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 Graph Partitioning
▪ Graph Cuts
▪ Spectral Clustering



 Undirected graph 𝑮(𝑽, 𝑬):

 Bi-partitioning task:

▪ Divide vertices into two disjoint groups 𝑨,𝑩

 Questions:
▪ How can we define a “good” partition of 𝑮?

▪ How can we efficiently identify such a partition?
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 What makes a good partition?

▪ Maximize the number of within-group 
connections

▪ Minimize the number of between-group 
connections
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 Express partitioning objectives as a function 
of the “edge cut” of the partition

 Cut: Set of edges with only one vertex in a 
group:

cut(A,B) = 2
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 Criterion: Minimum-cut
▪ Minimize weight of connections between groups

 Degenerate case:

 Problem:
▪ Only considers external cluster connections

▪ Does not consider internal cluster connectivity

arg minA,B cut(A,B)

“Optimal” cut

Minimum cut



 Since the minimum cut does not always yield 
good results we need extra constraints to 
make the problem meaningful

 Graph Bisection

▪ Partition the graph into two equal sets of nodes

 Kernighan-Lin algorithm

▪ Start with random equal partitions

▪ Swap nodes to improve some quality metric (e.g., 
cut, modularity, etc)



Criterion: Ratio-cut
Normalize cut by the size of the groups

Ratio-cut=
Cut(U,V−U)

|𝑈|
+ 
Cut(U,V−U)

|𝑉−𝑈|



Criterion: Normalized-cut
Connectivity between groups relative to the 
density of each group

𝑣𝑜𝑙(𝑈): total weight of the edges with at least 
one endpoint in 𝑈: 𝑣𝑜𝑙 𝑈 = σ𝑖∈𝑈 𝑑𝑖

Why use these criteria?

◼ Produce more balanced partitions
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Normalized-cut=
Cut(U,V−U)

𝑉𝑜𝑙(𝑈)
+ 

Cut(U,V−U)

𝑉𝑜𝑙(𝑉−𝑈)
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Cut(Red) = 1

Minimizing Normalized-
cut is even better for 
Green due to density 
constraint (volume)

Cut(Green) = 2



Which of the three cuts has the best 
(min, normalized, ratio) cut?



 Criterion: Conductance [Shi-Malik, ’97]

▪ Connectivity between groups relative to the 
density of each group

𝒗𝒐𝒍(𝑨): total weight of the edges with at least 
one endpoint in 𝑨: 𝒗𝒐𝒍 𝑨 = σ𝒊∈𝑨𝒌𝒊

◼ Why use this criterion?

◼ Produces more balanced partitions

 How do we efficiently find a good partition?

▪ Problem: Computing optimal cut is NP-hard

[Shi-Malik]



 Ratio-cut and normalized-cut can be 
reformulated in matrix format and solved 
using spectral clustering





 Three basic stages:

▪ 1) Pre-processing

▪ Construct a matrix representation of the graph

▪ 2) Decomposition

▪ Compute eigenvalues and eigenvectors of the matrix

▪ Map each point to a lower-dimensional representation 
based on one or more eigenvectors

▪ 3) Grouping

▪ Assign points to two or more clusters, based on the new 
representation

 But first, let’s define the problem



 A: adjacency matrix of undirected G

▪ Aij =1 if (𝒊, 𝒋) is an edge, else 0

 x is a vector in n with components (𝒙𝟏, … , 𝒙𝒏)

▪ Think of it as a label/value of each node of 𝑮

 What is the meaning of A x?

 Entry yi is a sum of labels xj of neighbors of i



 Spectral Graph Theory:
▪ Analyze the “spectrum” of matrix representing 𝑮

▪ Spectrum: Eigenvectors 𝒙𝒊 of a graph, ordered by the 
magnitude (strength) of their corresponding 
eigenvalues 𝝀𝒊:

▪ Spectral clustering: use the eigenvectors of A or 
graphs derived by it (mostly graph Laplacian)

𝑨 ⋅ 𝒙 = 𝝀 ⋅ 𝒙

Note: We sort 𝝀𝒊 in ascending (not descending) order!



 Adjacency matrix (A):
▪ n n matrix

▪ A=[aij], aij=1 if edge between node i and j

 Important properties: 
▪ Symmetric matrix

▪ Eigenvectors are real and orthogonal
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1 2 3 4 5 6

1 0 1 1 0 1 0

2 1 0 1 0 0 0

3 1 1 0 1 0 0

4 0 0 1 0 1 1

5 1 0 0 1 0 1

6 0 0 0 1 1 0



 Degree matrix (D):
▪ n n diagonal matrix

▪ D=[dii], dii = degree of node i
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1 2 3 4 5 6

1 3 0 0 0 0 0

2 0 2 0 0 0 0

3 0 0 3 0 0 0

4 0 0 0 3 0 0

5 0 0 0 0 3 0

6 0 0 0 0 0 2



 Laplacian matrix (L):

▪ n n symmetric matrix

 Laplacian matrix L important properties:

▪ Eigenvalues are non-negative real numbers

▪ Eigenvectors are real and orthogonal

𝑳 = 𝑫 − 𝑨
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1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2
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 What is a trivial eigenpair?

▪ 𝒙 = (𝟏,… , 𝟏) then 𝑳 ⋅ 𝒙 = 𝟎 and so 𝝀 = 𝝀𝟏 = 𝟎

▪ λ1 = 0 is the smallest eigenvalue



 The second smallest eigenvalue (also known 
as Fielder value) λ2 satisfies

 For the Laplacian, it is:
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Thus, the eigenvector for eigenvalue λ2

(called the Fielder vector) minimizes 

Intuitively:
▪ minimum when xi and xj close whenever there is an edge

between nodes i and j in the graph
▪ x must have some positive and some negative components



▪ A partition of the graph by taking: 
o one set to be the nodes i whose corresponding vector 

component xi is positive and 
o the other set to be the j nodes whose corresponding 

vector component xj is negative. 

