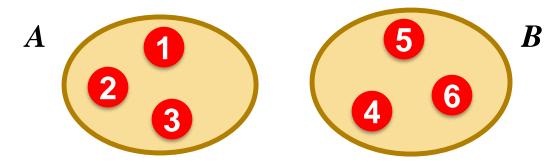
Community Detection: Graph Cuts & Spectral Clustering

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides

- Graph Partitioning
 - Graph Cuts
 - Spectral Clustering

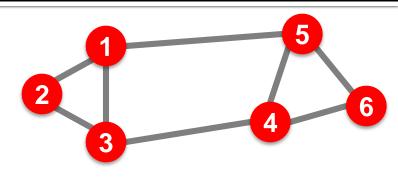
Graph Partitioning

- Undirected graph G(V, E):
- Bi-partitioning task:
 - Divide vertices into two disjoint groups A, B



Questions:

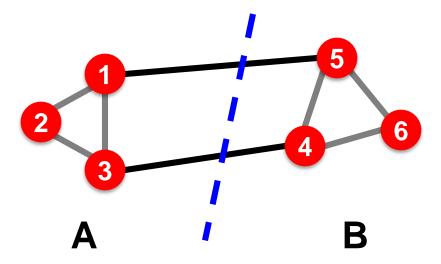
- How can we define a "good" partition of G?
- How can we efficiently identify such a partition?



Graph Partitioning

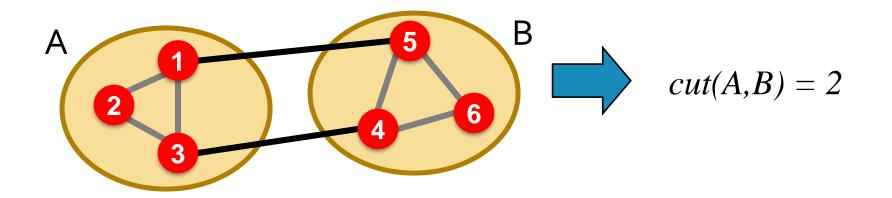
What makes a good partition?

- Maximize the number of within-group connections
- Minimize the number of between-group connections



Graph Cuts

- Express partitioning objectives as a function of the "edge cut" of the partition
- Cut: Set of edges with only one vertex in a group: $cut(A,B) = \sum_{i \in A, j \in B} w_{ij}$

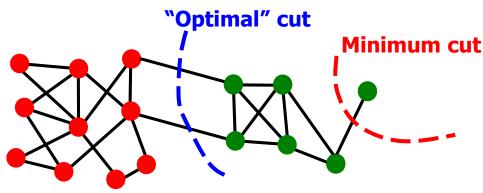


Graph Cut Criterion

Criterion: Minimum-cut

 Minimize weight of connections between groups arg min_{A,B} cut(A,B)

 Degenerate case:



Problem:

- Only considers external cluster connections
- Does not consider internal cluster connectivity

Graph Bisection

- Since the minimum cut does not always yield good results we need extra constraints to make the problem meaningful
- Graph Bisection
 - Partition the graph into two equal sets of nodes
- Kernighan-Lin algorithm
 - Start with random equal partitions
 - Swap nodes to improve some quality metric (e.g., cut, modularity, etc)

Ratio Cut

Criterion: Ratio-cut Normalize cut by the *size* of the groups

Ratio-cut =
$$\frac{\operatorname{Cut}(U,V-U)}{|U|} + \frac{\operatorname{Cut}(U,V-U)}{|V-U|}$$

Criterion: Normalized-cut

Connectivity between groups relative to the *density* of each group

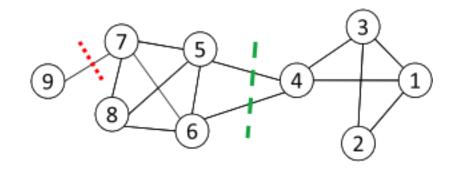
Normalized-cut =
$$\frac{Cut(U,V-U)}{Vol(U)} + \frac{Cut(U,V-U)}{Vol(V-U)}$$

vol(U): total weight of the edges with at least one endpoint in U: $vol(U) = \sum_{i \in U} d_i$

Why use these criteria?

