Probabilistic Contagion and
Models of Influence



Epidemic Model Based on Trees

Models of Disease Spreading

Independent Cascade Model

Modeling Interactions Between Contagions
(Optional)



Epidemics

and epidemics is of great interest to

e Health officials NOTHING SPREADS LIKE FEAR
* Sociologists
 Mathematicians
* Hollywood

Understanding the spread of viruses
ool wiitn rsi@Re: OV m-ﬂa

The underlying contact network clearly affects the
spread of an epidemic



Model epidemic spread as a random process
on the graph and study its properties
Questions that we can answer:

What is the projected growth of the infected
population?

Will the epidemic take over most of the network?
How can we contain the epidemic spread?

Diffusion of ideas and the spread of influence
can also be modeled as epidemics



Epidemic Model Based on
Trees



A Simple Model

Branching process: A person transmits the
disease to each people she meets
independently with a probability p

An infected person meets k (new) people
while she is contagious

Infection proceeds in waves

Contact network is a
tree with branching
factor k



Infection Spread

We are interested in the number of people
infected (spread) and the duration of the
infection
This depends on the infection probability p
and the branching factor k

An aggressive

epidemic with high
infection probability

The epidemic survives
after three steps




Infection Spread

We are interested in the number of people
infected (spread) and the duration of the
infection
This depends on the infection probability p
and the branching factor k

A mild epidemic with

low infection
probability

The epidemic dies out
after two steps
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Basic Reproductive Number

Basic Reproductive Number (Ry): the expected
number of new cases of the disease caused by a single
individual

Ry = kp

Claim: (a) If R, < 1, then with probability 1, the disease
dies out after a finite number of waves. (b) If R, > 1,
then with probability greater than O the disease
persists by infecting at least one person in each wave

If Ry < 1 each person infects less than one person in
expectation. The infection eventually dies out

If Ry > 1 each person infects more than one person in
expectation. The infection persists



X,,: random variable indicating the number of
infected nodes after n steps
q,, = Pr|X,, = 1]: probability that there exists
at least 1 infected node after n steps
q" = lim g,,: the probability of having
infected nodesasn = o
It can be shown that
(A)Ry <1=>qg" =0
(b) Ry > 1=>qg~ > 0.



Probabilistic Spreading Models

Epidemic Model based on Random Trees

(a variant of branching processes) Root node,
“‘patient 0”

A patient meets k other people Start of epidemic

With probability p > 0 infects each
of them

Q: For which values of k and p

does the epidemic run forever?
At least 1infected }

node at depth n

k subtrees

N—oo

Run forever: |imp {

Die out:



Probabilistic Spreading Models

q,; = prob. there is an infected node at depth n
starting from a specific child node

nj = P " qn-1
Fails with probability (the complementary view)
1 o p ) qn—l k subtrees
All k subtrees fail with probability j
(1 — P Qn—l)k !

/

/ - n-1 levels




Probabilistic Spreading Models

q,, = prob. there is an infected node at depth n
We need: lim g, =7 (based on p and k)

Nn—>00
; 15% k subtrees

All k subtrees fail with probability

(1 — P Qn—l)k
Taking the complement:
qn=1-(1=p qn1)"

Y
No infected node
at depth n from the root

lim q,, = result of iterating

n—>0oo
f(x) =1—(1—p-x)~
Startingat x = 1 (since g; = 1)




Properties of f(x) = 1 — (1 — px)X

f(0) =0, so intercepts at point (0,0)
f(H=1-(1-p) <1,soatx=1,1(1)is
below the y=x line
f'(x) =p-k(1—px)* 1, positive and f
monotonically decreasing on [0,1], so
concave curve
f'(0)=p-k =R, SO

for R, > 1 f starts above the y=x line

for R, < 1 f starts below the y=x line



Fixed Point: f(x) = 1 — (1 — px)¥

y:x:l

Case 1:

Ro=pk>1 y = f(x)

Going to first
fixed point

When is this going to 0?

