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 Strength of Weak Ties
 Structural Holes
 Network Communities
 Community Detection
▪ Method 1: Girvan-Newman
▪ Method 2: Modularity Optimization



 We often think of networks “looking” 
like this:

 What lead to such a conceptual picture?



 How information flows through the network?

▪ What structurally distinct roles do nodes play?

▪ What roles do different links (short vs. long) play?

 How people find out about new jobs?

▪ Mark Granovetter, part of his PhD in 1960s

▪ People find the information through personal contacts

 But: Contacts were often acquaintances
rather than close friends

▪ This is surprising: One would expect your friends to 
help you out more than casual acquaintances

 Why is it that acquaintances are most helpful?



 Two perspectives on friendships:

▪ Structural: Friendships that span different parts of 
the network

▪ Interpersonal: Friendship between two people is 
either strong or weak

 Structural role: Triadic Closure

[Granovetter ‘73]
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 Granovetter makes a connection between 
social and structural role of an edge

 First point: Structure
▪ Structurally embedded edges are socially strong

▪ Long-range edges spanning different parts of the 
network are socially weak

 Second point: Information
▪ Long-range edges allow you to gather information 

from different parts of the network and get a job

▪ Structurally embedded edges are 
heavily redundant in terms of 
information access
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 Triadic closure == High clustering coefficient
Reasons for triadic closure:
 If 𝑩 and 𝑪 have a friend 𝑨 in common, then:
▪ 𝑩 is more likely to meet 𝑪

▪ (since they both spend time with 𝑨)

▪ 𝑩 and 𝑪 trust each other 
▪ (since they have a friend in common)

▪ 𝑨 has incentive to bring 𝑩 and 𝑪 together 
▪ (as it is hard for 𝑨 to maintain two disjoint relationships)

 Empirical study by Bearman and Moody: 
▪ Teenage girls with low clustering coefficient are 

more likely to contemplate suicide
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 Define: Bridge edge
▪ If removed, it disconnects the graph

 Define: Local bridge
▪ Edge of Span > 2

(Span of an edge is the distance of the 
edge endpoints if the edge is deleted. Local 
bridges with long span are like real bridges)

 Define: Two types of edges:
▪ Strong (friend), Weak (acquaintance)

 Define: Strong triadic closure:
▪ Two strong ties imply a third edge

 Fact: If strong triadic closure is 
satisfied then local bridges 
are weak ties!
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 Claim: If node 𝑨 satisfies Strong Triadic Closure
and is involved in at least two strong ties, then 
any local bridge adjacent to 𝑨 must be a weak tie.

 Proof by contradiction:
▪ Assume 𝑨 satisfies Strong Triadic 

Closure and has 2 strong ties

▪ Let 𝑨 − 𝑩 be local bridge
and a strong tie

▪ Then 𝑩− 𝑪 must exist 
because of Strong 
Triadic Closure

▪ But then 𝑨 − 𝑩 is not a bridge! 
(since B-C must be connected due to Strong Triadic Closure property)
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 For many years Granovetter’s theory was not 
tested

 But, today we have large 
who-talks-to-whom graphs:

▪ Email, Messenger, Cell phones, Facebook

 Onnela et al. 2007: 

▪ Cell-phone network of 20% of country’s population

▪ Edge strength: # phone calls



 Edge overlap:

𝑂𝑖𝑗 =
𝑁(𝑖)ځ𝑁(𝑗)

𝑁(𝑖)ڂ𝑁(𝑗)
▪ 𝑁(𝑖) … a set 

of neighbors 
of node 𝑖

 Overlap = 𝟎
when an edge is 
a local bridge



 Cell-phone network
 Observation:

▪ Highly used links 
have high overlap!

 Legend:
▪ True: The data

▪ Permuted strengths: Keep 
the network structure 
but randomly reassign 
edge strengths
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 Real edge strengths in mobile call graph

▪ Strong ties are more embedded (have higher overlap)



 Same network, same set of edge strengths
but now strengths are randomly shuffled



 Removing links by strength (#calls) 

▪ Low to high

▪ High to low

Fraction of removed links
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 Removing links based on overlap

▪ Low to high

▪ High to low

Fraction of removed links
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 Granovetter’s theory leads to the following 
conceptual picture of networks

Strong ties

Weak ties





[Ron Burt]

Who is better off, Robert or James?



