Community Detection: Overlapping Communities

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides

- Overlapping Communities
- Cliques
- Clique Percolation Method (CPM)
- Modeling Networks with Communities
 - Community-Affiliation Graph Model (AGM)

Non-overlapping Communities

Network

Adjacency matrix

What if communities overlap?

Overlapping Communities

Non-overlapping vs. overlapping communities

Overlapping Communities

What is the structure of community overlaps: *Edge density in the overlaps is higher!*

Communities as "tiles"

Overlaps of Social Circles

A node can belong to many social "circles"

- Clique: a maximum complete subgraph in which all pairs of vertices are connected by an edge
- k-Clique: A clique of size k is a subgraph of k vertices where the degree of all vertices in the induced subgraph is k-1

Maximum Clique & Maximal Cliques

Two problems

- Find the *maximum clique* (the one with the largest number of vertices) or
- Find all *maximal cliques* (cliques that are not subgraphs of a larger clique; i.e., cannot be expanded further).

Both problems are NP-hard

How to Find Maximal Cliques?

- No nice way, hard combinatorial problem
- Maximal clique: Clique that can't be extended
 - {a, b, c} is a clique but not maximal clique
 - {a, b, c, d} is maximal clique
- Algorithm: Sketch
 - Start with a seed node
 - Expand the clique around the seed
 - Once the clique cannot be further expanded we found the maximal clique

Note:

This will generate the same clique multiple times

How to Find Maximal Cliques?

- Start with a seed vertex a
- Goal: Find the max clique Q that a belongs to
 - Observation:
 - If some x belongs to Q then it is a neighbor of a
 - Why? If $a, x \in Q$ but edge (a, x) does not exist, Q is not a clique!

Recursive algorithm:

- Q ... current clique
- *R* ... candidate vertices to expand the clique to
 Example: Start with *a* and expand around it

Q= R=

Steps of the recursive algorithm

 $\Gamma(u)$...neighbor set of u

How to Find Maximal Cliques?

- **Q** ... current clique
- R ... candidate vertices
- Expand(R,Q)
 - **while** R ≠ {}
 - p = vertex in R
 - $Q_p = Q \cup \{p\}$
 - $R_p = R \cap \Gamma(p)$
 - if R_p ≠ {}: Expand(R_p,Q_p)
 else: output Q_p

 $R = R - \{p\}$

Pruning

- Prune all vertices (and incident edges) with degrees less than *k-1*
 - Effective due to the power-law distribution of vertex degrees
- "Exact cliques" are rarely observed in real networks
 - A clique of 1,000 vertices has 499,500 edges
 - A single edge removal results in a subgraph that is no longer a clique (less than 0.0002% of the edges)

Relaxing Cliques

All vertices have a minimum degree but not necessarily
 k-1

Clique Percolation Method

Clique Percolation Method (CPM)

- Two nodes belong to the same community if they can be connected through adjacent k-cliques:
 - k-clique:
 - Fully connected graph on k nodes
 - Adjacent k-cliques:
 - overlap in k-1 nodes
- k-clique community
 - Set of nodes that can be reached through a sequence of adjacent *k*-cliques

[Palla et al., '05]

Two overlapping 3-clique communities

[Palla et al., '05] Clique Percolation Method (CPM)

Two nodes belong to the same community if they can be connected through adjacent kcliques:

4-clique

Adjacent 4-cliques

Non-adjacent 4-cliques

Communities for k=4

- Given k, find all cliques of size k.
- Create graph (clique graph) where all cliques are vertices, and two cliques that share k - 1 vertices are connected via an edge.
- Communities are the connected components of this graph.

Algorithm 6.2 Clique Percolation Method (CPM)

Require: parameter k

- 1: return Overlapping Communities
- 2: $Cliques_k = find all cliques of size k$
- 3: Construct clique graph G(V, E), where $|V| = |Cliques_k|$
- 4: $E = \{e_{ij} \mid \text{clique } i \text{ and clique } j \text{ share } k 1 \text{ nodes} \}$
- 5: Return all connected components of G

CPM: Steps explained

Clique Percolation Method:

Find maximal-cliques

 Def: Clique is maximal if no superset is a clique

Clique overlap super-graph:

- Each clique is a super-node
- Connect two cliques if they overlap in at least k-1 nodes

Communities:

 Connected components of the clique overlap matrix

How to set k?

Set k so that we get the "richest" (most widely distributed cluster sizes) community structure

CPM method: Example

- Start with graph
- Find maximal cliques
- Create clique overlap matrix
- Threshold the matrix at value *k-1*
 - If a_{ij} < k − 1 set 0</p>
- Communities are the connected components of the thresholded matrix

Input graph, let k = 3

Clique graph for k = 3

(v1, v2, v3)
(v8, v9, v10)
(v3, v4, v5, v6, v7, v8)

Result

(v3, v4, v5, v6, v7, v8)

Note: the example protein network was detected using a CPM algorithm

Example: Phone-Call Network

[Palla et al., '07]

Communities in a "tiny" part of a phone call network of 4 million users [Palla et al., '07]

How to Model Networks with Communities?