What do we know about f(x)?
f(0)=0,f(1)=1-(1-p) <1, soatx=1, f(1) is below the y=x line
f'(x) =p-k(1—-px)*1, soconcave on [0,1]
f'(0)=p-k =R, soforR,>1fstarts above the y=x line



Fixed Point: When is this zero?

Case 2:

y=X

Reproductive
number R, =
p - k:

There is an

y = f(x) epidemic if
|

1 X
For the epidemic to die out

we need f(x) to be below y=x!
So: f'(0)=p-k<1
limg, =0 when p-k<1

Nn—>00

p - k = expected # of people that we infect



Branching process

Assumes no network structure, no triangles or
shared neighbors



Models of Disease Spreading




The SIR model

Each node may be in the following states
Susceptible: healthy but not immune
Infected: has the virus and can actively propagate it

Removed: (Immune or Dead) had the virus but it is no
longer active

Parameter p: the probability of an Infected node to
infect a Susceptible neighbor



The SIR process

Initially all nodes are in state S(usceptible),

except for a few nodes in state I(nfected).

An infected node stays infected for t; steps.
Simplest case: t; = 1

At each of the t; steps the infected node has

probability p of infecting any of its susceptible

neighbors

p: Infection probability
After t; steps the node is Removed















Example SIR Epidemic

(e) (d)

Figure 21.2: The course of an SIR epidemic in which each node remains infectious for a
number of steps equal to t; = 1. Starting with nodes y and z initially infected, the epidemic
spreads to some but not all of the remaining nodes. In each step, shaded nodes with dark
borders are in the Infectious () state and shaded nodes with thin borders are in the Removed
(R) state.



SIR and the Branching process

The branching process is a special case
where the graph is a tree (and the
infected node is the root)
The existence of triangles shared neighbors
makes a big difference
The basic reproductive number is not
necessarily informative in the general
case



SIR and the Branching process

Example
R, the expected number of new cases caused by a single node
assume p=2/3, R, =4/3>1
Probability to fail at each level and stop (1/3)%=1/82

Figure 21.3: In this network, the epidemic is forced to pass through a narrow “channel” of
nodes. In such a structure, even a highly contagious disease will tend to die out relatively
quickly.



Percolation

Percolation: we have a network of “pipes”
which can carry liquids, and they can be
either open, or closed

The pipes can be pathways within a material
If liquid enters the network from some nodes,

does it reach most of the network?

The network percolates



SIR and Percolation

There is a connection between SIR model and

percolation

When a virus is transmitted from u to v, the edge
is activated with probability

We can assume that all edge activations have

happened in advance, and the input graph has
the active edges

Which nodes will be infected?

The nodes reachable from the initial infected nodes
In this way we transformed the

Into a static one
This is essentially percolation in the graph



Figure 21.4: An equivalent way to view an SIR epidemic is in terms of percolation, where

we decide in advance which edges will transmit infection (should the opportunity arise) and
which will not.



The SIS model

Susceptible-Infected-Susceptible
Susceptible: healthy but not immune
Infected: has the virus and can actively propagate
It
An Infected node infects a Susceptible
nheighbor with probability p
An Infected node becomes Susceptible again
with probability g (or after t; steps)

In a simplified version of the model g =1
Nodes alternate between Susceptible and
Infected status



Example

VOLLY

Figure 21.5: In an SIS epidemic, nodes can be infected, recover, and then be infected again.
In each step, the nodes in the Infectious state are shaded.

When no Infected nodes, virus dies out
Question: will the virus die out?



