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 Epidemic Model Based on Trees
 Models of Disease Spreading
 Independent Cascade Model
 Modeling Interactions Between Contagions 

(Optional)



Understanding the spread of viruses 
and epidemics is of great interest to 
• Health officials
• Sociologists
• Mathematicians
• Hollywood 

The underlying contact network clearly affects the 
spread of an epidemic
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 Model epidemic spread as a random process 
on the graph and study its properties

 Questions that we can answer: 

▪ What is the projected growth of the infected 
population?

▪ Will the epidemic take over most of the network?

▪ How can we contain the epidemic spread?
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Diffusion of  ideas and the spread of influence 
can also be modeled as epidemics



Simple probabilistic model of 

cascades where we will learn about 

the reproductive number



▪ Branching process: A person transmits the 
disease to each people she meets 
independently with a probability p

▪ An infected person meets k (new) people 
while she is contagious

▪ Infection proceeds in waves

Contact network is a 
tree with branching 
factor k
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 We are interested in the number of people 
infected (spread) and the duration of the 
infection

 This depends on the infection probability p
and the branching factor k

An aggressive 
epidemic with high 
infection probability

The epidemic survives
after three steps
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 We are interested in the number of people 
infected (spread) and the duration of the 
infection

 This depends on the infection probability p
and the branching factor k

A mild epidemic with 
low infection 
probability

The epidemic dies out
after two steps
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 Basic Reproductive Number (𝑹𝟎): the expected 
number of new cases of the disease caused by a single 
individual

𝑹𝟎 = 𝒌𝒑

 Claim: (a) If R0 < 1, then with probability 1, the disease 
dies out after a finite number of waves. (b) If R0 > 1, 
then with probability greater than 0 the disease 
persists by infecting at least one person in each wave

1. If 𝑹𝟎 < 𝟏 each person infects less than one person in 
expectation. The infection eventually dies out

2. If 𝑹𝟎 > 𝟏 each person infects more than one person in 
expectation. The infection persists
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 𝑋𝑛: random variable indicating the number of 
infected nodes after n steps

 𝑞𝑛 = Pr[𝑋𝑛 ≥ 1]: probability that there exists 
at least 1 infected node after n steps

 𝑞∗ = lim𝑞𝑛: the probability of having 
infected nodes as 𝑛 → ∞

It can be shown that
a 𝑅0 < 1 ⇒ 𝑞∗ = 0

(b) 𝑅0 > 1=> 𝑞∗ > 0.
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 Epidemic Model based on Random Trees

▪ (a variant of branching processes)

▪ A patient meets k other people

▪ With probability p > 0 infects each 
of them

 Q: For which values of k and p
does the epidemic run forever?

▪ Run forever: 

▪ Die out: -- || -- = 0

Root node,

“patient 0”

Start of epidemic

k subtrees

0
ndepth at  node

 infected 1least At 
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 𝒒𝒏𝒋 = prob. there is an infected node at depth 𝒏
starting from a specific child node

𝑞𝑛𝑗 = 𝑝 ⋅ 𝑞𝑛−1
 Fails with probability (the complementary view)

1 − 𝑝 ⋅ 𝑞𝑛−1
 All k subtrees fail with probability

1 − 𝑝 ⋅ 𝑞𝑛−1
𝑘

k subtrees

j

n-1 levels



 𝒒𝒏 = prob. there is an infected node at depth 𝒏
 We need: lim

𝑛→∞
𝑞𝑛 = ? (based on 𝑝 and 𝑘)

 All k subtrees fail with probability
1 − 𝑝 ⋅ 𝑞𝑛−1

𝑘

 Taking the complement:
𝑞𝑛 = 1 − 1 − 𝑝 ⋅ 𝑞𝑛−1

𝑘

 𝒍𝒊𝒎
𝒏→∞

𝒒𝒏 = result of iterating

f x = 1 − 1 − 𝑝 ⋅ 𝑥 𝑘

▪ Starting at 𝑥 = 1 (since 𝑞1 = 1)

No infected node

at depth n from the root

k subtrees



 𝑓 0 = 0 , so intercepts at point (0,0)