Few structural holes Many structural holes

Structural Holes provide ego with access 

to novel information, power, freedom



 The “network constraint” measure [Burt]:

▪ To what extent are person’s contacts redundant

▪ Low: disconnected contacts

▪ High:  contacts that are 
close or strongly tied
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𝑝𝑢𝑣 … prop. of 𝑢’s “energy” invested in relationship with 𝑣
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1   2   3   4   5

1 .00 .25 .25 .25 .25
2 .50 .00 .00 .00 .50
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 Network constraint:
▪ James: 𝑐𝐽 = 0.309

▪ Robert: 𝑐𝑅 = 0.148

▪ Constraint: To what 
extent are person’s 
contacts redundant

▪ Low: disconnected 
contacts

▪ High: contacts that 
are close or strongly 
tied

Lower c is better!



[Ron Burt]





 Granovetter’s theory 
suggest that networks 
are composed of 
tightly connected 
sets of nodes

 Network communities:

▪ Sets of nodes with lots of connections inside and 
few to outside (the rest of the network)

Communities, clusters, 
groups, modules



 How to automatically 
find such densely 
connected groups of 
nodes?

 Ideally such automatically 
detected clusters would 
then correspond to real 
groups

 For example:
Communities, clusters, 

groups, modules



 Zachary’s Karate club network:

▪ Observe social ties and rivalries in a university karate club

▪ During his observation, conflicts led the group to split

▪ Split could be explained by a minimum cut in the network



Nodes: Teams
Edges: Games played

Can we identify 
node groups?
(communities, 

modules, clusters)



NCAA conferences

Nodes: Teams
Edges: Games played



Nodes: Users
Edges: Friendships

Can we identify 
social communities?



High school Company

Stanford (Squash)

Stanford (Basketball)

Social communities
Nodes: Users
Edges: Friendships



Nodes: Proteins
Edges: Interactions

Can we identify 
functional modules?



Functional modules

Nodes: Proteins
Edges: Interactions



How to find communities?

We will work with undirected (unweighted) networks



 Edge betweenness: Number of 
shortest paths passing over the edge

 Intuition:

Edge strengths (call volume) 
in a real network

Edge betweenness
in a real network

b=16
b=7.5



 Divisive hierarchical clustering based on the 
notion of edge betweenness:

Number of shortest paths passing through the edge

 Girvan-Newman Algorithm:
▪ Undirected unweighted networks

▪ Repeat until no edges are left:

▪ Calculate betweenness of edges

▪ Remove edges with highest betweenness

▪ Connected components are communities

▪ Gives a hierarchical decomposition of the network

[Girvan-Newman ‘02]
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Step 1: Step 2:

Step 3: Hierarchical network decomposition:



Communities in physics collaborations 



 Zachary’s Karate club: 
Hierarchical decomposition



1. How to compute betweenness?
2. How to select the number of 

clusters?



 Want to compute 
betweenness of 
paths starting at 
node 𝑨

 Breadth first search 
starting from 𝑨:
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 Count the number of shortest paths from 
𝑨 to all other nodes of the network:



 Compute betweenness by working up the 
tree: If there are multiple paths count them 
fractionally

1 path to K.

Split evenly

1+0.5 paths to J

Split 1:2

1+1 paths to H

Split evenly

The algorithm:

•Add edge flows:

-- node flow = 

1+∑child edges 

-- split the flow up 

based on the parent 

value

• Repeat the BFS 

procedure for each 

starting node 𝑈



 Compute betweenness by working up the 
tree: If there are multiple paths count them 
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1 path to K.
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Split 1:2
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The algorithm:

•Add edge flows:

-- node flow = 

1+∑child edges 

-- split the flow up 
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1. How to compute betweenness?
2. How to select the number of 

clusters?



