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 Spreading Through Networks
 Granovetter’s Model of Collective Action
 Decision Based Model of Diffusion
▪ Game Theoretic Model of Cascades



 Spreading through 
networks:

▪ Cascading behavior

▪ Diffusion of innovations

▪ Network effects

▪ Epidemics

 Behaviors that cascade 
from node to node like 
an epidemic

 Examples:

▪ Biological:

▪ Diseases via contagion

▪ Technological:

▪ Cascading failures

▪ Spread of information

▪ Social:

▪ Rumors, news, new 
technology

▪ Viral marketing



Obscure 
tech story

Small tech 
blog

WiredSlashdot

Engadget

CNNNYT

BBC









 Product adoption:

▪ Senders and followers of recommendations







 Contagion that spreads over the edges 
of the network

 It creates a propagation tree, i.e., cascade

Cascade 
(propagation graph)

Network

Terminology:

• Stuff that spreads: Contagion

• “Infection” event: Adoption, infection, activation

• We have: Infected/active nodes, adopters



 Decision based models (today!):
▪ Models of product adoption, decision making

▪ A node observes decisions of its neighbors 
and makes its own decision

▪ Example:
▪ You join demonstrations if k of your friends do so too

 Probabilistic models (later):
▪ Models of influence or disease spreading

▪ An infected node tries to “push”
the contagion to an uninfected node

▪ Example:
▪ You “catch” a disease with some prob. 

from each active neighbor in the network





 Collective Action [Granovetter, ‘78]

▪ Model where everyone sees everyone else’s 
behavior (that is, we assume a complete graph)

▪ Examples:

▪ Clapping or getting up and leaving in a theater

▪ Keeping your money or not in a stock market

▪ Neighborhoods in cities changing ethnic composition

▪ Riots, protests, strikes

 How does the number of people participating 
in a given activity grow or shrink over time?

[Granovetter ‘78]



 n people – everyone observes all actions
 Each person i has a threshold ti (0 ≤ 𝑡𝑖 ≤ 1)

▪ Node i will adopt the behavior iff
at least ti fraction of people have 
already adopted:

▪ Small ti: early adopter

▪ Large ti: late adopter

▪ Time moves in discrete steps

 The population is described by {t1,…,tn}

▪ F(x) … fraction of people with threshold ti  x
▪ F(x) is a property of the contagion given to us. F(x) is the c.d.f. of x
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 F(x) … fraction of people with threshold ti  x
▪ F(x) is non-decreasing: 𝑭 𝒙 + 𝜺 ≥ 𝑭 𝒙

 The model is dynamic:
▪ Step-by-step change 

in number of people 
adopting the behavior:
▪ F(x) … frac. of people 

with threshold  x
▪ s(t) … number of people

participating at time t

▪ Simulate:
▪ s(0) = 0
▪ s(1) = F(0)
▪ s(2) = F(s(1)) = F(F(0))
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 Step-by-step change in number of people :
▪ F(x) … fraction of people with threshold  x
▪ s(t) … number of participants at time t

 Easy to simulate:
▪ s(0) = 0
▪ s(1) = F(0)
▪ s(2) = F(s(1)) = F(F(0))
▪ s(t+1) = F(s(t)) = Ft+1(0)

 Fixed point: F(x)=x
▪ Updates to s(t) to converge

to a stable fixed point
▪ There could be other fixed 

points but starting from 0
we only reach the first one

Threshold, x
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Iterating to y=F(x).
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 What if we start the process somewhere else?

▪ We move up/down to the next fixed point 

▪ How is market going to change?
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Note: we are 

assuming a fully

connected graph
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 Each threshold ti is drawn independently from 
some distribution F(x) = Pr[thresh  x]

▪ Suppose: Normal with  =n/2, variance 

Small : Medium :
Normal(45, 10) Normal(45, 27)



Bigger variance let you build a bridge from early adopters to mainstream

Small 
Medium 

F(x)
F(x)

No cascades! Small cascades

Fixed 

point is 

low

Normal(45, 10) Normal(45, 27)



But if we increase the variance the fixed point starts going down

Big  Huge 

Big cascades!

Fixed point

gets lower!

Fixed point

is high!

Normal(45, 33) Normal(45, 50)



 No notion of social network:
▪ Some people are more influential
▪ It matters who the early adopters are, not just how many

 Models people’s awareness of size of participation 
not just actual number of people participating
▪ Modeling perceptions of who is adopting the behavior vs. 

who you believe is adopting
▪ Non-monotone behavior – dropping out if too many 

people adopt
▪ People get “locked in” to certain choice over a period of 

time
 Modeling thresholds

▪ Richer distributions
▪ Deriving thresholds from more basic assumptions

▪ game theoretic models
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 Based on 2 player coordination game
▪ 2 players – each chooses technology A or B

▪ Each person can only adopt one “behavior”, A or B

▪ You gain more payoff if your friend has adopted the 
same behavior as you

[Morris 2000]

Local view of the 

network of node v







 Payoff matrix:

▪ If both v and w adopt behavior A, 
they each get payoff a > 0

▪ If v and w adopt behavior B,
they each get payoff b > 0

▪ If v and w adopt the opposite 
behaviors, they each get 0

 In some large network:

▪ Each node v is playing a copy of the 
game with each of its neighbors

▪ Payoff: sum of node payoffs per game

A B

A a, a 0,0

B 0,0 b,b
v

w



 Let v have d neighbors
 Assume fraction p of v’s neighbors adopt A

▪ Payoffv = a∙p∙d , if v chooses A
= b∙(1-p)∙d , if v chooses B

 Thus: v chooses A if: a∙p∙d > b∙(1-p)∙d
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Threshold:

v chooses A if

p… frac. v’s nbrs. with A

q… payoff threshold



 Scenario:
Graph where everyone starts with B
Small set S of early adopters of A
▪ Hard-wire S – they keep using A no matter 

what payoffs tell them to do

 Assume payoffs are set in such a way that 
nodes say:
If more than 50% of my friends take A
I’ll also take A

(this means: a = b-ε and q>1/2)
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 Consider infinite graph G

▪ (but each node has finite number of neighbors!)