 𝑓 1 = 1 − 1 − 𝑝 𝑘 < 1, so at x=1, f(1) is 

below the y=x line

 𝑓′ 𝑥 = 𝑝 ⋅ 𝑘 1 − 𝑝𝑥 𝑘−1, positive and f’ 

monotonically decreasing on [0,1], so 

concave curve

 𝑓′ 0 = 𝑝 ⋅ 𝑘 = 𝑅0, so 

▪ for 𝑹𝟎 > 𝟏 f starts above the y=x line 

▪ for 𝑹𝟎 < 𝟏 f starts below the y=x line 



x

f(x)

1

y=x=1

𝑓 0 = 0, 𝑓 1 = 1 − 1 − 𝑝 𝑘 < 1, so at x=1, f(1) is below the y=x line

𝑓′ 𝑥 = 𝑝 ⋅ 𝑘 1 − 𝑝𝑥 𝑘−1, so concave on [0,1]

𝑓′ 0 = 𝑝 ⋅ 𝑘 = 𝑅0, so for 𝑅0 > 1 f starts above the y=x line 

What do we know about f(x)?

Going to first 

fixed point

y = f x

When is this going to 0?
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Case 1:

𝑹𝟎 = 𝒑𝒌 > 𝟏



x

f(x)

1

y=x

y = f x

For the epidemic to die out 

we need f(x) to be below y=x!
So: 𝒇′ 𝟎 = 𝒑 ⋅ 𝒌 < 𝟏

lim
𝑛→∞

𝑞𝑛 = 0 𝑤ℎ𝑒𝑛 𝒑 ⋅ 𝒌 < 𝟏

𝒑 ⋅ 𝒌 = expected # of people that we infect

Reproductive

number 𝑹𝟎 =
𝒑 ⋅ 𝒌:

There is an 

epidemic if 

𝑹𝟎  𝟏

Case 2:

𝑹𝟎 = 𝒑𝒌 < 𝟏



 Assumes no network structure, no triangles or 
shared neighbors





 Each node may be in the following states

▪ Susceptible: healthy but not immune

▪ Infected: has the virus and can actively propagate it

▪ Removed: (Immune or Dead) had the virus but it is no 
longer active

 Parameter p: the probability of an Infected node to 
infect a Susceptible neighbor



 Initially all nodes are in state S(usceptible), 
except for a few nodes in state I(nfected).

 An infected node stays infected for 𝑡𝐼 steps.

▪ Simplest case: 𝑡𝐼 = 1

 At each of the 𝑡𝐼 steps the infected node has 
probability p of infecting any of its susceptible
neighbors

▪ p: Infection probability

 After 𝑡𝐼 steps the node is Removed













 The branching process is a special case 
where the graph is a tree (and the 
infected node is the root)
▪ The existence of triangles shared neighbors 

makes a big difference
 The basic reproductive number is not 

necessarily informative in the general 
case



Example
R0 the expected number of new cases caused by a single node
assume p = 2/3, R0 = 4/3 > 1
Probability to fail at each level and stop (1/3)4 = 1/81



 Percolation: we have a network of “pipes” 
which can carry liquids, and they can be 
either open, or closed

▪ The pipes can be pathways within a material

 If liquid enters the network from some nodes, 
does it reach most of the network?

▪ The network percolates



 There is a connection between SIR model and 
percolation

 When a virus is transmitted from u to v, the edge 
(u,v) is activated with probability p

 We can assume that all edge activations have 
happened in advance, and the input graph has 
only the active edges

 Which nodes will be infected?
▪ The nodes reachable from the initial infected nodes

 In this way we transformed the dynamic SIR 
process into a static one
▪ This is essentially percolation in the graph





 Susceptible-Infected-Susceptible
▪ Susceptible: healthy but not immune

▪ Infected: has the virus and can actively propagate 
it

 An Infected node infects a Susceptible

neighbor with probability p
 An Infected node becomes Susceptible again 

with probability q (or after 𝑡𝐼 steps)
▪ In a simplified version of the model q = 1

 Nodes alternate between Susceptible and 
Infected status



 When no Infected nodes, virus dies out
 Question: will the virus die out?