Produce more balanced partitions

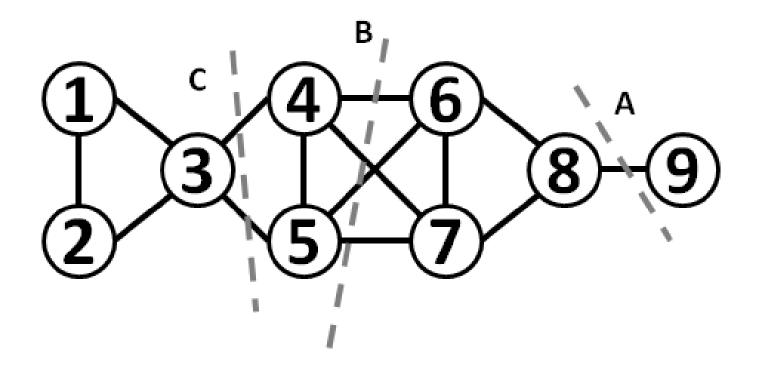
An Example of Min Cut Options



Cut(Red) = 1 Cut(Green) = 2 Ratio-Cut(Red) = $\frac{1}{1} + \frac{1}{8} = \frac{9}{8}$ Ratio-Cut(Green) = $\frac{2}{5} + \frac{2}{4} = \frac{18}{20}$ Normalized-Cut(Red) = $\frac{1}{1} + \frac{1}{27} = \frac{28}{27}$ Normalized-Cut(Green) = $\frac{2}{12} + \frac{2}{16} = \frac{14}{48}$

Minimizing **Normalizedcut** is even better for Green due to density constraint (volume)

Another Example



Which of the three cuts has the best (min, normalized, ratio) cut?

Graph Cut Criteria

- Criterion: Conductance [Shi-Malik, '97]
 - Connectivity between groups relative to the density of each group

$$\phi(A,B) = \frac{cut(A,B)}{\min(vol(A),vol(B))}$$

vol(A): total weight of the edges with at least one endpoint in A: $vol(A) = \sum_{i \in A} k_i$

Why use this criterion?

Produces more balanced partitions

How do we efficiently find a good partition?

Problem: Computing optimal cut is NP-hard

Ratio-cut and normalized-cut can be reformulated in matrix format and solved using spectral clustering

Spectral Clustering for Graph Partitioning

Spectral Clustering Algorithms

Three basic stages:

1) Pre-processing

Construct a matrix representation of the graph

2) Decomposition

- Compute eigenvalues and eigenvectors of the matrix
- Map each point to a lower-dimensional representation based on one or more eigenvectors

3) Grouping

- Assign points to two or more clusters, based on the new representation
- But first, let's define the problem

Spectral Graph Partitioning

- A: adjacency matrix of undirected G
 - A_{ij} =1 if (*i*, *j*) is an edge, else 0
- x is a vector in \Re^n with components (x_1, \dots, x_n)
 - Think of it as a label/value of each node of G
- What is the meaning of $A \cdot x$?

Entry y_i is a sum of labels x_j of neighbors of i

Spectral Graph Theory

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$A \cdot x = \lambda \cdot x$$

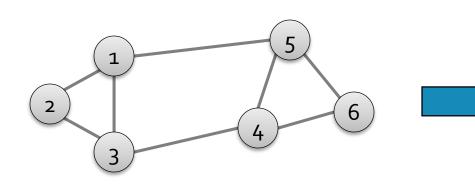
Spectral Graph Theory:

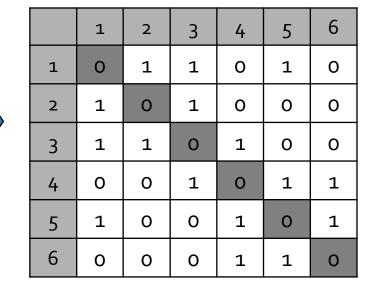
- Analyze the "spectrum" of matrix representing G
- Spectrum: Eigenvectors x_i of a graph, ordered by the magnitude (strength) of their corresponding eigenvalues λ_i : $\Lambda = \{\lambda_1, \lambda_2, ..., \lambda_n\} \ \lambda_1 \le \lambda_2 \le ... \le \lambda_n$ Note: We sort λ_i in ascending (not descending) order!
- Spectral clustering: use the eigenvectors of A or graphs derived by it (mostly graph Laplacian)

Matrix Representations

Adjacency matrix (A):

- *n×n* matrix
- A=[a_{ij}], a_{ij}=1 if edge between node i and j





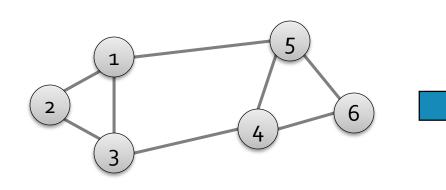
Important properties:

- Symmetric matrix
- Eigenvectors are real and orthogonal

Matrix Representations

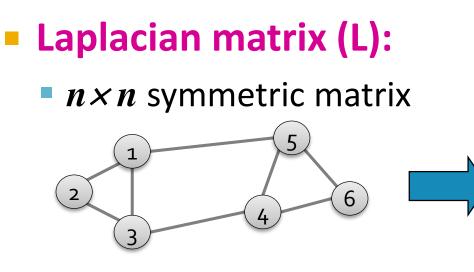
Degree matrix (D):

- n×n diagonal matrix
- $D = [d_{ii}], d_{ii} = \text{degree of node } i$



	1	2	3	4	5	6
1	3	0	0	0	0	0
2	0	2	0	0	0	0
З	0	0	3	0	0	0
4	0	0	0	3	0	0
5	0	0	0	0	3	0
6	0	0	0	0	0	2

Matrix Representations

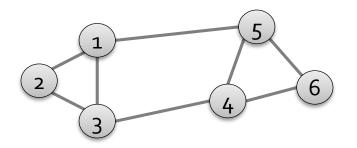


	1	2	3	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

Laplacian matrix L important properties:

- Eigenvalues are non-negative real numbers
- Eigenvectors are real and orthogonal

Example: Eigenvalues & Eigenvectors



Eigenvalue	0	1	3	3	4	5
Eigenvector	1	1	-5	-1	-1	-1
	1	2	4	-2	1	0
	1	1	1	3	-1	1
	1	-1	-5	-1	1	1
	1	-2	4	-2	-1	0
	1	-1	1	3	1	-1

The Smallest Eigenvalue

What is a trivial eigenpair?

- x = (1, ..., 1) then $L \cdot x = 0$ and so $\lambda = \lambda_1 = 0$
- $\lambda_1 = 0$ is the smallest eigenvalue

The Second Smallest Eigenvalue

The second smallest eigenvalue (also known as Fielder value) λ_2 satisfies

$$\lambda_2 = \min_{\mathbf{x} \perp \mathbf{w}_1, \|\mathbf{x}\| = 1} \mathbf{x}^\mathsf{T} \mathbf{L} \mathbf{x}$$

For the Laplacian, it is:

$$\mathbf{x} \perp \mathbf{w}_{1} \implies \sum_{i} \mathbf{x}_{i} = \mathbf{0}$$
$$\mathbf{x}^{T} \mathbf{L} \mathbf{x} \implies \sum_{(i,j)\in \mathbf{E}} (\mathbf{x}_{i} - \mathbf{x}_{j})^{2}$$

The Second Smallest Eigenvalue

Thus, the eigenvector for eigenvalue λ_2 (called the Fielder vector) minimizes

$$\min_{x \neq 0} \sum_{(i,j) \in E} (x_i - x_j)^2 \quad \text{where} \quad \sum_i x_i = 0$$

Intuitively:

- minimum when x_i and x_j close whenever there is an edge between nodes i and j in the graph
- x must have some positive and some negative components

Cuts + Eigenvalues: Intuition

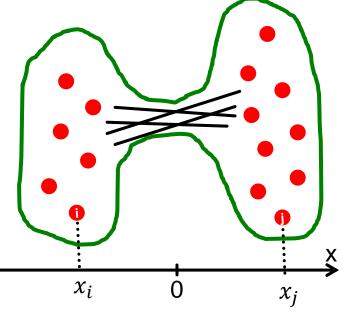
- A *partition* of the graph by taking:
 - one set to be the nodes i whose corresponding vector component x_i is *positive* and
 - the other set to be the j nodes whose corresponding vector component x_i is *negative*.
- The *cut* between the two sets will have a small number of edges because (x_i-x_j)² is likely to be smaller if both x_i and x_j have the same sign than if they have different signs.
- Thus, *minimizing* x^TLx under the required constraints will end giving x_i and x_i the same sign if there is an edge (i, j).