Network and Communities

- How should we think about large scale organization of clusters in networks?
 - Finding: Community Structure

Network and Communities

- How should we think about large scale organization of clusters in networks?
 - Finding: Core-periphery structure

Nested Core-Periphery

Network and Communities

How do we reconcile these two views? (and still do community detection)

Community structure

Core-periphery

Community Score

How community-like is a set of nodes?

S

S'

- A good cluster S has
 - Many edges internally
 - Few edges pointing outside
- What's a good metric:
 Conductance

$$\phi(S) = \frac{|\{(i, j) \in E; i \in S, j \notin S\}|}{\sum_{s \in S} d_s}$$

Small conductance corresponds to good clusters (Note |S| < |V|/2)

Network Community Profile Plot

(Note |S| < |V|/2)

Define:

Network community profile (NCP) plot

Plot the score of **best** community of size *k*

$$\Phi(k) = \min_{S \subset V, |S|=k} \phi(S)$$

How to (Really) Compute NCP?

dblp-lars

Cluster size, log k

NCP Plot: Meshes

Meshes, grids, dense random graphs:

NCP plot: Network Science

Collaborations between scientists in networks [Newman, 2005]

Natural Hypothesis

Natural hypothesis about NCP:

- NCP of real networks slopes downward
- Slope of the NCP corresponds to the "dimensionality" of the network

What about large networks?

\bullet Social nets	Nodes	Edges	Description
LIVEJOURNAL Epinions	4,843,953 75.877	42,845,684 405,739	Blog friendships [5] Trust network [28]
CA-DBLP	317,080	1,049,866	Co-authorship [5]
• Information (citation) networks			
Cit-hep-th AmazonProd	$27,400 \\ 524,371$	$352,021 \\ 1,491,793$	Arxiv hep-th [14] Amazon products [8]
• Web graphs			
Web-google Web-wt10g	$855,802 \\ 1,458,316$	$\substack{4,291,352\\6,225,033}$	Google web graph TREC WT10G
• Bipartite affiliation (authors-to-papers) networks			
Atp-DBLP AtM-Imdb	$\begin{array}{c} 615,\!678 \\ 2,\!076,\!978 \end{array}$	944,456 5,847,693	DBLP [21] Actors-to-movies
• Internet networks			
AsSkitter Gnutella	$1,719,037 \\ 62,561$	$12,\!814,\!089 \\ 147,\!878$	Autonom. sys. P2P network [29]

[Internet Mathematics '09]

Large Networks: Very Different

Typical example: General Relativity collaborations (n=4,158, m=13,422)

[Internet Mathematics '09]

More NCP Plots of Networks

-- Real graph
NCP: LiveJournal (n=5m, m=42m)

Explanation: The Upward Part //

As clusters grow the number of edges inside grows slower that the number crossing

Explanation: Downward Part

 Empirically we note that best clusters (corresponding to green nodes) are barely connected to the network

NCP plot

 \Rightarrow Core-periphery structure

What If We Remove Good Clusters?

Suggested Network Structure

Part 2: Explanation

How do we reconcile these two views?

Overlapping Community Detection

- Many methods for overlapping communities
 - Clique percolation [Palla et al. '05]
 - Link clustering [Ahn et al. '10] [Evans et al.'09]
 - Clique expansion [Lee et al. '10]
 - Mixed membership stochastic block models [Airoldi et al. '08]
 - Bayesian matrix factorization [Psorakis et al. '11]

What do these methods assume about community overlaps?

Overlapping Communities

- Many overlapping community detection methods make an implicit assumption:
 - Edge probability decreases with the number of shared communities

Is this true?

y matrix

Ground-truth Communities

Basic question: nodes u, v share k communities
What's the (u, v) edge probability?

Communities as Tiles!

Edge density in the overlaps is higher!

"The more different foci (communities) that two individuals share, the more likely it is that they will be tied" - S. Feld, 1981

Communities as "tiles"

Communities as Tiles/Circles

The densest > part of the graph

Communities as overlapping tiles Web of affiliations [Simmel '64]

Communities in Networks

What does this mean?

Non-overlapping methods (spectral, modularity optimization) Clique percolation, and many other overlapping methods as well

Many Methods Fail

- Many methods fail to detect dense overlaps:
 - Clique percolation, ...

