
Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides

 Graph Partitioning
▪ Graph Cuts
▪ Spectral Clustering

 Undirected graph 𝑮(𝑽, 𝑬):

 Bi-partitioning task:

▪ Divide vertices into two disjoint groups 𝑨,𝑩

 Questions:
▪ How can we define a “good” partition of 𝑮?

▪ How can we efficiently identify such a partition?

1

3
2

5

4
6

A B

1

3

2

5

4
6

 What makes a good partition?

▪ Maximize the number of within-group
connections

▪ Minimize the number of between-group
connections

1

3

2

5

4
6

A B

A B

 Express partitioning objectives as a function
of the “edge cut” of the partition

 Cut: Set of edges with only one vertex in a
group:

cut(A,B) = 2
1

3

2

5

4
6

 Criterion: Minimum-cut
▪ Minimize weight of connections between groups

 Degenerate case:

 Problem:
▪ Only considers external cluster connections

▪ Does not consider internal cluster connectivity

arg minA,B cut(A,B)

“Optimal” cut

Minimum cut

 Since the minimum cut does not always yield
good results we need extra constraints to
make the problem meaningful

 Graph Bisection

▪ Partition the graph into two equal sets of nodes

 Kernighan-Lin algorithm

▪ Start with random equal partitions

▪ Swap nodes to improve some quality metric (e.g.,
cut, modularity, etc)

Criterion: Ratio-cut
Normalize cut by the size of the groups

Ratio-cut=
Cut(U,V−U)

|𝑈|
+
Cut(U,V−U)

|𝑉−𝑈|

Criterion: Normalized-cut
Connectivity between groups relative to the
density of each group

𝑣𝑜𝑙(𝑈): total weight of the edges with at least
one endpoint in 𝑈: 𝑣𝑜𝑙 𝑈 = σ𝑖∈𝑈 𝑑𝑖

Why use these criteria?

◼ Produce more balanced partitions

9

Normalized-cut=
Cut(U,V−U)

𝑉𝑜𝑙(𝑈)
+

Cut(U,V−U)

𝑉𝑜𝑙(𝑉−𝑈)

Normalized-Cut(Red) =
1

1
+

1

27
=

28

27

Normalized-Cut(Green) =
2

12
+

2

16
=

14

48

Ratio-Cut(Red) =
1

1
+

1

8
=
9

8

Ratio-Cut(Green) =
2

5
+

2

4
=

18

20

Cut(Red) = 1

Minimizing Normalized-
cut is even better for
Green due to density
constraint (volume)

Cut(Green) = 2

Which of the three cuts has the best
(min, normalized, ratio) cut?

 Criterion: Conductance [Shi-Malik, ’97]

▪ Connectivity between groups relative to the
density of each group

𝒗𝒐𝒍(𝑨): total weight of the edges with at least
one endpoint in 𝑨: 𝒗𝒐𝒍 𝑨 = σ𝒊∈𝑨𝒌𝒊

◼ Why use this criterion?

◼ Produces more balanced partitions

 How do we efficiently find a good partition?

▪ Problem: Computing optimal cut is NP-hard

[Shi-Malik]

 Ratio-cut and normalized-cut can be
reformulated in matrix format and solved
using spectral clustering

 Three basic stages:

▪ 1) Pre-processing

▪ Construct a matrix representation of the graph

▪ 2) Decomposition

▪ Compute eigenvalues and eigenvectors of the matrix

▪ Map each point to a lower-dimensional representation
based on one or more eigenvectors

▪ 3) Grouping

▪ Assign points to two or more clusters, based on the new
representation

 But first, let’s define the problem

 A: adjacency matrix of undirected G

▪ Aij =1 if (𝒊, 𝒋) is an edge, else 0

 x is a vector in n with components (𝒙𝟏, … , 𝒙𝒏)

▪ Think of it as a label/value of each node of 𝑮

 What is the meaning of A x?

 Entry yi is a sum of labels xj of neighbors of i

 Spectral Graph Theory:
▪ Analyze the “spectrum” of matrix representing 𝑮

▪ Spectrum: Eigenvectors 𝒙𝒊 of a graph, ordered by the
magnitude (strength) of their corresponding
eigenvalues 𝝀𝒊:

▪ Spectral clustering: use the eigenvectors of A or
graphs derived by it (mostly graph Laplacian)

𝑨 ⋅ 𝒙 = 𝝀 ⋅ 𝒙

Note: We sort 𝝀𝒊 in ascending (not descending) order!

