
Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides



 Graph Partitioning
▪ Graph Cuts
▪ Spectral Clustering



 Undirected graph 𝑮(𝑽, 𝑬):

 Bi-partitioning task:

▪ Divide vertices into two disjoint groups 𝑨,𝑩

 Questions:
▪ How can we define a “good” partition of 𝑮?

▪ How can we efficiently identify such a partition?

1

3
2

5

4
6

A B

1

3

2

5

4
6



 What makes a good partition?

▪ Maximize the number of within-group 
connections

▪ Minimize the number of between-group 
connections

1

3

2

5

4
6

A B



A B

 Express partitioning objectives as a function 
of the “edge cut” of the partition

 Cut: Set of edges with only one vertex in a 
group:

cut(A,B) = 2
1

3

2

5

4
6



 Criterion: Minimum-cut
▪ Minimize weight of connections between groups

 Degenerate case:

 Problem:
▪ Only considers external cluster connections

▪ Does not consider internal cluster connectivity

arg minA,B cut(A,B)

“Optimal” cut

Minimum cut



 Since the minimum cut does not always yield 
good results we need extra constraints to 
make the problem meaningful

 Graph Bisection

▪ Partition the graph into two equal sets of nodes

 Kernighan-Lin algorithm

▪ Start with random equal partitions

▪ Swap nodes to improve some quality metric (e.g., 
cut, modularity, etc)



Criterion: Ratio-cut
Normalize cut by the size of the groups

Ratio-cut=
Cut(U,V−U)

|𝑈|
+ 
Cut(U,V−U)

|𝑉−𝑈|



Criterion: Normalized-cut
Connectivity between groups relative to the 
density of each group

𝑣𝑜𝑙(𝑈): total weight of the edges with at least 
one endpoint in 𝑈: 𝑣𝑜𝑙 𝑈 = σ𝑖∈𝑈 𝑑𝑖

Why use these criteria?

◼ Produce more balanced partitions

9

Normalized-cut=
Cut(U,V−U)

𝑉𝑜𝑙(𝑈)
+ 

Cut(U,V−U)

𝑉𝑜𝑙(𝑉−𝑈)



Normalized-Cut(Red) = 
1

1
+ 

1

27
=

28

27

Normalized-Cut(Green) = 
2

12
+ 

2

16
=

14

48

Ratio-Cut(Red) = 
1

1
+ 

1

8
= 
9

8

Ratio-Cut(Green) = 
2

5
+ 

2

4
= 

18

20

Cut(Red) = 1

Minimizing Normalized-
cut is even better for 
Green due to density 
constraint (volume)

Cut(Green) = 2



Which of the three cuts has the best 
(min, normalized, ratio) cut?



 Criterion: Conductance [Shi-Malik, ’97]

▪ Connectivity between groups relative to the 
density of each group

𝒗𝒐𝒍(𝑨): total weight of the edges with at least 
one endpoint in 𝑨: 𝒗𝒐𝒍 𝑨 = σ𝒊∈𝑨𝒌𝒊

◼ Why use this criterion?

◼ Produces more balanced partitions

 How do we efficiently find a good partition?

▪ Problem: Computing optimal cut is NP-hard

[Shi-Malik]



 Ratio-cut and normalized-cut can be 
reformulated in matrix format and solved 
using spectral clustering





 Three basic stages:

▪ 1) Pre-processing

▪ Construct a matrix representation of the graph

▪ 2) Decomposition

▪ Compute eigenvalues and eigenvectors of the matrix

▪ Map each point to a lower-dimensional representation 
based on one or more eigenvectors

▪ 3) Grouping

▪ Assign points to two or more clusters, based on the new 
representation

 But first, let’s define the problem



 A: adjacency matrix of undirected G

▪ Aij =1 if (𝒊, 𝒋) is an edge, else 0

 x is a vector in n with components (𝒙𝟏, … , 𝒙𝒏)

▪ Think of it as a label/value of each node of 𝑮

 What is the meaning of A x?

 Entry yi is a sum of labels xj of neighbors of i



 Spectral Graph Theory:
▪ Analyze the “spectrum” of matrix representing 𝑮

▪ Spectrum: Eigenvectors 𝒙𝒊 of a graph, ordered by the 
magnitude (strength) of their corresponding 
eigenvalues 𝝀𝒊:

▪ Spectral clustering: use the eigenvectors of A or 
graphs derived by it (mostly graph Laplacian)

𝑨 ⋅ 𝒙 = 𝝀 ⋅ 𝒙

Note: We sort 𝝀𝒊 in ascending (not descending) order!



