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 Spreading Through Networks
 Granovetter’s Model of Collective Action
 Decision Based Model of Diffusion
▪ Game Theoretic Model of Cascades



 Spreading through 
networks:

▪ Cascading behavior

▪ Diffusion of innovations

▪ Network effects

▪ Epidemics

 Behaviors that cascade 
from node to node like 
an epidemic

 Examples:

▪ Biological:

▪ Diseases via contagion

▪ Technological:

▪ Cascading failures

▪ Spread of information

▪ Social:

▪ Rumors, news, new 
technology

▪ Viral marketing
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tech story
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WiredSlashdot
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 Product adoption:

▪ Senders and followers of recommendations







 Contagion that spreads over the edges 
of the network

 It creates a propagation tree, i.e., cascade

Cascade 
(propagation graph)

Network

Terminology:

• Stuff that spreads: Contagion

• “Infection” event: Adoption, infection, activation

• We have: Infected/active nodes, adopters



 Decision based models (today!):
▪ Models of product adoption, decision making

▪ A node observes decisions of its neighbors 
and makes its own decision

▪ Example:
▪ You join demonstrations if k of your friends do so too

 Probabilistic models (later):
▪ Models of influence or disease spreading

▪ An infected node tries to “push”
the contagion to an uninfected node

▪ Example:
▪ You “catch” a disease with some prob. 

from each active neighbor in the network





 Collective Action [Granovetter, ‘78]

▪ Model where everyone sees everyone else’s 
behavior (that is, we assume a complete graph)

▪ Examples:

▪ Clapping or getting up and leaving in a theater

▪ Keeping your money or not in a stock market

▪ Neighborhoods in cities changing ethnic composition

▪ Riots, protests, strikes

 How does the number of people participating 
in a given activity grow or shrink over time?

[Granovetter ‘78]



 n people – everyone observes all actions
 Each person i has a threshold ti (0 ≤ 𝑡𝑖 ≤ 1)

▪ Node i will adopt the behavior iff
at least ti fraction of people have 
already adopted:

▪ Small ti: early adopter

▪ Large ti: late adopter

▪ Time moves in discrete steps

 The population is described by {t1,…,tn}

▪ F(x) … fraction of people with threshold ti  x
▪ F(x) is a property of the contagion given to us. F(x) is the c.d.f. of x
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 F(x) … fraction of people with threshold ti  x
▪ F(x) is non-decreasing: 𝑭 𝒙 + 𝜺 ≥ 𝑭 𝒙

 The model is dynamic:
▪ Step-by-step change 

in number of people 
adopting the behavior:
▪ F(x) … frac. of people 

with threshold  x
▪ s(t) … number of people

participating at time t

▪ Simulate:
▪ s(0) = 0
▪ s(1) = F(0)
▪ s(2) = F(s(1)) = F(F(0))
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 Step-by-step change in number of people :
▪ F(x) … fraction of people with threshold  x
▪ s(t) … number of participants at time t

 Easy to simulate:
▪ s(0) = 0
▪ s(1) = F(0)
▪ s(2) = F(s(1)) = F(F(0))
▪ s(t+1) = F(s(t)) = Ft+1(0)

 Fixed point: F(x)=x
▪ Updates to s(t) to converge

to a stable fixed point
▪ There could be other fixed 

points but starting from 0
we only reach the first one
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 What if we start the process somewhere else?

▪ We move up/down to the next fixed point 

▪ How is market going to change?
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 Each threshold ti is drawn independently from 
some distribution F(x) = Pr[thresh  x]

▪ Suppose: Normal with  =n/2, variance 

Small : Medium :
Normal(45, 10) Normal(45, 27)



Bigger variance let you build a bridge from early adopters to mainstream

Small 
Medium 

F(x)
F(x)

No cascades! Small cascades

Fixed 

point is 

low

Normal(45, 10) Normal(45, 27)



But if we increase the variance the fixed point starts going down

Big  Huge 

Big cascades!

Fixed point

gets lower!

Fixed point

is high!

Normal(45, 33) Normal(45, 50)



 No notion of social network:
▪ Some people are more influential
▪ It matters who the early adopters are, not just how many

 Models people’s awareness of size of participation 
not just actual number of people participating
▪ Modeling perceptions of who is adopting the behavior vs. 

who you believe is adopting
▪ Non-monotone behavior – dropping out if too many 

people adopt
▪ People get “locked in” to certain choice over a period of 

time
 Modeling thresholds

▪ Richer distributions
▪ Deriving thresholds from more basic assumptions

▪ game theoretic models
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 Based on 2 player coordination game
▪ 2 players – each chooses technology A or B

▪ Each person can only adopt one “behavior”, A or B

▪ You gain more payoff if your friend has adopted the 
same behavior as you

[Morris 2000]

Local view of the 

network of node v







 Payoff matrix:

▪ If both v and w adopt behavior A, 
they each get payoff a > 0

▪ If v and w adopt behavior B,
they each get payoff b > 0

▪ If v and w adopt the opposite 
behaviors, they each get 0

 In some large network:

▪ Each node v is playing a copy of the 
game with each of its neighbors

▪ Payoff: sum of node payoffs per game

A B

A a, a 0,0

B 0,0 b,b
v

w



 Let v have d neighbors
 Assume fraction p of v’s neighbors adopt A

▪ Payoffv = a∙p∙d , if v chooses A
= b∙(1-p)∙d , if v chooses B

 Thus: v chooses A if: a∙p∙d > b∙(1-p)∙d
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q… payoff threshold



 Scenario:
Graph where everyone starts with B
Small set S of early adopters of A
▪ Hard-wire S – they keep using A no matter 

what payoffs tell them to do

 Assume payoffs are set in such a way that 
nodes say:
If more than 50% of my friends take A
I’ll also take A

(this means: a = b-ε and q>1/2)
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 Consider infinite graph G

▪ (but each node has finite number of neighbors!)