 Communities: sets of 
tightly connected nodes

 Define: Modularity 𝑸

▪ A measure of how well 
a network is partitioned 
into communities

▪ Given a partitioning of the 
network into groups 𝒔 𝑺:

Q   ∑s S [ (# edges within group s) –

(expected # edges within group s) ]

Need a null model!



 Given real 𝑮 on 𝒏 nodes and 𝒎 edges, 
construct rewired network 𝑮’

▪ Same degree distribution but 
random connections

▪ Consider 𝑮’ as a multigraph

▪ The expected number of edges between nodes 

𝒊 and 𝒋 of degrees 𝒌𝒊 and 𝒌𝒋 equals to: 𝒌𝒊 ⋅
𝒌𝒋

𝟐𝒎
=

𝒌𝒊𝒌𝒋

𝟐𝒎

▪ The expected number of edges in (multigraph) G’:

▪ =
𝟏

𝟐
σ𝒊∈𝑵σ𝒋∈𝑵

𝒌𝒊𝒌𝒋

𝟐𝒎
=

𝟏

𝟐
⋅
𝟏

𝟐𝒎
σ𝒊∈𝑵𝒌𝒊 σ𝒋∈𝑵𝒌𝒋 =

▪ =
𝟏

𝟒𝒎
𝟐𝒎 ⋅ 𝟐𝒎 = 𝒎

j

i



𝑢∈𝑁

𝑘𝑢 = 2𝑚

Note:



 Modularity of partitioning S of graph G:

▪ Q  ∑s S [ (# edges within group s) –

(expected # edges within group s) ]

▪ 𝑸 𝑮, 𝑺 =
𝟏

𝟐𝒎
σ𝒔∈𝑺σ𝒊∈𝒔σ𝒋∈𝒔 𝑨𝒊𝒋 −

𝒌𝒊𝒌𝒋

𝟐𝒎

 Modularity values take range [−1,1]

▪ It is positive if the number of edges within 
groups exceeds the expected number

▪ 0.3-0.7<Q means significant community structure

Aij = 1 if i→j, 

0 else
Normalizing cost.: -1<Q<1



 Modularity is useful for selecting the 
number of clusters:

Why not optimize Modularity directly?

Q





 Let’s split the graph into 2 communities!
 Want to directly optimize modularity!

▪ max
𝑆

𝑄 𝐺, 𝑆 =
1

2𝑚
σ𝑠∈𝑆σ𝑖∈𝑠σ𝑗∈𝑠 𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚

 Community membership vector s:

▪ si = 1 if node i is in community 1
-1 if node i is in community -1

 𝑄 𝐺, 𝑠 =
1

2𝑚
σ𝑖∈𝑁σ𝑗∈𝑁 𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚

𝑠𝑖𝑠𝑗+1

2

=
1

4𝑚
σ𝑖,𝑗∈𝑁 𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
𝑠𝑖𝑠𝑗

𝑠𝑖𝑠𝑗 + 1

2
=

1.. if si=sj

0.. else



 Define:

▪ Modularity matrix: 𝑩𝒊𝒋 = 𝑨𝒊𝒋 −
𝒌𝒊𝒌𝒋

𝟐𝒎

▪ Membership: 𝒔 = {−𝟏,+𝟏}

 Then: 𝑄 𝐺, 𝑠 =
1

4𝑚
σ𝑖∈𝑁σ𝑗∈𝑁 𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
𝑠𝑖𝑠𝑗

=
1

4𝑚
σ𝑖,𝑗∈𝑁𝐵𝑖𝑗𝑠𝑖𝑠𝑗

=
1

4𝑚
σ𝑖 𝑠𝑖 σ𝑗𝐵𝑖𝑗𝑠𝑗 =

1

4𝑚
𝑠𝑇𝐵𝑠

 Task: Find s{-1,+1}n that maximizes Q(G,s)

