookup
 - Each node is assigned a unique embedding vector

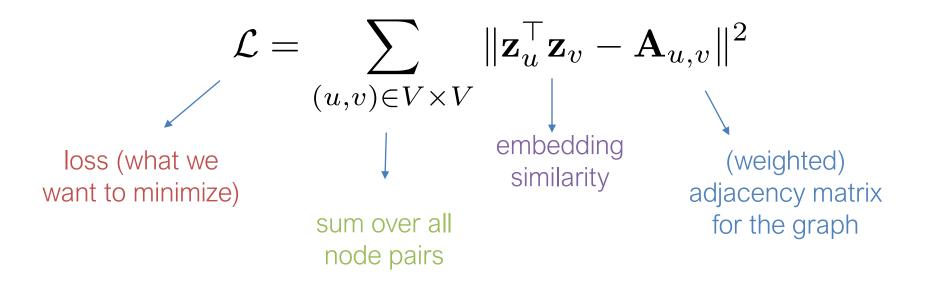


How to Define Node Similarity?

- Key choice of methods is how they define node similarity.
- E.g., should two nodes have similar embeddings if they....
 - are connected?
 - share neighbors?
 - have similar "structural roles"?
 - ...?

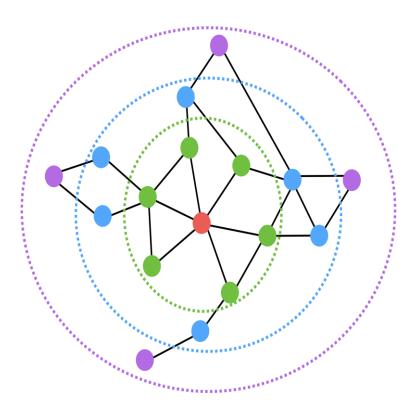
Adjacency-based Similarity

- Similarity function is just the edge weight between *u* and *v* in the original network.
- Intuition: Dot products between node embeddings approximate edge existence.



Multi-hop Similarity

- Idea: Consider k-hop node neighbors.
 - E.g. one, two or three-hop neighbors.



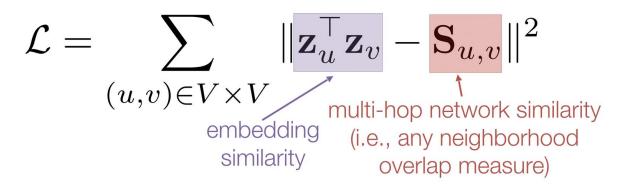
- Red: Target node
- Green: 1-hop neighbors
 - A (i.e., adjacency matrix)
- Blue: 2-hop neighbors
 - A²
- Purple: 3-hop neighbors
 - A³

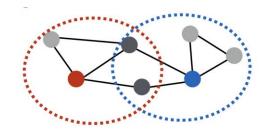
Multi-hop Similarity

Train embeddings for different adjacency matrices.

$$\mathcal{L} = \sum_{(u,v)\in V\times V} \|\mathbf{z}_u^{\top}\mathbf{z}_v - \mathbf{A}_{u,v}^k\|^2$$

... concatenate.





- Jacard
- Adamic-Adar
- •••

Discussion So far

Basic idea so far:

- 1) Define pairwise node similarities.
- 2) Optimize low-dimensional embeddings to approximate these pairwise similarities.

Issues:

- **Expensive:** Generally $O(|V|^2)$, since we need to iterate over all pairs of nodes.
- **Brittle**: Must hand-design deterministic node similarity measures. Only considers direct, local connections.

Random Walk Approaches:

- **Expressivity:** incorporates both local and higher-order neighborhood information
- Efficiency: Do not need to consider all node pairs when training; only
- need to consider pairs that co-occur on random walks

Random-walk Embeddings

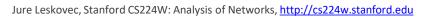
 $\mathbf{z}_u^{+}\mathbf{z}_v pprox$

probability that *u* and *v* co-occur on a random walk over the network

Random-walk Embeddings

1. Estimate probability of visiting node v on a random walk starting from node u using some random walk strategy R.

2. Optimize embeddings to encode these random walk statistics. $z_i \nearrow$



 $P_R(v|u)$

 $\propto P_R(v|u)$

 θ

 \mathbf{Z}_{j}

How should we randomly walk?

What strategies should we use to run these random walks?

DeepWalk [1]

Node2Vec [2]

Reference:

[1] Perozzi et al. 2014. <u>DeepWalk: Online Learning of Social Representations</u>. *KDD.*[2] Grover et al. 2016. <u>node2vec: Scalable Feature Learning for Networks</u>. *KDD.*

Unsupervised Feature Learning

Intuition: Find embedding of nodes to d-dimensions that preserves similarity

- Idea: Learn node embedding such that nearby nodes are close together in the network
- Given a node u, how do we define nearby nodes?
 - n_R (u...) neighborhood of u obtained by some strategy R

