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 Overlapping Communities
 Cliques
 Clique Percolation Method (CPM)
 Modeling Networks with Communities
▪ Community-Affiliation Graph Model (AGM)
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High school Company

Stanford (Squash)

Stanford (Basketball)



 Non-overlapping vs. overlapping  communities



What is the structure of community overlaps:
Edge density in the overlaps is higher!
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Communities as “tiles”



 A node can belong to many social “circles”

[Palla et al., ‘05]





 Clique: a maximum complete subgraph in 
which all pairs of vertices are connected by an 
edge

 k-Clique: A clique of size k is a subgraph of k
vertices where the degree of all vertices in the 
induced subgraph is k-1



 Two problems
▪ Find the maximum clique (the one with the largest 

number of vertices) or 

▪ Find all maximal cliques (cliques that are not 
subgraphs of a larger clique; i.e., cannot be 
expanded further).

 Both problems are NP-hard



 No nice way, hard combinatorial problem
 Maximal clique: Clique that can’t be extended
▪ {𝑎, 𝑏, 𝑐} is a clique but not maximal clique

▪ {𝑎, 𝑏, 𝑐, 𝑑} is maximal clique
 Algorithm: Sketch
▪ Start with a seed node

▪ Expand the clique around the seed

▪ Once the clique cannot be further 
expanded we found the maximal clique

▪ Note:
▪ This will generate the same clique multiple times



 Start with a seed vertex 𝒂
 Goal: Find the max clique 𝑸 that 𝒂 belongs to
▪ Observation:

▪ If some 𝒙 belongs to 𝑸 then it is a neighbor of 𝒂
▪ Why? If 𝒂, 𝒙 ∈ 𝑸 but edge (𝒂, 𝒙) does not exist, 𝑸 is not a clique!

 Recursive algorithm:
▪ 𝑸 … current clique

▪ 𝑹 … candidate vertices to expand the clique to
 Example: Start with 𝒂 and expand around it

Q= {a} {a,b} {a,b,c} bktrack {a,b,d}

R= {b,c,d} {b,c,d} {c,d}(c)={} {c}(d)={}

(b)={c,d}

Steps of the recursive algorithm (u)…neighbor set of u



▪ 𝑸 … current clique

▪ 𝑹 … candidate vertices

 Expand(R,Q)

▪ while R ≠ {}

▪ p = vertex in R

▪ Qp = Q  {p} 

▪ Rp = R  (p)

▪ if Rp ≠ {}: Expand(Rp,Qp)

else: output Qp

▪ R = R – {p}



 Prune all vertices (and incident edges) with 
degrees less than k-1

▪ Effective due to the power-law distribution of vertex 
degrees

 “Exact cliques” are rarely observed in real networks

▪ A clique of 1,000 vertices has 499,500 edges

▪ A single edge removal results in a subgraph that is no 
longer a clique (less than 0.0002% of the edges)

 Relaxing Cliques
▪ All vertices have a minimum degree but not necessarily 

k-1





 Two nodes belong to the same community if they 
can be connected through adjacent k-cliques:

▪ k-clique:

▪ Fully connected 
graph on k nodes

▪ Adjacent k-cliques:

▪ overlap in k-1 nodes

 k-clique community

▪ Set of nodes that can 
be reached through a 
sequence of adjacent 
k-cliques

3-clique Adjacent

3-cliques

[Palla et al., ‘05]

Non-adjacent

3-cliques

Two overlapping 3-clique communities



 Two nodes belong to the same community if 
they can be connected through adjacent k-
cliques:

4-clique

Adjacent 4-cliques

Communities for k=4

[Palla et al., ‘05]

Non-adjacent 4-cliques



 Given k,  find all cliques of size k. 
 Create graph (clique graph) where all cliques 

are vertices, and two cliques that share k - 1 
vertices are connected via an edge. 

 Communities are the connected components 
of this graph. 