Cuts + Eigenvalues: Summary

- What we know about x?
 - x is unit vector: $\sum_i x_i^2 = 1$
 - x is orthogonal to 1st eigenvector (1, ..., 1) thus: $\sum_{i} x_{i} \cdot 1 = \sum_{i} x_{i} = 0$ $\lambda_{2} = \min \frac{\sum_{(i,j) \in E} (x_{i} - x_{j})^{2}}{\sum_{i} x_{i}^{2}}$

We want to assign values x_i to nodes *i* such that few edges cross 0. (we want x_i and x_j to subtract each other)

that $\sum x_i = 0$



Balance to minimize

- How to define a "good" partition of a graph?
 - Minimize a given graph cut criterion
- How to efficiently identify such a partition?
 - Approximate using information provided by the eigenvalues and eigenvectors of a graph
- Spectral Clustering

Spectral Clustering Algorithms

Three basic stages:

1) Pre-processing

Construct a matrix representation of the graph

2) Decomposition

- Compute eigenvalues and eigenvectors of the matrix
- Map each point to a lower-dimensional representation based on one or more eigenvectors

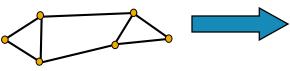
3) Grouping

Assign points to two or more clusters, based on the new representation

Spectral Partitioning Algorithm

1) Pre-processing:

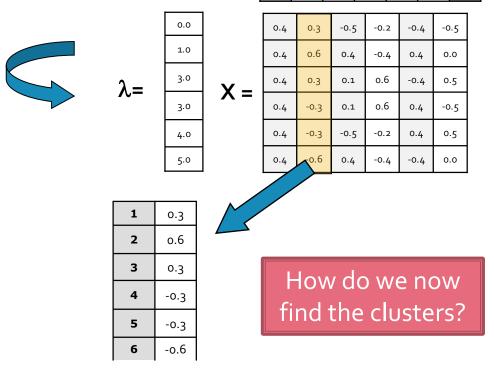
 Build Laplacian matrix *L* of the graph



	1	2	3	4	5	6
1	3	-1	-1	о	-1	0
2	-1	2	-1	о	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

2)Decomposition:

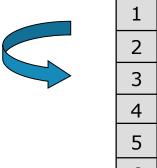
- Find eigenvalues λ and eigenvectors x of the matrix L
- Map vertices to corresponding components of λ₂

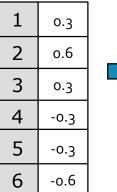


Spectral Partitioning

3) Grouping:

- Sort components of reduced 1-dimensional vector
- Identify clusters by splitting the sorted vector in two
- How to choose a splitting point?
 - Naïve approaches:
 - Split at 0 or median value
 - More expensive approaches:
 - Attempt to minimize normalized cut in 1-dimension (sweep over ordering of nodes induced by the eigenvector)



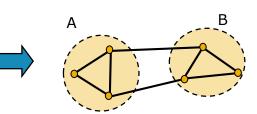


Split at 0:

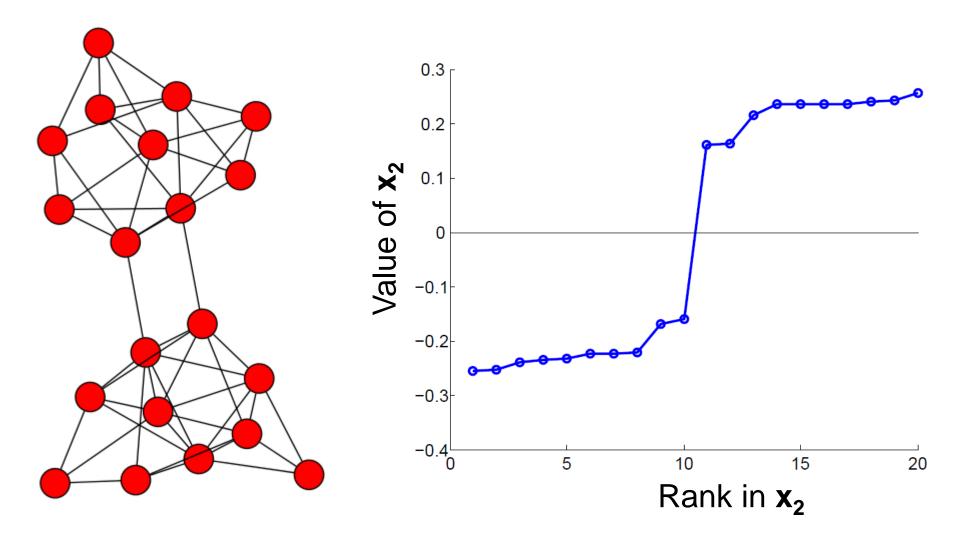
Cluster A: Positive points

Cluster B: Negative points

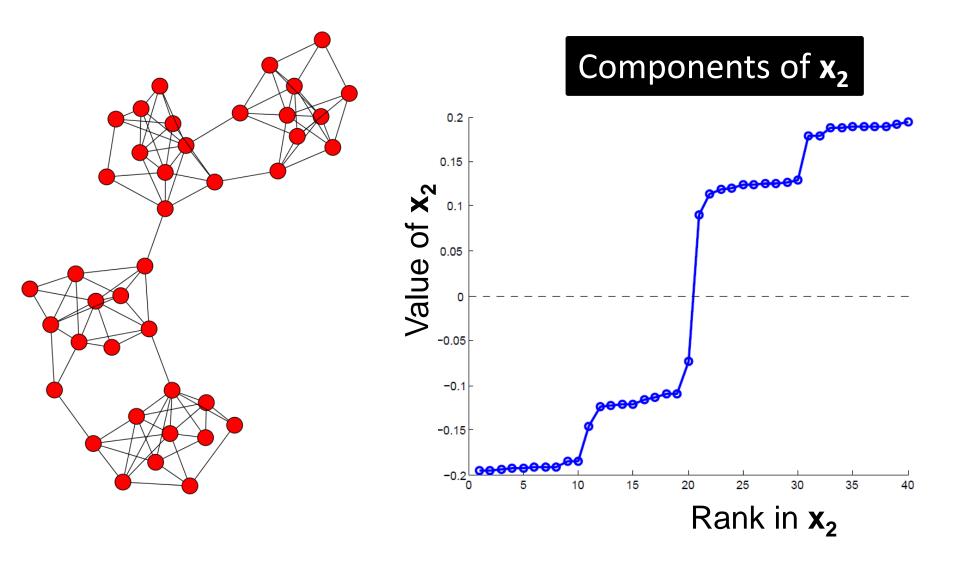
1	0.3	4	-0.3
2	0.6	5	-0.3
3	0.3	6	-0.6



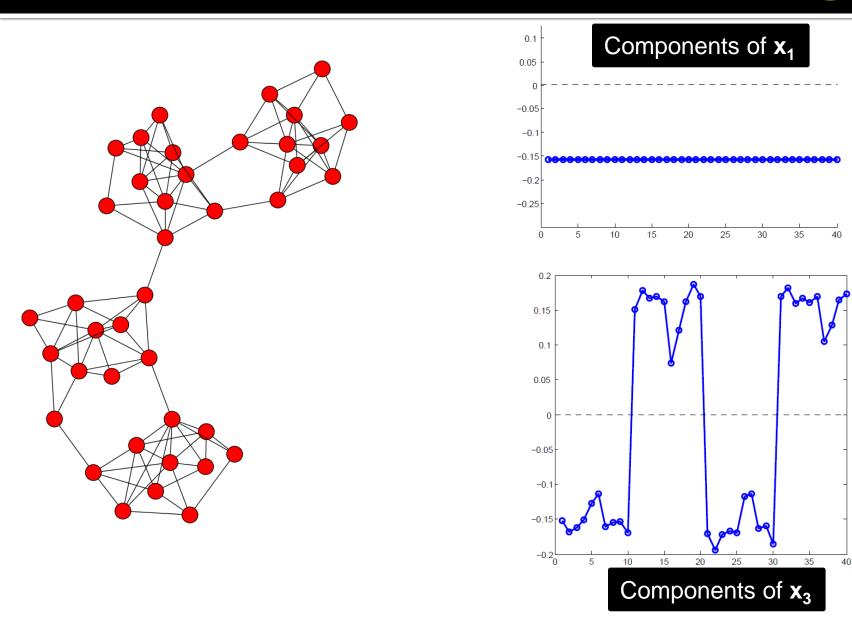
Example: Spectral Partitioning



Example: Spectral Partitioning



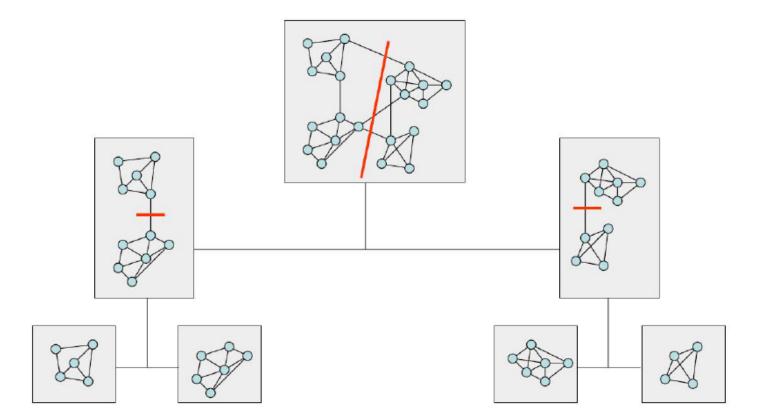
Example: Spectral Partitioning



k-Way Spectral Clustering

- How do we partition a graph into k clusters?
- Two basic approaches:
 - Recursive bi-partitioning [Hagen et al., '92]
 - Recursively apply bi-partitioning algorithm in a hierarchical divisive manner
 - Disadvantages: Inefficient, unstable
 - Cluster multiple eigenvectors [Shi-Malik, '00]
 - Build a reduced space from multiple eigenvectors
 - Commonly used in recent papers
 - A preferable approach...

Recursive Bi-partitioning



Cluster Multiple Eigenvectors

- Use several of the eigenvectors to partition the graph
- If we use m eigenvectors, and set a threshold for each, we can get a partition into 2^m groups, each group consisting of the nodes that are above or below threshold for each of the eigenvectors, in a particular pattern.

Example

	Eigenvalue	0	1	3	3	4	5
5	Eigenvector	1	1	-5	-1	-1	-1
1		1	2	4	-2	1	0
		1	1	1	3	-1	1
4 6		1	-1	-5	-1	1	1
3		1	-2	4	-2	-1	0
		1	-1	1	3	1	-1

If we use both the **2**nd and **3**rd eigenvectors:

- nodes **2** and **3** (positive in both)
- nodes **5** and **6** (negative in 2nd, positive in 3rd)
- nodes **1** and **4** alone

Note that while each eigenvector tries to produce a minimum-sized cut, successive eigenvectors have to satisfy more and more constraints => the cuts progressively worse.

Why use multiple eigenvectors?

Approximates the optimal cut [Shi-Malik, '00]

- Can be used to approximate optimal k-way normalized cut
- Emphasizes cohesive clusters
 - Increases the unevenness in the distribution of the data
 - Associations between similar points are amplified, associations between dissimilar points are attenuated