 If A is the adjacency matrix of the network, then the 
virus dies out if

𝜆1 𝐴 ≤
𝑞

𝑝
 Where 𝜆1(𝐴) is the first eigenvalue of A

Y. Wang, D. Chakrabarti, C. Wang, C. Faloutsos. Epidemic Spreading in Real 
Networks: An Eigenvalue Viewpoint. SRDS 2003





 Infection can only happen within the active 
window 



 Importance of concurrency – enables 
branching



 Initially, some nodes e in the I state and all others in 
the S state

 Each node u that enters the I state remains 
infectious for a fixed number of steps tI. During each 
of these tI steps, u has a probability p of infecting 
each of its susceptible neighbors

 After tI steps, u is no longer infectious. Enters the R
state for a fixed number of steps tR. During each of 
these tR steps, u cannot be infected nor  transmit the 
disease

 After tR steps in the R state, node u returns to the S
state



We will learn about the 

epidemic threshold



Virus Propagation: 2 Parameters:
 (Virus) Birth rate β: 

▪ probability that an infected neighbor attacks

 (Virus) Death rate δ:

▪ Probability that an infected node heals

Infected

Healthy

NN1

N3

N2

Prob. β

Prob. δ



 General scheme for epidemic models:

▪ Each node can go through phases:

▪ Transition probs. are governed by the model parameters

S…susceptible

E…exposed

I…infected

R…recovered

Z…immune



 SIR model: Node goes through phases

▪ Models chickenpox or plague: 

▪ Once you heal, you can never get infected again

 Assuming perfect mixing (The network is a 
complete graph) the 
model dynamics are:

Susceptible Infected Recovered

time
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dI

dt
= bSI -dI

dS

dt
= -bSI

dR

dt
= dI I(t)

S(t) R(t)

𝛽 𝛿

Kermack-McKendrick Model: http://mathworld.wolfram.com/Kermack-McKendrickModel.html

http://mathworld.wolfram.com/Kermack-McKendrickModel.html


 Susceptible-Infective-Susceptible (SIS) model 
 Cured nodes immediately become susceptible
 Virus “strength”: s = β / δ
 Node state transition diagram:

Susceptible Infective

Infected by neighbor 

with prob. β

Cured with 

prob. δ



 Models flu:
▪ Susceptible node 

becomes infected

▪ The node then heals 
and become 
susceptible again

 Assuming perfect 
mixing (complete 
graph):

Susceptible Infected
ISI

dt

dI
 −=

ISI
dt

dS
 +−=

time

N
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I(t)

S(t)



 SIS Model: 
Epidemic threshold of an arbitrary 
graph G is τ, such that:

▪ If virus strength s = β / δ < τ

the epidemic can not happen 
(it eventually dies out)

 Given a graph what is its epidemic threshold?



 We have no epidemic if:

β/δ < τ = 1/ λ1,A

► λ1,A alone captures the property of the graph!

(Virus) Birth rate

(Virus) Death 
rate

Epidemic threshold

largest eigenvalue
of adj. matrix A

[Wang et al. 2003]
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 Does it matter how many people are 
initially infected?



[Gomes et al., Assessing the International Spreading Risk Associated with the 2014 West African Ebola Outbreak, PLOS Current Outbreaks, 2014]
http://currents.plos.org/outbreaks/article/assessing-the-international-spreading-risk-associated-with-the-2014-west-african-ebola-outbreak/

http://currents.plos.org/outbreaks/article/assessing-the-international-spreading-risk-associated-with-the-2014-west-african-ebola-outbreak/


Model States
S: susceptible individuals
E: exposed individuals
I: infectious cases in the community 
H: hospitalized cases
F: dead but not yet buried
R: individuals no longer transmitting the disease

Model Parameters
βI: transmission coefficient in the community
βH: transmission coefficient at the hospital
βF: transmission coefficient during funerals
θ1: computed so that θ% of infectious cases are hospitalized
δ: Compartment specific δ1 and δ2 so that overall case-fatality ratio is δ
α−1: the mean incubation period
γh