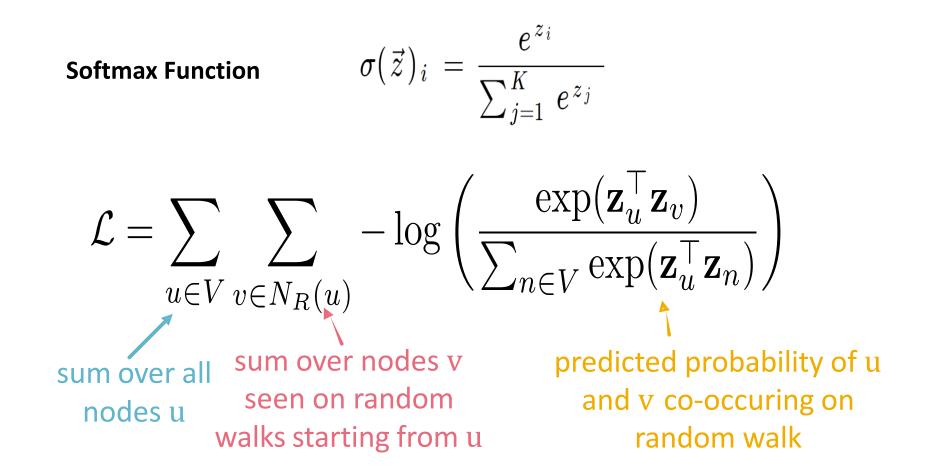
DEEP WALK

- 1. Run **short fixed-length random walks** starting from each node on the graph using some strategy *R*
- 2. For each node u collect $N_R(u)$, the multiset^{*} of nodes visited on random walks starting from u.
- 3. Optimize embeddings to according to: Given node u, predict its neighbors $n_R(u)$

$$\mathcal{L} = \sum_{\boldsymbol{\sigma}} \sum_{\boldsymbol{\sigma}} \sum_{\boldsymbol{\sigma}} -\log(P(v|\mathbf{z}_u))$$

 $u \in V$ $v \in N_R(u)$ * $N_R(u)$ can have repeat elements since nodes can be visited multiple times on random walks.

Random Walk Optimization



Optimizing random walk embeddings = Finding embeddings z_u that minimize **L**

Overview of node2vec

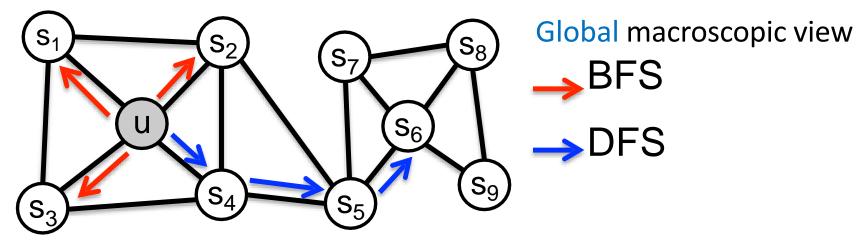
- Goal: Embed nodes with similar network neighborhoods close in the feature space
- We frame this goal as prediction-task independent maximum likelihood optimization problem
- Key observation: Flexible notion of network neighborhood N_R(u) of node u leads to rich node embeddings
- Develop biased 2^{nd} order random walk & to generate network neighborhood $N_R(u)$ of node u

node2vec: Biased Walks

Two classic strategies to define a neighborhood

 $N_R(u)$ of a given node u:

Local microscopic view

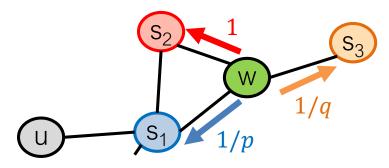


Interpolating BFS and DFS

- 1. Return parameter *p*:
- 2. In-out parameter *q*:
- Return back to the previous node Moving outwards (DFS) vs. inwards(BFS)

Biased Random Walks

- Walker is at w.
- Where to go next?

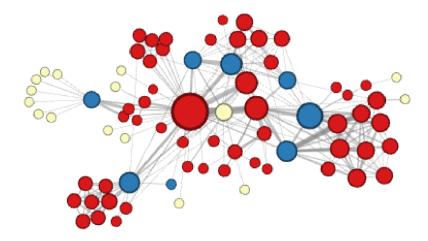


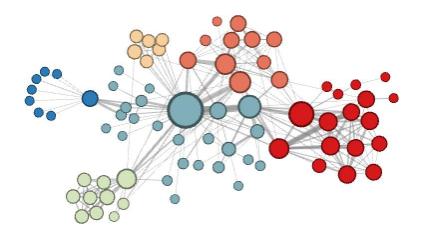
1/p, 1/q, 1 are unnormalized probabilities

- p,q model transition probabilities
 - p... return parameter
 - **q** ... "walk away" parameter

Experiments: Micro vs. Macro

Interactions of characters in a novel:





p=1, q=2 Microscopic view of the network neighbourhood

p=1, q=0.5 Macroscopic view of the network neighbourhood

Summary

- Feature learning in networks as a search based optimization problem
- **DeepWalk** proposes search using uniform random walks
- It gives us no control over the explored neighborhoods
- **node2vec** search strategy is both flexible and controllable exploring network neighborhoods through parameters p and q
- **node2vec** is scalable and robust to perturbations.
- *node2vec* can learn representations that organize nodes based on their **network roles** (structural equivalence) and **communities** (homophily) they belong to.

How to Use Embeddings

- $\hfill \ensuremath{\mathsf{-}}$ How to use embeddings z_i of nodes:
 - Clustering/community detection: Cluster points z_i
 - Node classification: Predict label f(z_i) of node i based on z_i
 - Link prediction: Predict edge ((i, j) based on $f(z_i, z_j)$
 - Vector operators: concatenate, avg, product, or take a difference between the embeddings:
 - Concatenate: $f(z_i, z_j) = g([z_i, z_j])$
 - Hadamard: $f(z_i, z_j) = g(z_i * z_j)$ (per coordinate product)
 - Sum/Avg: $f(z_i, z_j) = g(z_i + z_j)$
 - Distance: $f(z_i, z_j) = g(||z_i z_j||_2)$