 Clique Percolation Method:
▪ Find maximal-cliques 

▪ Def: Clique is maximal if 
no superset is a clique

▪ Clique overlap super-graph:
▪ Each clique is a super-node

▪ Connect two cliques if they 
overlap in at least k-1 nodes

▪ Communities:
▪ Connected components of 

the clique overlap matrix

 How to set k?
▪ Set k so that we get the “richest” (most widely 

distributed cluster sizes) community structure

A

C
D

B

A

C

D
B

Cliques Communities

Set: k=3



(1) Graph (2) Clique overlap 

matrix

(3) Thresholded

matrix at 3
(4) Communities

(connected components)

 Start with graph
 Find maximal 

cliques
 Create clique 

overlap matrix
 Threshold the 

matrix at value k-1
▪ If 𝑎𝑖𝑗 < 𝑘 − 1 set 0

 Communities are 
the connected 
components of 
the thresholded
matrix

Cliques
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liq
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size



 Input graph, let k = 3



 Clique  graph for k = 3

 (v1,  v2, v3) 
 (v8, v9, v10)
 (v3, v4, v5, v6, v7,  v8)



 Result

 (v1,  v2, v3) 
 (v8, v9, v10)
 (v3, v4, v5, v6, v7,  v8)

Note: the example 
protein network 
was detected using 
a CPM algorithm



Communities in a 

“tiny” part of a phone 

call network of 4 

million users 

[Palla et al., ‘07]

[Palla et al., ‘07]





 How should we think about large scale 
organization of clusters in networks?

▪ Finding: Community Structure



 How should we think about large scale 
organization of clusters in networks?

▪ Finding: Core-periphery structure

Nested Core-Periphery



 How do we reconcile these two views?
(and still do community detection)

vs.

Community structure Core-periphery



 How community-like is a set of nodes?
 A good cluster S has

▪ Many edges internally

▪ Few edges pointing outside

 What’s a good metric: 
Conductance

Small conductance corresponds to good clusters
(Note |S| < |V|/2)
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 Define:
Network community profile (NCP) plot

Plot the score of best community of size k

Community size, log k

log Φ(k)

k=5 k=7

[WWW ‘08]

k=10

(Note |S| < |V|/2)



• Run the favorite clustering method
• Each dot represents a cluster
• For each size find “best” cluster

Cluster size, log k
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 Meshes, grids, dense random graphs:

d-dimensional meshes California road network

[WWW ‘08]



 Collaborations between scientists in networks 
[Newman, 2005]

Community size, log k
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[WWW ‘08]

Dips in the conductance graph correspond to the 
"good" clusters we can visually detect



Natural hypothesis about NCP:
 NCP of real networks slopes 

downward
 Slope of the NCP corresponds 

to the “dimensionality“ of the 
network

What about 
large networks?

[Internet Mathematics ‘09]



Typical example: General Relativity collaborations
(n=4,158, m=13,422)

[Internet Mathematics ‘09]



[Internet Mathematics ‘09]

-- Rewired graph

-- Real graph
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Better and 
better clusters

Clusters get worse 
and worse

Best cluster has 
~100 nodes



 As clusters grow the number of edges
inside grows slower that the number crossing

Φ=2/10 = 0.2

Each node has twice 
as many children

Φ=1/7=0.14

Φ=8/20 = 0.4

Φ=64/92 = 0.69



 Empirically we note that best clusters 
(corresponding to green nodes) are barely 
connected to the network

NCP plot

 Core-periphery structure



Nothing happens!
  Nestedness of the 

core-periphery structure



Nested Core-Periphery 
(jellyfish, octopus)

Whiskers are 
responsible for 

good communities

Denser and 
denser core 

of the 
network

Core contains 
60% node and 

80% edges



vs.

How do we reconcile these two views?



 Many methods for overlapping communities

▪ Clique percolation [Palla et al. ‘05] 

▪ Link clustering [Ahn et al. ‘10] [Evans et al.‘09]

▪ Clique expansion [Lee et al. ‘10]

▪ Mixed membership stochastic block models 
[Airoldi et al. ’08]

▪ Bayesian matrix factorization [Psorakis et al. ‘11]

 What do these methods assume about 
community overlaps?



 Many overlapping community detection 
methods make an implicit assumption: 

▪Edge probability decreases with the 
number of shared communities

Network Adjacency matrix

Nodes

N
o

d
es

Is this true?



 Basic question: nodes u, v share k communities
 What’s the (u, v) edge probability?

LiveJournal
social network

Amazon
product network



 Edge density in the overlaps is higher!

Communities as “tiles”

“The more different foci (communities) that two individuals share, 

the more likely it is that they will be tied” - S. Feld, 1981



Communities as overlapping tiles
Web of affiliations [Simmel ‘64]

The densest 
part of the 

graph



What does this mean?

Non-overlapping

methods (spectral, 

modularity optimization)

Clique percolation, 

and many other 

overlapping 

methods as well



 Many methods fail to detect dense overlaps:

▪ Clique percolation, …

Clique percolation



 Generative model: How is a network 
generated from community affiliations?