 Adjacency matrix (A):
▪ n n matrix

▪ A=[aij], aij=1 if edge between node i and j

 Important properties:
▪ Symmetric matrix

▪ Eigenvectors are real and orthogonal

1

3

2

5

4
6

1 2 3 4 5 6

1 0 1 1 0 1 0

2 1 0 1 0 0 0

3 1 1 0 1 0 0

4 0 0 1 0 1 1

5 1 0 0 1 0 1

6 0 0 0 1 1 0

 Degree matrix (D):
▪ n n diagonal matrix

▪ D=[dii], dii = degree of node i

1

3

2

5

4
6

1 2 3 4 5 6

1 3 0 0 0 0 0

2 0 2 0 0 0 0

3 0 0 3 0 0 0

4 0 0 0 3 0 0

5 0 0 0 0 3 0

6 0 0 0 0 0 2

 Laplacian matrix (L):

▪ n n symmetric matrix

 Laplacian matrix L important properties:

▪ Eigenvalues are non-negative real numbers

▪ Eigenvectors are real and orthogonal

𝑳 = 𝑫 − 𝑨

1

3

2

5

4
6

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2

1

3

2

5

4
6

 What is a trivial eigenpair?

▪ 𝒙 = (𝟏,… , 𝟏) then 𝑳 ⋅ 𝒙 = 𝟎 and so 𝝀 = 𝝀𝟏 = 𝟎

▪ λ1 = 0 is the smallest eigenvalue

 The second smallest eigenvalue (also known
as Fielder value) λ2 satisfies

 For the Laplacian, it is:

Lxxminλ T

1x,wx
2

1 =⊥
=

1wx ⊥  =
i i 0x

LxxT ()


−
Ej)(i,

2

ji xx

()



−

Ej)(i,

2

ji
0x

xxmin where  =
i i 0x

Thus, the eigenvector for eigenvalue λ2

(called the Fielder vector) minimizes

Intuitively:
▪ minimum when xi and xj close whenever there is an edge

between nodes i and j in the graph
▪ x must have some positive and some negative components

▪ A partition of the graph by taking:
o one set to be the nodes i whose corresponding vector

component xi is positive and
o the other set to be the j nodes whose corresponding

vector component xj is negative.

▪ The cut between the two sets will have a small number of
edges because (xi−xj)

2 is likely to be smaller if both xi and xj

have the same sign than if they have different signs.

▪ Thus, minimizing xTLx under the required constraints will
end giving xi and xj the same sign if there is an edge (i, j).

 What we know about x?

▪ 𝑥 is unit vector: σ𝑖 𝑥𝑖
2 = 1

▪ 𝑥 is orthogonal to 1st eigenvector (1,… , 1) thus:
σ𝑖 𝑥𝑖 ⋅ 1 = σ𝑖 𝑥𝑖 = 0

30


 −

=


2

2

),(

2

)(
min

ii

jiEji

x

xx


All labelings

of nodes 𝑖 so

that σ𝑥𝑖 = 0

We want to assign values 𝑥𝑖 to nodes i such that

few edges cross 0.

(we want xi and xj to subtract each other)
𝑥𝑖 0

x

𝑥𝑗
Balance to minimize

 How to define a “good” partition of a graph?

▪ Minimize a given graph cut criterion

 How to efficiently identify such a partition?

▪ Approximate using information provided by the
eigenvalues and eigenvectors of a graph

 Spectral Clustering

 Three basic stages:

▪ 1) Pre-processing

▪ Construct a matrix representation of the graph

▪ 2) Decomposition

▪ Compute eigenvalues and eigenvectors of the matrix

▪ Map each point to a lower-dimensional representation
based on one or more eigenvectors

▪ 3) Grouping

▪ Assign points to two or more clusters, based on the new
representation

 1) Pre-processing:
▪ Build Laplacian

matrix L of the
graph

 2)
Decomposition:
▪ Find eigenvalues 

and eigenvectors x
of the matrix L

▪ Map vertices to
corresponding
components of 2

0.0-0.4-0.40.4-0.60.4

0.50.4-0.2-0.5-0.30.4

-0.50.40.60.1-0.30.4

0.5-0.40.60.10.30.4

0.00.4-0.40.40.60.4

-0.5-0.4-0.2-0.50.30.4

5.0

4.0

3.0

3.0

1.0

0.0

= X =

How do we now
find the clusters?

