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Machine Learning Lifecycle

(Supervised) Machine Learning Lifecycle
requires feature engineering every
single time!

Raw Structured Learning
Data Data Algorithm

Automatically Downstream
Engs g learn the features task

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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Feature Learning in Graphs

Goal: Efficient task-independent feature learning
for machine learning
in networks!

node vec

u >
fiu>RI Y

e
R4
Feature representation,
embedding

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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Why network embedding?

Task: We map each node in a network into a

low-dimensional space

Distributed representation for nodes

Similarity of embedding between nodes indicates

their network similarity

Encode network information and generate node

representation

Latent Dimensions

B

Adjacency Matrix

v

B

e Anomaly Detection
e Attribute Prediction
e Clustering

e Link Prediction
@ ...

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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Node

Embeddings




Setup

Assume we have a graph G:
V is the vertex set.
A is the adjacency matrix (assume binary).

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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Embedding Nodes

Goal is to encode nodes so that similarity in
the embedding space (e.g., dot product)
approximates similarity in the original

network
............................................... o Zu
............... ENC(u)
o Zv

/ \\u encode nodes !
\ /\ .......... .
\/ T

ENC(v)
original network embedding space

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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Two Key Components

Encoder maps each node to a low-dimensional

vector d-dimensional
ENC(V)= Zv  embedding
node In thé input
graph
specifies how relationships

in vector space map to relationships in the

original network

similarity(u,v) ~ sz'{u

Similarity of and v
imilarity of zand vin dot product between node
the original network embeddings

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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Learning Node Embeddings

Define an encoder (i.e., a mapping from
nodes to embeddings)
Define a node similarity function (i.e., a

measure of similarity in the original

network).
Optimize the parameters of the encoder so

that:

similarity (v, v) ~ z, z.

in the original network Similarity of the embedding

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu



http://cs224w.stanford.edu/

“Shallow” Encoding

Simplest encoding approach: encoder is just
an embedding-lookup

ENC(V) = Zv

7 Rdx 4 matrix, each column is node
embedding [what we learn!]

V) Indicator vector, all zeroes
vel except a one in column
iIndicating node v

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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“Shallow” Encoding

Simplest encoding approach: encoder is
just an embedding-lookup

Each node is assighed a unique embedding

vector
embedding embedding vector for a
- specific node
matrix

Dimension/size
of embeddings

/ =

one column per node

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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How to Define Node Similarity?

Key choice of methods is

E.g., should two nodes have similar
embeddings if they....

are connected?

share neighbors?

have similar “structural roles”?
2

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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Adjacency-based Similarity

* Similarity function is just the edge weight
between u and v in the original network.

* Intuition: Dot products between node
embeddings approximate edge existence.

L= ) lzgze— Ay’

/ (u,v)EV XV l \

embedding

loss (what we l similarity

(weighted)
want to minimize)

adjacency matrix
for the graph

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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Multi-hop Similarity

= |dea: Consider k-hop node neighbors.
= E.g. one, two or three-hop neighbors.

* Red: Target node

A.
\\ : 1-hop neighbors
N /\> o\ . Ag.i., adjaFehnbcy matrix)
: 2-hop neighbors
AN ,/\> & /_\// . AZ P g
/ : 3-hop neighbors
// ° A3
-~

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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Multi-hop Similarity

Train embeddings for different adjacency matrices.

L= ) 2.2, — AL,
(u,v)eV XV

... cOncatenate.

L= Y gz - Sull’

A

: \
(u,'v) eV x V/multi—hop network similarity

embedding  (j.e.. any neighborhood
similarity overlap measure)

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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Discussion So far .....

Basic idea so far:
1) Define pairwise node similarities.
2) Optimize low-dimensional embeddings to approximate these
pairwise similarities.

Issues:
Expensive: Generally O(|V|?), since we need to iterate over all pairs
of nodes.
Brittle: Must hand-design deterministic node similarity measures.
Only considers direct, local connections.