 Adjacency matrix (A):
▪ n n matrix

▪ A=[aij], aij=1 if edge between node i and j

 Important properties: 
▪ Symmetric matrix

▪ Eigenvectors are real and orthogonal

1

3

2

5

4
6

1 2 3 4 5 6

1 0 1 1 0 1 0

2 1 0 1 0 0 0

3 1 1 0 1 0 0

4 0 0 1 0 1 1

5 1 0 0 1 0 1

6 0 0 0 1 1 0



 Degree matrix (D):
▪ n n diagonal matrix

▪ D=[dii], dii = degree of node i

1

3

2

5

4
6

1 2 3 4 5 6

1 3 0 0 0 0 0

2 0 2 0 0 0 0

3 0 0 3 0 0 0

4 0 0 0 3 0 0

5 0 0 0 0 3 0

6 0 0 0 0 0 2



 Laplacian matrix (L):

▪ n n symmetric matrix

 Laplacian matrix L important properties:

▪ Eigenvalues are non-negative real numbers

▪ Eigenvectors are real and orthogonal

𝑳 = 𝑫 − 𝑨

1

3

2

5

4
6

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2



1

3

2

5

4
6



 What is a trivial eigenpair?

▪ 𝒙 = (𝟏,… , 𝟏) then 𝑳 ⋅ 𝒙 = 𝟎 and so 𝝀 = 𝝀𝟏 = 𝟎

▪ λ1 = 0 is the smallest eigenvalue



 The second smallest eigenvalue (also known 
as Fielder value) λ2 satisfies

 For the Laplacian, it is:

Lxxminλ T

1x,wx
2

1 =⊥
=

1wx ⊥  =
i i 0x

LxxT ( )


−
Ej)(i,

2

ji xx



( )



−

Ej)(i,

2

ji
0x

xxmin where  =
i i 0x

Thus, the eigenvector for eigenvalue λ2

(called the Fielder vector) minimizes 

Intuitively:
▪ minimum when xi and xj close whenever there is an edge

between nodes i and j in the graph
▪ x must have some positive and some negative components



▪ A partition of the graph by taking: 
o one set to be the nodes i whose corresponding vector 

component xi is positive and 
o the other set to be the j nodes whose corresponding 

vector component xj is negative. 

▪ The cut between the two sets will have a small number of 
edges because (xi−xj)

2 is likely to be smaller if both xi and xj

have the same sign than if they have different signs. 

▪ Thus, minimizing xTLx under the required constraints will 
end giving xi and xj the same sign if there is an edge (i, j).



 What we know about x?

▪ 𝑥 is unit vector: σ𝑖 𝑥𝑖
2 = 1

▪ 𝑥 is orthogonal to 1st eigenvector (1,… , 1) thus: 
σ𝑖 𝑥𝑖 ⋅ 1 = σ𝑖 𝑥𝑖 = 0

30


 −

=


2

2

),(

2
 

)(
min

ii

jiEji

x

xx


All labelings

of nodes 𝑖 so 

that σ𝑥𝑖 = 0

We want to assign values 𝑥𝑖 to nodes i such that 

few edges cross 0.

(we want xi and xj to subtract each other)
𝑥𝑖 0

x

𝑥𝑗
Balance to minimize



 How to define a “good” partition of a graph?

▪ Minimize a given graph cut criterion

 How to efficiently identify such a partition?

▪ Approximate using information provided by the 
eigenvalues and eigenvectors of a graph

 Spectral Clustering



 Three basic stages:

▪ 1) Pre-processing

▪ Construct a matrix representation of the graph

▪ 2) Decomposition

▪ Compute eigenvalues and eigenvectors of the matrix

▪ Map each point to a lower-dimensional representation 
based on one or more eigenvectors

▪ 3) Grouping

▪ Assign points to two or more clusters, based on the new 
representation



 1) Pre-processing:
▪ Build Laplacian

matrix L of the 
graph

 2)
Decomposition:
▪ Find eigenvalues 

and eigenvectors x
of the matrix L

▪ Map vertices to 
corresponding 
components of 2

0.0-0.4-0.40.4-0.60.4

0.50.4-0.2-0.5-0.30.4

-0.50.40.60.1-0.30.4

0.5-0.40.60.10.30.4

0.00.4-0.40.40.60.4

-0.5-0.4-0.2-0.50.30.4

5.0

4.0

3.0

3.0

1.0

0.0

= X =

How do we now 
find the clusters?

