Representation Learning

on

Networks

Slides based on WWW 2018 Tutorial on Representation Learning on Networks by
Jure Leskovec, William L. Hamilton, Rex Ying, Rok Sosic (Stanford University)
snap.stanford.edu/proj/embeddings-www



Why networks®?

Networks are a general

language for describing

and modeling complex
systems






Network!



Many Data are Networks
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Information networks:

Web & citations Internet Networks of neurons



Why Networks”? Why Now??

= Universal language for describing complex
data

= Networks from science, nature, and technology
are more similar than one would expect

= Shared vocabulary between fields

= Computer Science, Social science, Physics,
Economics, Statistics, Biology

= Data availability (+computational challenges)
= Web/mobile, bio, health, and medical

= |mpact!
= Social networking, Social media, Drug design




Machine Learning with Networks

Classical ML tasks in networks:
= Node classification
= Predict a type of a given node
= Link prediction
= Predict whether two nodes are linked
= Community detection
= |dentify densely linked clusters of nodes

= Network similarity
= How similar are two (sub)networks



Example: Node Classification
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Example: Node Classification
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Image from: Ganapathiraju et al. 2016. Schizophrenia interactome with 504 novel

protein—protein interactions. Nature.



https://www.nature.com/articles/npjschz201612?WT.feed_name=subjects_neuroscience

Example: Link Prediction
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Example: Link Prediction

Content
recommendation is
link prediction!
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Machine Learning Lifecycle

= (Supervised) Machine Learning
Lifecycle: This feature, that feature.
Every single time!

Raw Structured Learning Vodel
Data Data Algorithm
>

<€
t Automatically Downstream
Engs 09 learn the features prediction task




Feature Learning in Graphs

Goal: Efficient task-independent feature
learning for machine learning
In networks!
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Example

= Zachary’s Karate Club Network:

Input Output

Image from: Perozzi et al. 2014. DeepWalk: Online Learning of Social
Representations. KDD.



https://arxiv.org/pdf/1403.6652.pdf

Why Is It Hard?

= Modern deep learning toolbox is
designed for simple sequences or grids

= CNNs for fixed-size images/grids....

= RNNs or word2vec for text/sequences...
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Why s It Hard?

= But networks are far more complex!
= Complex topographical structure (i.e., no
spatial locality like grids)
ioe:
)DE:

= No fixed node ordering or reference point (i.e.,
the isomorphism problem)

= Often dynamic and have multimodal features.



Today’s Class
= 1) Node embeddings

= Map nodes to low-dimensional
embeddings

= 2) Graph neural networks

= Deep learning architectures for graph-
structured data

= 3) Reasoning over KGs