Clique percolation

AGM: Affiliation Graph Model

- Generative model: How is a network generated from community affiliations?
- Model parameters:
 - Nodes V, Communities C, Memberships M
 - Each community c is associated with a single probability p_c

AGM: Generative Process

Given parameters (V, C, M, {p_c})

- Nodes in community c connect to each other by flipping a coin with probability p_c
- Nodes that belong to multiple communities have multiple coin flips: Dense community overlaps

If they "miss" the first time, they get another chance through the next community"

 $p(u,v) = 1 - \prod_{c \in M_u \cap M_v} (1 - p_c)$

AGM: Dense Overlaps

Community-Affiliation Graph Model

 AGM is flexible and can express variety of network structures: Non-overlapping, Nested, Overlapping

Community Evaluation: Extras

Community Evaluation

- Without ground truth
- With ground truth

Eval. Without Ground Truth

- Cluster Cohesion: Measures how closely related are objects in a cluster
- Cluster Separation: Measure how distinct or well-separated a cluster is from other clusters

$$\delta_{int}(\mathcal{C}) = \frac{\# \text{ internal edges of } \mathcal{C}}{n_c(n_c - 1)/2}$$

$$\delta_{ext}(\mathcal{C}) = \frac{\# \text{ inter-cluster edges of } \mathcal{C}}{n_c(n - n_c)}$$

Evaluation With Ground Truth

Zachary's Karate Club Club president (34) (circles) and instructor (1) (rectangles) the fraction of instances that have labels equal to the label of the community's majority

(5+6+4)/20 = 0.75

- Based on pair counting: the number of pairs of vertices which are classified in the same (or different) clusters
 - True Positive (TP): when similar members are assigned to the same community (correct decision)

C2

C1

- True Negative (TN): when dissimilar members are assigned to different communities (correct decision)
- False Negative (FN): similar members are assigned to different communities (incorrect decision)
- False Positive (FP): dissimilar members are assigned to the same community (incorrect decision)

For TP, we need to compute the number of pairs with the same label that are in the same community

$$TP = \underbrace{\begin{pmatrix} 5\\2 \end{pmatrix}}_{Community 1} + \underbrace{\begin{pmatrix} 6\\2 \end{pmatrix}}_{Community 2} + \underbrace{\begin{pmatrix} 4\\2 \end{pmatrix}}_{Community 3} + \underbrace{\begin{pmatrix} 4\\2 \end{pmatrix}}_{Co$$

For TN: compute the number of dissimilar pairs in dissimilar communities

+ $(5 \times 4 + 5 \times 2 + 1 \times 4 + 1 \times 2)$

For FP, compute dissimilar pairs that are in the same community

$$FP = \underbrace{(5 \times 1 + 5 \times 1 + 1 \times 1)}_{Community 1} + \underbrace{(6 \times 1)}_{Community 2} + \underbrace{(4 \times 2)}_{Community 3} = 25$$

For FN, compute similar members that are in different communities

$$FN = \underbrace{(5 \times 1)}_{\times} + \underbrace{(6 \times 1 + 6 \times 2 + 2 \times 1)}_{+} + \underbrace{(4 \times 1)}_{\vartriangle} = 29$$

Precision (P): the fraction of pairs that have been correctly assigned to the same community
 TP/(TP+FP)

Recall (R): the fraction of pairs assigned to the same community of all the pairs that should have been in the same community.

TP/(TP+FN)

F-measure:

2PR/(P+R)

Communities: Issues and Questions

What is Cluster Analysis?

Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Clusters Can Be Ambiguous

Two Clusters

Four Clusters

Communities: Issues and Questions

Some issues with community detection:

- Many different formalizations of clustering objective functions
- Objectives are NP-hard to optimize exactly
- Methods can find clusters that are systematically "biased"

Questions:

- How well do algorithms optimize objectives?
- What clusters do different methods find?

Many Different Objective Functions

Single-criterion:

- Modularity: m-E(m)
- Edges cut: cMulti-criterion:
 - Conductance: c/(2m+c)
 - Expansion: c/n
 - Density: 1-m/n²
 - CutRatio: c/n(N-n)
 - Normalized Cut: c/(2m+c) + c/2(M-m)+c
 - Flake-ODF: frac. of nodes with more than ¹/₂ edges pointing outside S

n: nodes in Sm: edges in Sc: edges pointing outside S

Many Classes of Algorithms

Many algorithms to implicitly or explicitly optimize objectives and extract communities:
Heuristics:

- Girvan-Newman, Modularity optimization: popular heuristics
- Metis: multi-resolution heuristic [Karypis-Kumar '98]
- Theoretical approximation algorithms:
 - Spectral partitioning

[WWW `09]

NCP: Live Journal

Properties of Clusters (1)

500 node communities from Spectral:

500 node communities from Metis:

[WWW `09]

Properties of Clusters (2)

- Metis gives sets with better conductance
- Spectral gives tighter and more well-rounded sets

Single-criterion Objectives

Observations:

- All measures are monotonic
- Modularity
 - prefers large clusters
 - Ignores small clusters

Multi-criterion Objectives