An eigenvalue point of view

If A is the adjacency matrix of the network, then the

virus dies out if

1,4) <1

p
Where A,(A) is the first eigenvalue of A

Y. Wang, D. Chakrabarti, C. Wang, C. Faloutsos. Epidemic Spreading in Real
Networks: An Eigenvalue Viewpoint. SRDS 2003



SIS and SIR

step 0 step 1 step 2 step 3 step 4

(a) To represent the SIS epidemic wsing the SIR model, we use a “time-erpanded” contact network

step 0 step 1 step 2 step 3 step 4

(b} The SIS epidemic can then be represented as an SIR epidemic on this time-erpanded network.

Figure 21.6: An SIS epidemic can be represented in the SIR model by creating a separate copy of the

contact network for each time step: a node at time ¢ can infect its contact neighbors at time ¢ + 1.



Including time

Infection can only happen within the active
window

(a) In a contact network, we ean annotate the (b) The same network asz in (a), except that the
edges with time windows during which they existed. timing of the w-v and w-y partnerships have been
reversed.

Figure 21.8: Different timings for the edges in a contact network can affect the potential for
a disease to spread among individuals. For example, in (a) the disease can potentially pass
all the way from u to y, while in (b) it cannot.



Concurrency

Importance of concurrency — enables
branching

(a) No node is involved in any concurrent partner- (b) All parinerships overlap in time

ships

Figure 21.10: In larger networks, the effects of coneurrency on disease spreading can become
particularly pronounced.



SIRS

Initially, some nodes e in the / state and all others in
the S state

Each node u that enters the I state remains
infectious for a fixed number of steps t,. During each
of these t, steps, u has a probability p of infecting
each of its susceptible neighbors

After t, steps, u is no longer infectious. Enters the R
state for a fixed number of steps t,. During each of
these t, steps, u cannot be infected nor transmit the
disease

After t; steps in the R state, node u returns to the §
state



Models of Disease Spreading



Spreading Models of Viruses

Virus Propagation: 2 Parameters:
(Virus) Birth rate B:

probability that an infected neighbor attacks
(Virus) Death rate 6:

Probability that an infected node heals

Healthy

Infected



More Generally: S+E+I+R Models

General scheme for epidemic models:
Each node can go through phases:

Transition probs. are governed by the model parameters

recruitment exit exit exit

+ f % f
RN RN

E...exposed
|...infected

+ R...recovered

exit Z...immune

exit K’ ‘j .
[ 7 ] S...susceptible




SIR Model

SIR model: Node goes through phases

Models chickenpox or plague:

Once you heal, you can never get infected again
Assuming perfect mixing (The network IS a

complete graph) the -] S(t) ““”,...,...F.Q(t):
model dynamics are: B L

dS dR 2] LS

—==-pS5/ — =4l S (D)

dt dt 8= Y

S — bS[— d] < ”D"‘&f” " ""“»;;m....45..::35%:::::%
df time

Kermack-McKendrick Model: http://mathworld.wolfram.com/Kermack-McKendrickModel.html



http://mathworld.wolfram.com/Kermack-McKendrickModel.html

SIS Model

Susceptible-Infective-Susceptible (SIS) model
Cured nodes immediately become susceptible
Virus “strength”:s=B/ 6

Node state transition diagram:

Infected by neighbor
with prob. 3

Susceptible Infective

Cured with
prob. 6



SIS Model

AL — . . . . Models flu:
s T : Susceptible node
é 400 F :. ¢/,..........."m.....”.”“””-. becomes infected
2 0r LS ‘ The node then heals
S 300 L : and become
& ot . . susceptible again
é 2 D : Assuming perfect
180 \MW S(t) - mixing (complete
100 F :: PEELIEEE AL HE E  H b b graph):

ds
DD.-m/1:II 20 0 10 =0 B0 _— —ﬂSI -+ é]
time dt

| Susceptible  \aug Infected dl 551 -6l

dt



Question: Epidemic threshold t

SIS Model:
Epidemic threshold of an arbitrary
graph G is T, such that:

If virus strengths=f#/0<~t
the epidemic can not happen
(it eventually dies out)

Given a graph what is its epidemic threshold?