 Model parameters:
▪ Nodes V, Communities C, Memberships M

▪ Each community c is associated with a single 
probability pc

Communities, C

Nodes, V

Community Affiliation Network

Model

pA pB

Memberships, M



 Given parameters (V, C, M, {pc})
▪ Nodes in community c connect to each other by 

flipping a coin with probability pc

▪ Nodes that belong to multiple communities have 
multiple coin flips: Dense community overlaps
▪ If they "miss" the first time, they get another chance through the next community"

Community Affiliation Network

Model

pA pB

Communities, C

Nodes, V

Memberships, M



Model

Network



 AGM is flexible and can 
express variety of 
network structures:
Non-overlapping, 
Nested, Overlapping





 Without ground truth
 With ground truth



 Cluster Cohesion: Measures how closely 
related are objects in a cluster

 Cluster Separation: Measure how distinct or 
well-separated a cluster is from other clusters

66



Zachary’s Karate Club
Club president (34) (circles) and instructor (1) (rectangles)
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the fraction of instances that have labels equal 
to the label of the community’s majority 

68

(5+6+4)/20 = 0.75



 Based on pair counting: the number of pairs of 
vertices which are classified in the same (or 
different) clusters
▪ True Positive (TP): when similar members are 

assigned to the same community (correct decision)

▪ True Negative (TN): when dissimilar members are 
assigned to different communities (correct decision)

▪ False Negative (FN): similar members are assigned 
to different communities (incorrect decision)

▪ False Positive (FP): dissimilar members are assigned 
to the same community (incorrect decision)

C1 C2
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For TP, we need to compute the number of pairs with the 
same label that are in the same community
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For TN: compute the 
number of dissimilar
pairs in dissimilar
communities
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For FP, compute dissimilar pairs that are in the same community

For FN, compute similar members that are in different communities



 Precision (P): the fraction of pairs that have been
correctly assigned to the same community

TP/(TP+FP)

 Recall (R): the fraction of pairs assigned to the
same community of all the pairs that should have
been in the same community.

TP/(TP+FN)

 F-measure:
2PR/(P+R)

73





Finding groups of objects such that the objects in a group 
will be similar (or related) to one another and different 
from (or unrelated to) the objects in other groups

Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 

minimized

75



76

How many clusters?

Four ClustersTwo Clusters

Six Clusters



 Some issues with community detection:

▪ Many different formalizations of clustering 
objective functions 

▪ Objectives are NP-hard to optimize exactly

▪ Methods can find clusters that are 
systematically “biased”

 Questions:

▪ How well do algorithms optimize objectives?

▪ What clusters do different methods find?



 Single-criterion:
▪ Modularity: m-E(m)

▪ Edges cut: c
 Multi-criterion:
▪ Conductance: c/(2m+c)

▪ Expansion: c/n

▪ Density: 1-m/n2

▪ CutRatio: c/n(N-n)

▪ Normalized Cut: c/(2m+c) + c/2(M-m)+c

▪ Flake-ODF: frac. of nodes with more than ½ edges 
pointing outside S

S

n: nodes in S
m: edges in S
c: edges pointing   

outside S

[WWW ‘09]



Many algorithms to implicitly or explicitly 
optimize objectives and extract communities:

 Heuristics:

▪ Girvan-Newman, Modularity optimization:
popular heuristics

▪ Metis: multi-resolution heuristic [Karypis-Kumar ‘98]

 Theoretical approximation algorithms:

▪ Spectral partitioning

[WWW ‘09]



LiveJournal

Spectral

Metis

[WWW ‘09]



500 node communities from Spectral: 

500 node communities from Metis: 

[WWW ‘09]



 Metis gives sets with better 
conductance

 Spectral gives tighter and 
more well-rounded sets

Conductance of  bounding cut

Spectral

Disconnected Metis

Connected Metis

[WWW ‘09]

Diameter of the cluster

External / Internal conductance
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Observations:
 All measures are 

monotonic
 Modularity 

▪ prefers large 
clusters

▪ Ignores small 
clusters

[WWW ‘09]



 All qualitatively 
similar

 Observations:
▪ Conductance, 

Expansion, Norm-
cut, Cut-ratio are 
similar

▪ Flake-ODF prefers 
larger clusters

▪ Density is bad
▪ Cut-ratio has high 

variance

[WWW ‘09]