▪ The cut between the two sets will have a small number of 
edges because (xi−xj)

2 is likely to be smaller if both xi and xj

have the same sign than if they have different signs. 

▪ Thus, minimizing xTLx under the required constraints will 
end giving xi and xj the same sign if there is an edge (i, j).



 What we know about x?

▪ 𝑥 is unit vector: σ𝑖 𝑥𝑖
2 = 1

▪ 𝑥 is orthogonal to 1st eigenvector (1,… , 1) thus: 
σ𝑖 𝑥𝑖 ⋅ 1 = σ𝑖 𝑥𝑖 = 0
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All labelings

of nodes 𝑖 so 

that σ𝑥𝑖 = 0

We want to assign values 𝑥𝑖 to nodes i such that 

few edges cross 0.

(we want xi and xj to subtract each other)
𝑥𝑖 0

x

𝑥𝑗
Balance to minimize



 How to define a “good” partition of a graph?

▪ Minimize a given graph cut criterion

 How to efficiently identify such a partition?

▪ Approximate using information provided by the 
eigenvalues and eigenvectors of a graph

 Spectral Clustering



 Three basic stages:

▪ 1) Pre-processing

▪ Construct a matrix representation of the graph

▪ 2) Decomposition

▪ Compute eigenvalues and eigenvectors of the matrix

▪ Map each point to a lower-dimensional representation 
based on one or more eigenvectors

▪ 3) Grouping

▪ Assign points to two or more clusters, based on the new 
representation



 1) Pre-processing:
▪ Build Laplacian

matrix L of the 
graph

 2)
Decomposition:
▪ Find eigenvalues 

and eigenvectors x
of the matrix L

▪ Map vertices to 
corresponding 
components of 2
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How do we now 
find the clusters?
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 3) Grouping:
▪ Sort components of reduced 1-dimensional vector
▪ Identify clusters by splitting the sorted vector in two

 How to choose a splitting point?
▪ Naïve approaches: 
▪ Split at 0 or median value

▪ More expensive approaches:
▪ Attempt to minimize normalized cut in 1-dimension 

(sweep over ordering of nodes induced by the eigenvector)
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 How do we partition a graph into k clusters?

 Two basic approaches:

▪ Recursive bi-partitioning [Hagen et al., ’92]

▪ Recursively apply bi-partitioning algorithm in a 
hierarchical divisive manner

▪ Disadvantages: Inefficient, unstable

▪ Cluster multiple eigenvectors [Shi-Malik, ’00]

▪ Build a reduced space from multiple eigenvectors

▪ Commonly used in recent papers

▪ A preferable approach…





 Use several of the eigenvectors to partition the 
graph

 If we use m eigenvectors, and set a threshold for 
each, we can get a partition into 2m groups, each 
group consisting of the nodes that are above or 
below threshold for each of the eigenvectors, in 
a particular pattern.
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If we use both the 2nd and 3rd eigenvectors:
• nodes 2 and 3 (positive in both)
• nodes 5 and 6 (negative in 2nd, positive in 3rd)
• nodes 1 and 4 alone

Note that while each eigenvector tries to produce a minimum-sized cut,
successive eigenvectors have to satisfy more and more constraints => the cuts
progressively worse.



 Approximates the optimal cut [Shi-Malik, ’00]
▪ Can be used to approximate optimal k-way normalized 

cut
 Emphasizes cohesive clusters
▪ Increases the unevenness in the distribution of the data
▪ Associations between similar points are amplified, 

associations between dissimilar points are attenuated
▪ The data begins to “approximate a clustering”

 Well-separated space
▪ Transforms data to a new “embedded space”, 

consisting of k orthogonal basis vectors
 Multiple eigenvectors prevent instability due to 

information loss



 METIS:
▪ Heuristic but works really well in practice
▪ http://glaros.dtc.umn.edu/gkhome/views/metis

 Graclus:
▪ Based on kernel k-means
▪ http://www.cs.utexas.edu/users/dml/Software/graclus.html

 Louvain:
▪ Based on Modularity optimization
▪ http://perso.uclouvain.be/vincent.blondel/research/louvain.html

 Clique percolation method:
▪ For finding overlapping clusters
▪ http://angel.elte.hu/cfinder/

http://glaros.dtc.umn.edu/gkhome/views/metis
http://www.cs.utexas.edu/users/dml/Software/graclus.html
http://perso.uclouvain.be/vincent.blondel/research/louvain.html
http://angel.elte.hu/cfinder/


▪ Use the lowest k eigenvalues of L to construct 
the nxk graph G’ that has these eigenvectors 
as columns

▪ The n-rows represent the graph vertices in a 
k-dimensional Euclidean space 

▪ Group these vertices in k clusters using k-
means clustering or similar techniques



 The values of x minimize

 For weighted matrices

 The ordering according to the xi values will 
group similar (connected) nodes together

 Physical interpretation: The stable state of 
springs placed on the edges of the graph  
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 Can be used to cluster any points (not just 
vertices), as long as an appropriate similarity 
matrix 

 Needs to be symmetric and non-negative

 How to construct a graph:
▪ ε-neighborhood graph: connect all points whose 

pairwise distances are smaller than ε
▪ k-nearest neighbor graph: connect each point with 

each k nearest neighbor
▪ full graph: connect all points with weight in the edge 

(i, j) equal to the similarity of i and j