[Wang et al. 2003]

Epidemic Threshold in SIS Model

We have no epidemic if:

Epidemic threshold

(Virus) Death ——
rate jl
Bo<t=1/A1p

/ f

I

(Virus) Birth réce largest eigenvalue
of adj. matrix A

> A, 5 alone captures the property of the graph!



[Wang et al. 2003]

Experiments (AS graph)

500 - 10,900 nodes and
] 5= 0.001 31,180 edges
S 400 - S=p/6 > T
2 (above threshold)
©
2 300 -
(@)
2
=
« 200 -
2 s=p/d =1
S 100- (at the threshold)
Z
0
0 s=p/o <~

Time (below threshold)
0: === 0.05 == 0.06 =« 0.07



Experiments

Does it matter how many people are
initially infected?
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Example: Ebola

Transition

4

Transition rate

(S.E) = (S-1, E+1)
(E.1) — (E-1, 141)
(LH) — (I-1. H+1)
(H.F) — (H-1, F+1)
(F.R) — (F-1. R+1)
(LR) — (I-1, R+1)
(LF) — (I-1, F+1)
(H.R) — (H-1, R+1)

[Gomes et al., Assessing the International Spreading Risk Associated with the 2014 West African Ebola Outbreak, PLOS Current Outbreaks, 2014]
http://currents.plos.org/outbreaks/article/assessing-the-international-spreading-risk-associated-with-the-2014-west-african-ebola-outbreak/
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http://currents.plos.org/outbreaks/article/assessing-the-international-spreading-risk-associated-with-the-2014-west-african-ebola-outbreak/

Ebola: Model States & Parameters

Model States

S: susceptible individuals

E: exposed individuals

I: infectious cases in the community

H: hospitalized cases

F: dead but not yet buried

R: individuals no longer transmitting the disease

Model Parameters

B,: transmission coefficient in the community

B,: transmission coefficient at the hospital

Be: transmission coefficient during funerals

8,: computed so that 8% of infectious cases are hospitalized

6: Compartment specific 8, and §, so that overall case-fatality ratio is 6
a!: the mean incubation period

Y, 1: the mean duration from symptom onset to hospitalization

Yqn 1 the mean duration from hospitalization to death

v, 1: the mean duration of the infectious period for survivors

v;, 1 the mean duration from hospitalization to end of infectiousness for survivors
Y; 1: the mean duration from death to burial



Gomes et al., 2014]

Example: Ebola

I I I

Calibration Region

Projection Region

=
o
w

Total number of deaths since July 1
=
o




Gomes et al., 2014]

Example: Ebola
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Independent Cascade Model



Independent Cascade Model

Initially some nodes S are active
Each edge (u,v) has probability (weight) p,,,

When node u becomes active/infected:

It activates each out-neighbor v with prob. p,,
Activations spread through the network!



Independent Cascade Modal

Independent cascade model ,
is simple but requires
many parameters!

Estimating them from
data is very hard
[Goyal et al. 2010]

Solution: Make all edges have the same
weight (which brings us back to the SIR model)

Simple, but too simple
Can we do something better?




Exposures and Adoptions

From exposures to adoptions

Exposure: Node’s neighbor exposes the
node to the contagion

Adoption: The node acts on the contagion

g &2
R—R

IS
g &



Exposure Curves

EXposure curve:

Probability of adopting new
behavior depends on the total number )
of friends who have already adopted

What's the dependence? @® ... adopters

Prob. of adoption

Prob. of adoption

k = number of friends adopting k = number of friends adopting

Diminishing returns:

Viruses, Information

Critical mass:
Decision making



Exposure Curves

From exposures to adoptions
Exposure: Node’s neighbor exposes the node to

information

Adoption: The node acts on the information

Adoption curve:

Prob(Infection)

Probability of
infection ever
Increases

# exposures

Nodes build
resistance




Example Application

Marketing agency would like you
to adopt/buy product X

They estimate the adoption
curve

Should they expose you

to X three times?