−1: the mean duration from symptom onset to hospitalization 
γdh

−1: the mean duration from hospitalization to death
γi

−1: the mean duration of the infectious period for survivors
γih

−1: the mean duration from hospitalization to end of infectiousness for survivors 
γf

−1: the mean duration from death to burial



Gomes et al., 2014]



Gomes et al., 2014]





 Initially some nodes S are active
 Each edge (u,v) has probability (weight) puv

 When node u becomes active/infected: 
▪ It activates each out-neighbor v with prob. puv

 Activations spread through the network!
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 Independent cascade model 
is simple but requires
many parameters!

▪ Estimating them from
data is very hard
[Goyal et al. 2010]

 Solution: Make all edges have the same 
weight (which brings us back to the SIR model)

▪ Simple, but too simple

 Can we do something better?
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 From exposures to adoptions

▪ Exposure: Node’s neighbor exposes the 
node to the contagion

▪ Adoption: The node acts on the contagion

[KDD ‘12]



 Exposure curve:

▪ Probability of adopting new 
behavior depends on the total number 
of friends who have already adopted

 What’s the dependence?

k = number of friends adopting
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Diminishing returns:

Viruses, Information

Critical mass:

Decision making

… adopters



 From exposures to adoptions

▪ Exposure: Node’s neighbor exposes the node to 
information

▪ Adoption: The node acts on the information

 Adoption curve:

P
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b
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n
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c
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)

# exposures

Probability of

infection ever

increases

Nodes build 

resistance

[KDD ‘12]



 Marketing agency would like you 
to adopt/buy product X

 They estimate the adoption
curve

 Should they expose you 
to X three times?

 Or, is it better to expose you X, 
then Y and then X again?
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 Senders and followers of recommendations 
receive discounts on products

 Data: Incentivized Viral Marketing program

▪ 16 million recommendations

▪ 4 million people, 500k products

▪ [Leskovec-Adamic-Huberman, 2007]

10% credit 10% off

[Leskovec et al., TWEB ’07]
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Books



 Group memberships spread over the 
network:

▪ Red circles represent 
existing group members

▪ Yellow squares may join

 Question:

▪ How does prob. of joining 
a group depend on the 
number of friends already 
in the group?

[Backstrom et al. KDD ‘06]



 LiveJournal group membership 

k (number of friends in the group)
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[Backstrom et al., KDD ’06]



 Twitter [Romero et al. ‘11]
▪ Aug ‘09 to Jan ’10, 3B tweets, 60M users

▪ Avg. exposure curve for the top 500 hashtags

▪ P(K) is the fraction of users who adopt the hashtag 
directly after their Kth exposure to it 

▪ Curve reaches peak fast, decreases after!



 Persistence of P is the 
ratio of the area under 
the curve P and the area
of the rectangle of length 
max(P), width max(D(P))
▪ D(P) is the domain of P

▪ Persistence measures the 
decay of exposure curves

 Stickiness of P is max(P)
▪ Stickiness is the probability of 

usage at the most effective exposure



 Manually identify 8 
broad categories with 
at least 20 HTs in each
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• Idioms and Music 

have lower persistence 

than that of a random 

subset of hashtags of 

the same size

• Politics and Sports 

have higher persistence 

than that of a random 

subset of hashtags of 

the same size
True Rnd. subset



 Technology and Movies have lower stickiness than that 
of a random subset of hashtags

 Music has higher stickiness than that of a random subset 
of hashtags (of the same size)





`

Did 1st cat video decrease
adoption probability of 2nd 
cat video?

Did cat videos 
increase adoption 
probability of dog 
video?

So far we considered pieces of information as independently
propagating. Do pieces of information interact?



 Goal: Model interaction between 
many pieces of information

▪ Some pieces of information may help
each other in adoption

▪ Other may compete for attention



P(adopt c0)

Neighbors

The User

P(adopt c1 | exposed to c0)P(adopt c2 | exposed to c1 , c0)P(adopt c3 | exposed to c2 , c1, c0)

c0 c1c2 c3



 You are reading posts on Twitter:

▪ You examine posts one by one

▪ Currently you are examining X

▪ How does your probability of reposting X
depend on what you have seen in the past?

c5 c4 c3 c2

Contagions adopted by neighbors:

XY1Y2

Adopt?