Random Walk Approaches:

Expressivity: incorporates both local and higher-order neighborhood
information

Efficiency: Do not need to consider all node pairs when training; only

need to consider pairs that co-occur on random walks



Random-walk Embeddings

T probability that u

o Ly ~  and v co-occur
on a random walk
over the network

Z
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Random-walk Embeddings

1. Estimate probability of visiting node von a
random walk starting from node u using some
random walk strategy R.

2. Optimize embeddings to encode these
random walk statistics.
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How should we randomly walk?

= What strategies should we use to run these
random walks?

=" DeepWalk [1]
= Node2Vec [2]

Reference:
[1] Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations. KDD.
2] Grover et al. 2016. node2vec: Scalable Feature Learning for Networks. KDD.

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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https://arxiv.org/pdf/1403.6652.pdf
https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf

Unsupervised Feature Learning

Intuition: Find embedding of nodes to
d-dimensions that preserves similarity

ldea: Learn node embedding such that nearby
nodes are close together in the network

Given a node u, how do we define nearby

nodes?

ng (u...) neighborhood of u obtained by some
strategy R

re Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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DEEP WALK

Run short fixed-length random walks
starting from each node on the graph using

some strategy R

For each node u collect N ,(u), the multiset”
of nodes visited on random walks starting
from wu.

Optimize embeddings to according to: Given

node u, predict its neighbors nR(u)

L = Z Z log ‘Zu))

ueV ’UENR(U)
* N (u) can have repeat elements since nodes can be visited multiple times on
random walks.

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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Random Walk Optimization

Softmax Function U(Z)z - LK |
Yo €7
T
eXp<ZuZU)
=), Z o)
EXPD\Z,, Z
u€V veENR(u ”EV Pu

Optimizing random walk embeddings = Finding

embeddings z, that minimize L



Overview of node2vec

Goal: Embed nodes with similar network
neighborhoods close in the feature space

We frame this goal as prediction-task independent
maximum likelihood optimization problem

Key observation: Flexible notion of network

neighborhood Ngr(u) of node u leads to rich node
embeddings

Develop biased 2" order random walk &to
generate network neighborhood Ng(u) of node u

ure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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node2vec: Biased Walks

Two classic strategies to define a neighborhood

Ngr (u) of a given node u: Local microscopic view

Global macroscopic view

_BFS

Interpolating BFS and DFS

1. Return parameter p:  Return back to the previous node
2. In-out parameter gq: Moving outwards (DFS) vs. inwards(BFS)

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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Biased Random Walks

Walker is at w.
Where to go next?

1/p 1/q, 1 are
unnormalized
probabilities

S3

p,q model transition probabilities

p... return parameter
g ... "walk away” parameter

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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Experiments: M

Icro vs. Macro

Interactions of characte
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Microscopic view of the
network neighbourhood
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Macroscopic view of the
network neighbourhood
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Summary

 Feature learning in networks as a search based optimization problem

« DeepWalk proposes search using uniform random walks
* |t gives us no control over the explored neighborhoods

* node2vec search strategy is both flexible and controllable exploring
network neighborhoods through parameters p and g

« node2vec is scalable and robust to perturbations.
* node2vec can learn representations that organize nodes based on their

network roles (structural equivalence) and communities (homophily)
they belong to.



How to Use Embeddings

How to use embeddings z; of nodes:

Clustering/community detection: Cluster points z;

Node classification: Predict label f(z;) of node i
based on z;

Link prediction: Predict edge ((i,j) based on f(z;, 2)
Vector operators: concatenate, avg, product, or
take a difference between the embeddings:
Concatenate: f (z;, )= g ([z; z])
Hadamard: f (z;7)= g (zi* z) (per coordinate product)
Sum/Avg: f (zi, z)= g (Zit+ 2)
Distance: f (zj, )= g (||zi— 7l]2)

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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