Or, is it better to expose you X,
then Y and then X again?

N

3



[Leskovec et al., TWEB ‘o07]

Diffusion in Viral Marketing

Senders and followers of recommendations
receive discounts on products

10% credit 10% off {(L@Y

Data: Incentivized Viral Marketing program
16 million recommendations
4 million people, 500k products
[Leskovec-Adamic-Huberman, 2007]



[Leskovec et al., TWEB ‘o07]

Exposure Curve: Validation
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[Backstrom et al. KDD '06]

Exposure Curve: LiveJournal

Group memberships spread over the
network:

circles represent

existing group members
squares may join

8
<

How does prob. of joining \9 —
a group depend on the /¢
number of friends already _

in the group?



[Backstrom et al., KDD '06]

Exposure Curve: LiveJournal

LiveJournal group membership
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Exposure Curve: Information

Twitter [Romero et al. ‘11]
Aug ‘09 to Jan '10, 3B tweets, 60M users

0.0251
0.02
0.015

(.

001

0.005

% 5 10 15 20 25 30
K

Avg. exposure curve for the top 500 hashtags

P(K) is the fraction of users who adopt the hashtag
directly after their Kth exposure to it

Curve reaches peak fast, decreases after!




Modeling the Shape of the Curve

0.0251

Persistence of P is the

ratio of the area under

the curve Pand the area o
of the rectangle of length
max(P), width max(D(P))

D_

D(P) is the domain of P AU L

Persistence measures the o o
decay of exposure curves -

. . o/

Stickiness of P is max(P) o //
Stickiness is the probability of EEEET
usage at the most effective exposure

0.02

0.01

p(k)
3
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$
/
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g
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Exposure Curve: Persistence

Category Examples
° ° Celebrity mj, brazilwantsjb, regis, iwantpeterfacinelli

M anua I Iy | d e nt |fy 8 Music thisiswar. mj. musicmonday. pandora
Games mafiawars, spymaster, mw2, zyngapirates

b d : : h Political tcot, glennbeck, obama, her

ro a c a tego r I e S W I t Idiom cantlivewithout, dontyouhate. musicmonday
. Sports oolf, yankees. nhl, cricket

at I e a St 20 H TS l n e a c h Movies/TV lost, glennbeck, bones, newmoon

Technology digg, iphone, jquery, photoshop

e 1 e ldioms and Music
| | have lower persistence
o | than that of a random
Q .l | subset of hashtags of
% ° * 'Y 'Y Y ° n ° the same size
'® ossf 1 e Politics and Sports
8 have higher persistence
o84 1 than that of a random
. % subset of hashtags of
True/ Rnd. subset the same size

1 1 I 1 1 1
Folitical Idloms Muslc Technology Movies Sports Games Celebrity



Exposure Curve: Stickiness

0.032

0.03 .
0.028 |- .
0.026 | =

0.024 | > 4 ' il

Stickiness

0.022 - —

0.02 =

0.018 | y - - B

0.016

1 I I I I I
Political Idioms Music Techneology Movies Sports Games Celebrity

Technology and Movies have lower stickiness than that
of a random subset of hashtags

Music has higher stickiness than that of a random subset
of hashtags (of the same size)



Modeling Interactions
Between Contagions



Information Diffusion

So far we considered pieces of information as independently
propagating. Do pieces of information interact?

Did 1st cat video decrease
adoption probability of 2
cat video?

d

increase adoption
probability of dog
video?

Did cat videos /'



Modeling Interactions

Goal: Model interaction between
many pieces of information

Some pieces of information may help
each other in adoption

Other may compete for attention



Neighbors

P(adopt c3 | exposed to c2, c1, Co)



You are reading posts on Twitter:
You examine posts one by one
Currently you are examining X

How does your probability of reposting X
depend on what you have seen in the past?