= 𝑩𝒊⋅ ⋅ 𝒔

Note: each row/col of B
sums to 0: σ𝒋𝑨𝒊𝒋 = 𝒌𝒊, 

σ𝒋
𝒌𝒊𝒌𝒋

𝟐𝒎
= 𝒌𝒊σ𝒋

𝒌𝒋

𝟐𝒎
= 𝒌𝒊



 Symmetric matrix A
▪ That is positive semi-definite:
𝑨 = 𝑼 ⋅ 𝑼𝑻

 Then solutions 𝝀, 𝒙 to equation 𝑨 ⋅ 𝒙 = 𝜆 ⋅ 𝒙 :
▪ Eigenvectors 𝒙𝒊 ordered by the magnitude of their 

corresponding eigenvalues 𝜆𝑖 (𝜆1 ≤ 𝜆2… ≤ 𝜆𝑛)

▪ 𝒙𝒊 are orthonormal (orthogonal and unit length)

▪ 𝒙𝒊 form a coordinate system (basis)

▪ If 𝑨 is positive-semidefinite: 𝜆𝑖 ≥ 0 (and they always exist)
 Eigen Decomposition theorem: Can rewrite matrix 
𝑨 in terms of its eigenvectors and eigenvalues: 𝑨 =
σ𝒊𝒙𝒊 ⋅ 𝜆𝑖 ⋅ 𝒙𝒊

𝑻



 Rewrite: 𝑄 𝐺, 𝑠 =
1

4𝑚
𝑠T𝐵𝑠 in terms of its 

eigenvectors and eigenvalues:

= sT 

𝑖=1

𝑛

𝑥𝑖𝜆𝑖𝑥𝑖
𝑇 𝑠 =

𝑖=1

𝑛

𝑠𝑇𝑥𝑖𝜆𝑖𝑥𝑖
𝑇𝑠 =

𝑖=1

𝑛

𝑠𝑇x𝑖
2𝜆𝑖

 So, if there would be no other constraints on 𝒔
then to maximize 𝑸, we make 𝒔 = 𝒙𝒏
▪ Why? Because 𝝀𝒏 ≥ 𝝀𝒏−𝟏 ≥ ⋯

▪ Remember 𝒔 has fixed length!

▪ Assigns all weight in the sum to 𝝀𝒏 (largest eigenvalue)
▪ All other 𝒔𝑻𝒙𝒊 terms are zero because of orthonormality

s

x1

x2



 Let’s consider only the first term in the 
summation (because 𝝀𝒏 is the largest):
max
𝑠

𝑄 𝐺, 𝑠 = σ𝑖=1
𝑛 𝑠𝑇𝑥𝑖

2𝜆𝑖 ≈ 𝑠𝑇𝑥𝑛
2𝜆𝑛

 Let’s maximize: σ𝒋=𝟏
𝒏 𝒔𝒋 ⋅ 𝒙𝒏,𝒋 where sj{-1,+1} 

 To do this, we set:

▪ 𝒔𝒋 = ൝
+𝟏
−𝟏

𝒊𝒇 𝒙𝒏,𝒋 ≥ 𝟎 (j−th coordinate of 𝒙𝒏 ≥ 𝟎)

𝒊𝒇 𝒙𝒏,𝒋 < 𝟎 (j−th coordinate of 𝒙𝒏 < 𝟎)

 Continue the bisection hierarchically



 Fast Modularity Optimization Algorithm:

▪ Find leading eigenvector 𝒙𝒏 of modularity matrix B

▪ Divide the nodes by the signs of the elements of 𝒙𝒏
▪ Repeat hierarchically until:

▪ If a proposed split does not cause modularity to increase, 
declare community indivisible and do not split it

▪ If all communities are indivisible, stop

 How to find 𝒙𝒏? Power method!

▪ Start with random v(0), repeat :

▪ When converged (v(t) ≈ v(t+1)), set xn = v
(t)

)(

)(
)1(

t

t
t

Bv

Bv
v =+



 Girvan-Newman:

▪ Based on the “strength of weak ties”

▪ Remove edge of highest betweenness

 Modularity:

▪ Overall quality of the partitioning of a graph

▪ Use to determine the number of communities

 Fast modularity optimization:

▪ Transform the modularity optimization to a
eigenvalue problem