 We assume K most recent exposures effect a 
user’s adoption:

 P(adopt X=c0 | exposed Y1=c1, Y2=c2, ... , YK=ck) 

Contagion the user is 
viewing now.

Contagions the user 
previously viewed.

c5 c4 c3 c2 c1

Contagions adopted by neighbors:

Y1 X

Adopt?

Y2



 We assume K most recent exposures effect a 
user’s adoption:

 P(adopt X=c0 | exposed Y1=c1, Y2=c2, ... , YK=ck) 

Contagion the user is 
viewing now.

Contagions the user 
previously viewed.

c5 c4 c3 c2 c1 c0

Contagions adopted by neighbors:

Y1 X

Adopt?

Y2



 Imagine we want to estimate: P(X | Y1, … Y5)
 What’s the problem?

▪ What’s the size of probability table P(X | Y1, … Y5)?

= (Num. Contagions)5

 Simplification: Assume Yi is independent of Yj

𝑷 𝑿 𝒀𝟏, … , 𝒀𝑲 =
𝟏

𝑷 𝑿 𝑲−𝟏ෑ

𝒌=𝟏

𝑲

𝑷(𝑿|𝒀𝒌)

 How many parameters?  𝑲 · 𝒘𝟐 Too many! 
▪ 𝐾 … history size

▪ 𝑤 … number of contagions 

≈ 1.9x1021



 Goal: Model P(adopt X | Y1,…, YK) 

 First, assume:

 Next, assume “topics”:

Prior infection 

prob.

Interaction term

(still has w2 entries!)



 Goal: Model P(adopt X | Y1,…, YK) 

 First, assume:

 Next, assume “topics”:

▪ Each contagion 𝒖𝒊 has a vector 𝑴𝒊

▪ Entry 𝑴𝒊𝒔 models how much 𝒖𝒊 belongs to topic 𝒔

▪ 𝜟𝒄𝒍𝒖𝒔𝒕
𝒌

𝒔, 𝒕 models the change in infection prob. given that 

𝒖𝒊 is on topic 𝒔 and exposure k-steps ago was on topic 𝒕

Prior infection 

prob.

Interaction term

(still has w2 entries!)

Details



ci

cluster a

cluster b

cluster c

cluster d

a b c d

∆(k)

Mj,a

Mi,d

cj

Memberships to clusters

Interactions between 
clusters

Details



 Model parameters:

▪ Δ𝑘 … topic interaction matrix

▪ 𝑀𝑖,𝑡 ... topic membership vector

▪ 𝑃(𝑋) ... Prior infection prob.

 Maximize data likelihood:

arg max
𝑃 𝑥 ,𝑀,Δ

ෑ

𝑋∈𝑅

𝑃 𝑋 𝑋, 𝑌1…𝑌𝐾 ෑ

𝑋∉𝑅

1 − 𝑃 𝑋 𝑋, 𝑌1…𝑌𝐾

▪ 𝑅 … contagions X that resulted in infections

▪ Solve using stochastic coordinate ascent:

▪ Alternate between optimizing Δ and 𝑀

Details



 Data from Twitter

▪ Complete data from Jan 2011: 3 billion tweets

▪ All URLs tweeted by at least 50 users: 191k

 Task: 
Predict whether a user will post URL X

 What do we learn from the model?



 How P(post u2| exp. u1) changes if …

▪ u2 and u1 are similar/different in the content?

▪ u1 is highly viral?

Observations:

• If u1 is not viral,

this boost u2

• If u1 is highly viral, 

this kills u2

BUT:

Only if u1 and u2 are 

of low content 

similarity (LCS) else, 

u1 helps u2

Relative change in infection prob.



 Modeling contagion interactions

▪ 71% of the adoption probability comes 
from the topic interactions!

▪ Modeling user bias does not matter