-0.66

-0.35

-0.34

0.33

0.62

0.31

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2

 3) Grouping:
▪ Sort components of reduced 1-dimensional vector
▪ Identify clusters by splitting the sorted vector in two

 How to choose a splitting point?
▪ Naïve approaches:
▪ Split at 0 or median value

▪ More expensive approaches:
▪ Attempt to minimize normalized cut in 1-dimension

(sweep over ordering of nodes induced by the eigenvector)

-0.66

-0.35

-0.34

0.33

0.62

0.31 Split at 0:

Cluster A: Positive points

Cluster B: Negative points

0.33

0.62

0.31

-0.66

-0.35

-0.34

A B

Rank in x2

V
a
lu

e
 o

f
x

2

Rank in x2

V
a
lu

e
 o

f
x

2

Components of x2

Components of x1

Components of x3

 How do we partition a graph into k clusters?

 Two basic approaches:

▪ Recursive bi-partitioning [Hagen et al., ’92]

▪ Recursively apply bi-partitioning algorithm in a
hierarchical divisive manner

▪ Disadvantages: Inefficient, unstable

▪ Cluster multiple eigenvectors [Shi-Malik, ’00]

▪ Build a reduced space from multiple eigenvectors

▪ Commonly used in recent papers

▪ A preferable approach…

 Use several of the eigenvectors to partition the
graph

 If we use m eigenvectors, and set a threshold for
each, we can get a partition into 2m groups, each
group consisting of the nodes that are above or
below threshold for each of the eigenvectors, in
a particular pattern.

1

3

2

5

4
6

If we use both the 2nd and 3rd eigenvectors:
• nodes 2 and 3 (positive in both)
• nodes 5 and 6 (negative in 2nd, positive in 3rd)
• nodes 1 and 4 alone

Note that while each eigenvector tries to produce a minimum-sized cut,
successive eigenvectors have to satisfy more and more constraints => the cuts
progressively worse.

 Approximates the optimal cut [Shi-Malik, ’00]
▪ Can be used to approximate optimal k-way normalized

cut
 Emphasizes cohesive clusters
▪ Increases the unevenness in the distribution of the data
▪ Associations between similar points are amplified,

associations between dissimilar points are attenuated
▪ The data begins to “approximate a clustering”

 Well-separated space
▪ Transforms data to a new “embedded space”,

consisting of k orthogonal basis vectors
 Multiple eigenvectors prevent instability due to

information loss

 METIS:
▪ Heuristic but works really well in practice
▪ http://glaros.dtc.umn.edu/gkhome/views/metis

 Graclus:
▪ Based on kernel k-means
▪ http://www.cs.utexas.edu/users/dml/Software/graclus.html

 Louvain:
▪ Based on Modularity optimization
▪ http://perso.uclouvain.be/vincent.blondel/research/louvain.html

 Clique percolation method:
▪ For finding overlapping clusters
▪ http://angel.elte.hu/cfinder/

http://glaros.dtc.umn.edu/gkhome/views/metis
http://www.cs.utexas.edu/users/dml/Software/graclus.html
http://perso.uclouvain.be/vincent.blondel/research/louvain.html
http://angel.elte.hu/cfinder/

▪ Use the lowest k eigenvalues of L to construct
the nxk graph G’ that has these eigenvectors
as columns

▪ The n-rows represent the graph vertices in a
k-dimensional Euclidean space

▪ Group these vertices in k clusters using k-
means clustering or similar techniques

 The values of x minimize

 For weighted matrices

 The ordering according to the xi values will
group similar (connected) nodes together

 Physical interpretation: The stable state of
springs placed on the edges of the graph

()2
),(





−

Eji

ji xx
0x

min

 () −


j)(i,

2

ji
0x

xxji,Amin

 =
i i 0x

 =
i i 0x

 Can be used to cluster any points (not just
vertices), as long as an appropriate similarity
matrix

 Needs to be symmetric and non-negative

 How to construct a graph:
▪ ε-neighborhood graph: connect all points whose

pairwise distances are smaller than ε
▪ k-nearest neighbor graph: connect each point with

each k nearest neighbor
▪ full graph: connect all points with weight in the edge

(i, j) equal to the similarity of i and j

