Representation Learning on Networks

Slides based on WWW 2018 Tutorial on Representation Learning on Networks by Jure Leskovec, William L. Hamilton, Rex Ying, Rok Sosic (Stanford University) snap.stanford.edu/proj/embeddings-www

Why networks? Networks are a general language for describing and modeling complex systems

Network!

Many Data are Networks

Social networks

Economic networks

Biomedical networks

Why Networks? Why Now?

- Universal language for describing complex data
 - Networks from science, nature, and technology are more similar than one would expect
- Shared vocabulary between fields
 - Computer Science, Social science, Physics, Economics, Statistics, Biology
- Data availability (+computational challenges)
 - Web/mobile, bio, health, and medical
- Impact!
 - Social networking, Social media, Drug design

Machine Learning with Networks

- Classical ML tasks in networks:
- Node classification
 - Predict a type of a given node
- Link prediction
 - Predict whether two nodes are linked
- Community detection
 - Identify densely linked clusters of nodes
- Network similarity
 - How similar are two (sub)networks

Example: Node Classification

Example: Node Classification

Classifying the function of proteins in the interactome!

Image from: Ganapathiraju et al. 2016. <u>Schizophrenia interactome with 504 novel</u> protein–protein interactions. *Nature*.

Example: Link Prediction

Example: Link Prediction

Content recommendation is link prediction!

Machine Learning Lifecycle

 (Supervised) Machine Learning Lifecycle: This feature, that feature.
Every single time!

Feature Learning in Graphs

Goal: Efficient task-independent feature learning for machine learning in networks!

Example

Zachary's Karate Club Network:

Why Is It Hard?

- Modern deep learning toolbox is designed for simple sequences or grids
 - CNNs for fixed-size images/grids....

RNNs or word2vec for text/sequences...

Why Is It Hard?

- But networks are far more complex!
 - Complex topographical structure (i.e., no spatial locality like grids)

- No fixed node ordering or reference point (i.e., the isomorphism problem)
- Often dynamic and have multimodal features.

Today's Class

- 1) Node embeddings
 - Map nodes to low-dimensional embeddings
- 2) Graph neural networks
 - Deep learning architectures for graphstructured data
- 3) Reasoning over KGs