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Feature 
Engineering

Automatically 

learn the features

◾(Supervised) Machine Learning Lifecycle 
requires feature engineering every 
single time!
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Goal: Efficient task-independent feature learning 
for machine learning

in networks!
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◾Task: We map each node in a network into a 
low-dimensional space

▪ Distributed representation for nodes

▪ Similarity of embedding between nodes indicates 
their network similarity

▪ Encode network information and generate node 
representation
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Node 

Embeddings



◾Assume we have a graph G:

▪ V is the vertex set.

▪A is the adjacency matrix (assume binary).

▪ No node features or extra information is used!
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◾Goal is to encode nodes so that similarity in 
the embedding space (e.g., dot product) 
approximates similarity in the original 
network
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◾Encoder maps each node to a low-dimensional
vector

◾Similarity function specifies how relationships 
in vector space map to relationships in the 
original network

ENC(v) = Zv

node in the input

graph

d-dimensional  

embedding
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Similarity of u and v in 

the original network
dot product between node 

embeddings
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1. Define an encoder (i.e., a mapping from 
nodes to embeddings)
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2. Define a node similarity function (i.e., a 
measure of similarity in the original 
network).

3. Optimize the parameters of the encoder so 
that:

in the original network Similarity of the embedding
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◾Simplest encoding approach: encoder is just 
an embedding-lookup
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matrix, each column is node

embedding [what we learn!]

indicator vector, all zeroes 

except a one in column 

indicating node v

ENC (v ) = Zv
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Z = Dimension/size  
of embeddings

one column per node

embedding  
matrix

▪ Simplest encoding approach: encoder is
just an embedding-lookup

◾Each node is assigned a unique embedding
vector

embedding vector for a
specific node
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◾Key choice of methods is how they define 
node similarity.

◾E.g., should two nodes have similar 
embeddings if they….
▪ are connected?

▪ share neighbors?

▪ have similar “structural roles”?

▪ …?
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Adjacency-based Similarity

• Similarity function is just the edge weight 
between u and v in the original network.

• Intuition: Dot products between node 
embeddings approximate edge existence.

loss (what we 

want to minimize)
sum over all 

node pairs 

embedding 

similarity
(weighted) 

adjacency matrix 

for the graph
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Multi-hop Similarity

▪ Idea: Consider k-hop node neighbors.

▪ E.g. one, two or three-hop neighbors.

• Red: Target node

• Green: 1-hop neighbors
• A (i.e., adjacency matrix)

• Blue: 2-hop neighbors
• A2

• Purple: 3-hop neighbors
• A3
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Train embeddings for different adjacency matrices.

… concatenate.

● Jacard
● Adamic-Adar
● ...

Multi-hop Similarity
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Basic idea so far:
1) Define pairwise node similarities.
2) Optimize low-dimensional embeddings to approximate these 
pairwise similarities. 

Issues:
Expensive: Generally O(|V|2), since we need to iterate over all pairs 
of nodes.
Brittle: Must hand-design deterministic node similarity measures.
Only considers direct, local connections.

Expressivity: incorporates both local and higher-order neighborhood
information

Efficiency: Do not need to consider all node pairs when training; only

need to consider pairs that co-occur on random walks

Discussion So far …..

Random Walk Approaches:
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probability that u
and v co-occur 

on a random walk 

over the network
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1. Estimate probability of visiting node v on a 
random walk starting from node u using some 
random walk strategy R.

2. Optimize embeddings to encode these 
random walk statistics. 
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◾What strategies should we use to run these 
random walks?

▪ DeepWalk [1]

▪ Node2Vec [2]
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Reference:

[1]  Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations. KDD.

[2] Grover et al. 2016. node2vec: Scalable Feature Learning for Networks. KDD.
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Intuition: Find embedding of nodes to 
d-dimensions that preserves similarity

◾ Idea: Learn node embedding such that nearby 
nodes are close together in the network

◾Given a node u, how do we define nearby 
nodes?

▪ nR (u…)  neighborhood of u obtained by some 
strategy R
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1. Run short fixed-length random walks 
starting from each node on the graph using 
some strategy R
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2. For each node u collect NR(u), the multiset*

of nodes visited on random walks starting 
from u. 

3. Optimize embeddings to according to: Given
node u, predict its neighbors nR(u)

* NR(u) can have repeat elements since nodes can be visited multiple times on 
random walks.

DEEP WALK
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sum over all 
nodes u

sum over nodes v 
seen on random 

walks starting from u

predicted probability of u 
and v co-occuring on 

random walk

Optimizing random walk embeddings = Finding

embeddings zu that minimize L

Softmax Function



◾Goal: Embed nodes with similar network 
neighborhoods close in the feature space

◾We frame this goal as prediction-task independent 
maximum likelihood optimization problem

◾Key observation: Flexible notion of network 
neighborhood NR(u) of node u leads to rich node 
embeddings

◾Develop biased 2nd order random walk & to 
generate network neighborhood NR(u) of node u
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Two classic strategies to define a neighborhood

NR u of a given node u: Local microscopic view 

Global macroscopic view

u

s3

s2
s1

s4

s8

s9

s6

s7

s5

BFS 

DFS
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1. Return parameter 𝑝:     Return back to the previous node

2.  In-out parameter 𝑞:       Moving outwards (DFS) vs. inwards(BFS)

Interpolating BFS and DFS
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◾Walker is at w.  

◾Where to go next?

◾p ,q model transition probabilities
▪ p… return parameter

▪ q … ”walk away” parameter

1/p, 1/q, 1 are

unnormalized

probabilities
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Interactions of characters in a novel:

p=1, q=2
Microscopic view of the 

network neighbourhood
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p=1, q=0.5
Macroscopic view of the 

network neighbourhood
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• Feature learning in networks as a search based optimization problem

• DeepWalk proposes search using uniform random walks

• It gives us no control over the explored neighborhoods

• node2vec search strategy is both flexible and controllable exploring 

network neighborhoods through parameters p and q

• node2vec is scalable and robust to perturbations.

• node2vec can learn representations that organize nodes based on their 

network roles (structural equivalence) and communities (homophily) 

they belong to.

Summary



◾How to use embeddings z i of nodes:

▪ Clustering/community detection: Cluster points zi

▪ Node classification: Predict label ƒ(zi) of node i
based on zi

▪ Link prediction: Predict edge ((i, j) based on ƒ(zi, zj)

▪ Vector operators: concatenate, avg, product, or 
take a difference between the embeddings:

▪ Concatenate: ƒ (zi, zj)= g ([zi, zj])

▪ Hadamard: ƒ (zi,zj)= g (zi∗ zj) (per coordinate product)

▪ Sum/Avg: ƒ (zi, zj)= g (zi+ zj)

▪ Distance: ƒ (zi, zj)= g (||zi− zj||2)
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