 We say that a finite set S causes a cascade in 
G with threshold q if, when S adopts A,
eventually every node in G adopts A

 Example: Path
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v chooses A if p>q

If q<1/2 then cascade occurs 

S
p… frac. v’s nbrs. with A

q… payoff threshold



S
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If q<1/3 then 

cascade occurs 

 Infinite Tree:

 Infinite Grid:

If q<1/4 then 

cascade occurs 



 What prevents cascades from spreading?
 Def: Cluster of density ρ is a set of nodes C

where each node in the set has at least ρ
fraction of edges in C

ρ=3/5 ρ=2/3



 Let S be an initial set of 
adopters of A

 All nodes apply threshold 
q to decide whether 
to switch to A

 Two facts:

▪ 1) If G\S contains a cluster of density >(1-q)
then S can not cause a cascade

▪ 2) If S fails to create a cascade, then 
there is a cluster of density >(1-q) in G\S

Sρ=3/5

No cascade if q>2/5 





 So far: 
▪ Behaviors A and B compete

▪ Can only get utility from neighbors of same behavior: A-A
get a, B-B get b, A-B get 0

 Let an extra strategy “AB”
▪ AB-A : gets a

▪ AB-B : gets b

▪ AB-AB : gets max(a, b)

▪ Also: Some cost c for the effort of maintaining 
both strategies (summed over all interactions)
▪ Note: a given node can receive a from one neighbor and b from 

another by playing AB, which is why it could be worth the cost c

A B AB

A a, a 0,0 a, a

B 0,0 b,b b,b

AB a, a b,b max(a,b), max(a,b)

v

w



 Every node in an infinite network starts with B
 Then a finite set S initially adopts A
 Run the model for t=1,2,3,…

▪ Each node selects behavior that will optimize 
payoff (given what its neighbors did in at time t-1)

 How will nodes switch from B to A or AB?

BA A ABa a max(a,b)
AB

b

Payoff

-c -c



 Path graph: Start with all Bs, a > b (A is better) 
 One node switches to A – what happens?

▪ With just A, B: A spreads if a > b

▪ With A, B, AB: Does A spread? 

 Example: a=3, b=2, c=1

BAA
a=3

B B
0 b=2 b=2

BAA
a=3

B B
a=3 b=2 b=2

AB

-1

Cascade stops

a=3



 Example: a=5, b=3, c=1

BAA
a=5

B B
0 b=3 b=3

BAA
a=5

B B
a=5 b=3 b=3

AB

-1

BAA
a=5

B B
a=5 a=5 b=3

AB

-1

AB

-1

AAA
a=5

B B
a=5 a=5 b=3

AB

-1

AB

-1
Cascade never stops!



 Infinite path, start with all Bs
 Payoffs for w: A:a, B:1, AB:a+1-c
 What does node w in A-w-B do?

a

c

1

1

B vs A

AB vs A

wA B

AB vs B

B

B

AB AB

A

A
a+1-c=1

a+1-c=a



 Infinite path, start with all Bs
 Payoffs for w: A:a, B:1, AB:a+1-c
 What does node w in A-w-B do?

a

c
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AB vs A

wA B

AB vs B

B

B

AB AB

A

A
a+1-c=1

a+1-c=a

Since 

a<1, c>1

a is big

c is big

a is high

c <1, AB is opt



 Same reward structure as before but now payoffs 
for w change: A:a, B:1+1, AB:a+1-c

 Notice: Now also AB spreads
 What does node w in AB-w-B do?

wAB B

a

c

1

1

B vs A

AB vs A

AB vs B

B

B
AB AB

A

A

2



 Same reward structure as before but now payoffs 
for w change: A:a, B:1+1, AB:a+1-c

 Notice: Now also AB spreads
 What does node w in AB-w-B do?

wAB B

a

c

1

1

B vs A

AB vs A

AB vs B

B

B
AB AB

A

A

2

a<2, c>1

then 2b > 2a

a is big

c >1

c <1, then

a+1-c > a

AB is opt



 Joining the two pictures:

a

c

1

1

B

AB B→AB → A

A

2

AB spreads indefinitely, followed 
by A (B becomes vestigial)

A spreads directly 
(no adoption of AB)

neither A nor AB 
spreads

AB spreads 
but then stops



 B is the default throughout the 
network until new/better A
comes along. What happens?
▪ Infiltration: If B is too 

compatible then people 
will take on both and then 
drop the worse one (B)

▪ Direct conquest: If A makes 
itself not compatible – people
on the border must choose. 
They pick the better one (A)

▪ Buffer zone: If you choose an 
optimal level then you keep 
a static “buffer” between A and B

a

c

B

stays

B→AB B→AB→A

A spreads

B → A



 So far:
Decision Based Models

▪ Utility based

▪ Deterministic

▪ “Node” centric: A node observes decisions of its 
neighbors and makes its own decision

▪ Require us to know too much about the data

 Next: Probabilistic Models

▪ Let’s you do things by observing data

▪ We lose “why people do things”