Contagions adopted by neighbors:

olele)

—



We assume K most recent exposures effect a
user’s adoption:
P(adopt X=c, | exposed Y,=¢c,, Y,=c¢,, ..., Y,=¢,)

/ N

Contagion the user s Contagions the user
viewing now. previously viewed.

Contagions adopted by neighbors:

o oRldp)

Adopt?

—



We assume K most recent exposures effect a
user’s adoption:
P(adopt X=c, | exposed Y,=¢c,, Y,=c¢,, ..., Y,=¢,)

/ N

Contagion the user s Contagions the user
viewing now. previously viewed.

Contagions adopted by neighbors:

o o olkldéd]



The Model: Problem

Imagine we want to estimate: P(X | Y, ... Y;)
What'’s the problem?

What'’s the size of probability table P(X | Y, ... Y;)?
= (Num. Contagions)’ = 1.9x1021

Simplification: Assume Y; is independent of Y;

K
1
P(XIY1, .. Vi) = popics [ [Pexivi
k=1

How many parameters? K - w? Too many!
K ... history size
W ... number of contagions



Goal: Model P(adopt X | Y,..., Yy)
First, assume:
P (X — U, ‘YA — "U,i_) %\P (X — U )J—I—\A(k) (”U,?j_j U )I

cont.
. .Y Y
Prior infection Interaction term
prob. (still has w? entries!)

Next, assume “topics”:

cont.

AR = |M| x [A“‘“‘) ] x| ML ]




The Model Details

Goal: Model P(adopt X | Y,..., Yy)
First, assume:
P(X = u|Yr = u;) = P(X = u;) + AR (u,i,;_j uj),

cont.
Prior irﬁection Interactlon term
prob. (still has w? entries!)
«“ e o,
Next, assume “topics™:

(k) (k)
Afcmf (U; U T TMJ t- Acluﬁt( CS) . M?::S
Each contagion ui has a vector M;
Entry M;, models how much u; belongs to topic s

Agfl)lst(s, t) models the change in infection prob. given that

U; is on topic s and exposure k-steps ago was on topic t




The Model Details

P(X =u|Yy =u;) =P(X = u,)

3 M -AY M
t S

ija\

B e
Memberships to clusters
. .cluster b
NN .
teractions between
/ ....cluster d clusters

a




Inferring the Model Details

Model parameters:

AR topic interaction matrix
M; ; ... topic membership vector
P(X) ... Prior infection prob.

Maximize data likelihood:

arg max HP(XlX, Y; ...Ye) 1_[ 1-PX|X,Y,..Y)

P(x),M,A
XER X€&R

R ... contagions X that resulted in infections
Solve using stochastic coordinate ascent:

Alternate between optimizing A and M



Dataset: Twitter

Data from Twitter

Complete data from Jan 2011: 3 billion tweets

All URLs tweeted by at least 50 users: 191k
Task:

Predict whether a user will post URL X

What do we learn from the model?



How do Tweets Interact?

How P(post u,[ exp. u,) changes if ...
u, and u, are similar/different in the content?
u, is highly viral?

P(X=u,) > P(X=u,) - IEI* .
'. Observations:
P(X—Uz) < P(X—u“l) 7 EI. - e |f U, is not viral,
P(X=u,) < P(X=uy), LCS { = | thisboostu,
! e If u, is highly viral,
P(X=u,) < P(X=u,), HCS - | —J— | thisKkills u,
! BUT:
P(X=u,) > P(X=uy), LCS - =] - Only if u, and u, are
' of low content
P(X=u,) > P(X=u,), HCS -+ —— — similarity (LCS) else,
1 1 i 1 1 1 Uy helps u;
-0.2 -0.1 0 0.1 0.2 0.3

Relative change in infection prob.



Final Remarks

Modeling contagion interactions

71% of the adoption probability comes
from the topic interactions!

Modeling user bias does not matter