 - The data begins to "approximate a clustering"
- Well-separated space
 - Transforms data to a new "embedded space", consisting of k orthogonal basis vectors
- Multiple eigenvectors prevent instability due to information loss

Many Other Partitioning Methods

METIS:

- Heuristic but works really well in practice
- http://glaros.dtc.umn.edu/gkhome/views/metis

Graclus:

- Based on kernel k-means
- <u>http://www.cs.utexas.edu/users/dml/Software/graclus.html</u>

Louvain:

- Based on Modularity optimization
- http://perso.uclouvain.be/vincent.blondel/research/louvain.html
- Clique percolation method:
 - For finding overlapping clusters
 - <u>http://angel.elte.hu/cfinder/</u>

Spectral Clustering

- Use the lowest k eigenvalues of L to construct the nxk graph G' that has these eigenvectors as columns
- The *n-rows* represent the graph vertices in a *k*-dimensional Euclidean space
- Group these vertices in k clusters using kmeans clustering or similar techniques

Summary

The values of x minimize

$$\min_{\mathbf{x}\neq\mathbf{0}}\sum_{(i,j)\in E}(x_i - x_j)^2 \qquad \sum_{\mathbf{i}}\mathbf{x}_{\mathbf{i}} = \mathbf{0}$$
For weighted matrices

$$\label{eq:relation} \min_{x \neq 0} \sum_{(i,j)} A[i,j] (x_i - x_j)^2 \qquad \qquad \sum_i x_i = 0$$

- The ordering according to the x_i values will group similar (connected) nodes together
- Physical interpretation: The stable state of springs placed on the edges of the graph

Spectral Clust. (besides graphs)

- Can be used to cluster any points (not just vertices), as long as an appropriate similarity matrix
- Needs to be symmetric and non-negative
- How to construct a graph:
 - ε-neighborhood graph: connect all points whose pairwise distances are smaller than ε
 - k-nearest neighbor graph: connect each point with each k nearest neighbor
 - full graph: connect all points with weight in the edge (i, j) equal to the similarity of i and j