 We say that a finite set S causes a cascade in 
G with threshold q if, when S adopts A,
eventually every node in G adopts A

 Example: Path
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v chooses A if p>q

If q<1/2 then cascade occurs 

S
p… frac. v’s nbrs. with A

q… payoff threshold



S

S

If q<1/3 then 

cascade occurs 

 Infinite Tree:

 Infinite Grid:

If q<1/4 then 

cascade occurs 



 What prevents cascades from spreading?
 Def: Cluster of density ρ is a set of nodes C

where each node in the set has at least ρ
fraction of edges in C

ρ=3/5 ρ=2/3



 Let S be an initial set of 
adopters of A

 All nodes apply threshold 
q to decide whether 
to switch to A

 Two facts:

▪ 1) If G\S contains a cluster of density >(1-q)
then S can not cause a cascade

▪ 2) If S fails to create a cascade, then 
there is a cluster of density >(1-q) in G\S

Sρ=3/5

No cascade if q>2/5 





 So far: 
▪ Behaviors A and B compete

▪ Can only get utility from neighbors of same behavior: A-A
get a, B-B get b, A-B get 0

 Let an extra strategy “AB”
▪ AB-A : gets a

▪ AB-B : gets b

▪ AB-AB : gets max(a, b)

▪ Also: Some cost c for the effort of maintaining 
both strategies (summed over all interactions)
▪ Note: a given node can receive a from one neighbor and b from 

another by playing AB, which is why it could be worth the cost c

A B AB

A a, a 0,0 a, a

B 0,0 b,b b,b

AB a, a b,b max(a,b), max(a,b)

v

w



 Every node in an infinite network starts with B
 Then a finite set S initially adopts A
 Run the model for t=1,2,3,…

▪ Each node selects behavior that will optimize 
payoff (given what its neighbors did in at time t-1)

 How will nodes switch from B to A or AB?

BA A ABa a max(a,b)
AB

b

Payoff

-c -c



 Path graph: Start with all Bs, a > b (A is better) 
 One node switches to A – what happens?

▪ With just A, B: A spreads if a > b

▪ With A, B, AB: Does A spread? 

 Example: a=3, b=2, c=1

BAA
a=3

B B
0 b=2 b=2

BAA
a=3

B B
a=3 b=2 b=2

AB

-1

Cascade stops

a=3



 Example: a=5, b=3, c=1

BAA
a=5

B B
0 b=3 b=3

BAA
a=5

B B
a=5 b=3 b=3

AB

-1

BAA
a=5

B B
a=5 a=5 b=3

AB

-1

AB

-1

AAA
a=5

B B
a=5 a=5 b=3

AB

-1

AB

-1
Cascade never stops!



 Infinite path, start with all Bs
 Payoffs for w: A:a, B:1, AB:a+1-c
 What does node w in A-w-B do?

a

c

1

1

B vs A

AB vs A

wA B

AB vs B

B

B

AB AB

A

A
a+1-c=1

a+1-c=a



 Infinite path, start with all Bs
 Payoffs for w: A:a, B:1, AB:a+1-c
 What does node w in A-w-B do?

a

c

1

1

B vs A

AB vs A

wA B

AB vs B

B

B

AB AB

A

A
a+1-c=1

a+1-c=a

Since 

a<1, c>1

a is big

c is big

a is high

c <1, AB is opt



 Same reward structure as before but now payoffs 
for w change: A:a, B:1+1, AB:a+1-c

 Notice: Now also AB spreads
 What does node w in AB-w-B do?

wAB B

a

c

1

1

B vs A

AB vs A

AB vs B

B

B
AB AB

A

A

2



 Same reward structure as before but now payoffs 
for w change: A:a, B:1+1, AB:a+1-c

 Notice: Now also AB spreads
 What does node w in AB-w-B do?

wAB B

a

c

1

1

B vs A

AB vs A

AB vs B

B

B
AB AB

A

A

2

a<2, c>1

then 2b > 2a

a is big

c >1

c <1, then

a+1-c > a

AB is opt



 Joining the two pictures:

a

c

1

1

B

AB B→AB → A

A

2

AB spreads indefinitely, followed 
by A (B becomes vestigial)

A spreads directly 
(no adoption of AB)

neither A nor AB 
spreads

AB spreads 
but then stops



 B is the default throughout the 
network until new/better A
comes along. What happens?
▪ Infiltration: If B is too 

compatible then people 
will take on both and then 
drop the worse one (B)

▪ Direct conquest: If A makes 
itself not compatible – people
on the border must choose. 
They pick the better one (A)

▪ Buffer zone: If you choose an 
optimal level then you keep 
a static “buffer” between A and B

a

c

B

stays

B→AB B→AB→A

A spreads

B → A



 So far:
Decision Based Models

▪ Utility based

▪ Deterministic

▪ “Node” centric: A node observes decisions of its 
neighbors and makes its own decision

▪ Require us to know too much about the data

 Next: Probabilistic Models

▪ Let’s you do things by observing data

▪ We lose “why people do things”