-0.66

-0.35

-0.34

0.33

0.62

0.31

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2



 3) Grouping:
▪ Sort components of reduced 1-dimensional vector
▪ Identify clusters by splitting the sorted vector in two

 How to choose a splitting point?
▪ Naïve approaches: 
▪ Split at 0 or median value

▪ More expensive approaches:
▪ Attempt to minimize normalized cut in 1-dimension 

(sweep over ordering of nodes induced by the eigenvector)

-0.66

-0.35

-0.34

0.33

0.62

0.31 Split at 0:

Cluster A: Positive points

Cluster B: Negative points

0.33

0.62

0.31

-0.66

-0.35

-0.34

A B



Rank in x2

V
a
lu

e
 o

f 
x

2



Rank in x2

V
a
lu

e
 o

f 
x

2

Components of x2



Components of x1

Components of x3



 How do we partition a graph into k clusters?

 Two basic approaches:

▪ Recursive bi-partitioning [Hagen et al., ’92]

▪ Recursively apply bi-partitioning algorithm in a 
hierarchical divisive manner

▪ Disadvantages: Inefficient, unstable

▪ Cluster multiple eigenvectors [Shi-Malik, ’00]

▪ Build a reduced space from multiple eigenvectors

▪ Commonly used in recent papers

▪ A preferable approach…





 Use several of the eigenvectors to partition the 
graph

 If we use m eigenvectors, and set a threshold for 
each, we can get a partition into 2m groups, each 
group consisting of the nodes that are above or 
below threshold for each of the eigenvectors, in 
a particular pattern.



1

3

2

5

4
6

If we use both the 2nd and 3rd eigenvectors:
• nodes 2 and 3 (positive in both)
• nodes 5 and 6 (negative in 2nd, positive in 3rd)
• nodes 1 and 4 alone

Note that while each eigenvector tries to produce a minimum-sized cut,
successive eigenvectors have to satisfy more and more constraints => the cuts
progressively worse.



 Approximates the optimal cut [Shi-Malik, ’00]
▪ Can be used to approximate optimal k-way normalized 

cut
 Emphasizes cohesive clusters
▪ Increases the unevenness in the distribution of the data
▪ Associations between similar points are amplified, 

associations between dissimilar points are attenuated
▪ The data begins to “approximate a clustering”

 Well-separated space
▪ Transforms data to a new “embedded space”, 

consisting of k orthogonal basis vectors
 Multiple eigenvectors prevent instability due to 

information loss



 METIS:
▪ Heuristic but works really well in practice
▪ http://glaros.dtc.umn.edu/gkhome/views/metis

 Graclus:
▪ Based on kernel k-means
▪ http://www.cs.utexas.edu/users/dml/Software/graclus.html

 Louvain:
▪ Based on Modularity optimization
▪ http://perso.uclouvain.be/vincent.blondel/research/louvain.html

 Clique percolation method:
▪ For finding overlapping clusters
▪ http://angel.elte.hu/cfinder/

http://glaros.dtc.umn.edu/gkhome/views/metis
http://www.cs.utexas.edu/users/dml/Software/graclus.html
http://perso.uclouvain.be/vincent.blondel/research/louvain.html
http://angel.elte.hu/cfinder/


▪ Use the lowest k eigenvalues of L to construct 
the nxk graph G’ that has these eigenvectors 
as columns

▪ The n-rows represent the graph vertices in a 
k-dimensional Euclidean space 

▪ Group these vertices in k clusters using k-
means clustering or similar techniques



 The values of x minimize

 For weighted matrices

 The ordering according to the xi values will 
group similar (connected) nodes together

 Physical interpretation: The stable state of 
springs placed on the edges of the graph  

( )2
),(





−

Eji

ji xx
0x

min

 ( ) −


j)(i,

2

ji
0x

xxji,Amin

 =
i i 0x

 =
i i 0x



 Can be used to cluster any points (not just 
vertices), as long as an appropriate similarity 
matrix 

 Needs to be symmetric and non-negative

 How to construct a graph:
▪ ε-neighborhood graph: connect all points whose 

pairwise distances are smaller than ε
▪ k-nearest neighbor graph: connect each point with 

each k nearest neighbor
▪ full graph: connect all points with weight in the edge 

(i, j) equal to the similarity of i and j


