Community Structure in Networks

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides

- Strength of Weak Ties
- Structural Holes
- Network Communities
- Community Detection
 - Method 1: Girvan-Newman
 - Method 2: Modularity Optimization

Networks & Communities

We often think of networks "looking" like this:

What lead to such a conceptual picture?

Networks: Flow of Information

- How information flows through the network?
 - What structurally distinct roles do nodes play?
 - What roles do different links (short vs. long) play?
- How people find out about new jobs?
 - Mark Granovetter, part of his PhD in 1960s
 - People find the information through personal contacts
- But: Contacts were often acquaintances rather than close friends
 - This is surprising: One would expect your friends to help you out more than casual acquaintances
- Why is it that acquaintances are most helpful?

Granovetter's Answer

- Two perspectives on friendships:
 - Structural: Friendships that span different parts of the network
 - Interpersonal: Friendship between two people is either strong or weak
- Structural role: Triadic Closure

Which edge is more likely, a-b or a-c?

If two people in a network have a friend in common, then there is an increased likelihood they will become friends themselves.

Granovetter's Explanation

- Granovetter makes a connection between social and structural role of an edge
 First point: Structure
 - Structurally embedded edges are socially strong
 - Long-range edges spanning different parts of the network are socially weak

Second point: Information

 Long-range edges allow you to gather information from different parts of the network and get a job

Weak

Strong

 Structurally embedded edges are heavily redundant in terms of information access

Triadic Closure

Triadic closure == High clustering coefficient <u>Reasons for triadic closure</u>:

- If B and C have a friend A in common, then:
 - B is more likely to meet C
 - (since they both spend time with A)
 - B and C trust each other
 - (since they have a friend in common)
 - A has incentive to bring B and C together
 - (as it is hard for *A* to maintain two disjoint relationships)

B

Empirical study by Bearman and Moody:

 Teenage girls with low clustering coefficient are more likely to contemplate suicide

Granovetter's Explanation

Define: Bridge edge

If removed, it disconnects the graph

Define: Local bridge

- Edge of Span > 2

 (Span of an edge is the distance of the edge endpoints if the edge is deleted. Local bridges with long span are like real bridges)
- Define: Two types of edges:
 - Strong (friend), Weak (acquaintance)
- Define: Strong triadic closure:
 - Two strong ties imply a third edge
- Fact: If strong triadic closure is satisfied then local bridges are weak ties!

Local Bridges and Weak ties

Claim: If node A satisfies Strong Triadic Closure and is involved in at least two strong ties, then any local bridge adjacent to A must be a weak tie.

Proof by contradiction:

- Assume A satisfies Strong Triadic
 Closure and has 2 strong ties
- Let A B be local bridge and a strong tie
- Then *B C* must exist because of Strong
 Triadic Closure
- But then A B is not a bridge! (since B-C must be connected due to Strong Triadic Closure property)

Tie strength in real data

- For many years Granovetter's theory was not tested
- But, today we have large who-talks-to-whom graphs:
 - Email, Messenger, Cell phones, Facebook
- Onnela et al. 2007:
 - Cell-phone network of 20% of country's population
 - Edge strength: # phone calls

Neighborhood Overlap

 Edge overlap: $O_{ij} = \frac{N(i) \cap N(j)}{N(i) \cup N(j)}$ $N(i) \dots \text{ a set}$ of neighbors of node *i*

Overlap = 0
 when an edge is
 a local bridge

Phones: Edge Overlap vs. Strength

- Cell-phone network
- Observation:
 - Highly used links have high overlap!
- Legend:
 - True: The data
 - Permuted strengths: Keep the network structure but randomly reassign edge strengths

Real Network, Real Tie Strengths

Real edge strengths in mobile call graph

Strong ties are more embedded (have higher overlap)

Real Net, Permuted Tie Strengths

Same network, same set of edge strengths but now strengths are randomly shuffled

Link Removal by Strength

- Removing links by strength (#calls)
 - Low to high
 - High to low

Conceptual picture of network structure

Link Removal by Overlap

- Removing links based on overlap
 - Low to high
 - High to low

Conceptual picture of network structure

Conceptual Picture of Networks

 Granovetter's theory leads to the following conceptual picture of networks

<u>Small Detour:</u> Structural Holes

Small Detour: Structural Holes

[Ron Burt]

Who is better off, Robert or James?

Structural Holes

Structural Holes provide ego with access to novel information, power, freedom

Structural Holes: Network Constraint

- The "network constraint" measure [Burt]:
 - To what extent are person's contacts redundant

 $p_{uv} = 1/d_u$

- Low: disconnected contacts
- High: contacts that are close or strongly tied

$$c_i = \sum_j c_{ij} = \sum_j \left[p_{ij} + \sum_k \left(p_{ik} p_{kj} \right) \right]^2$$

 $p_{uv} \dots$ prop. of *u*'s "energy" invested in relationship with v

Example: Robert vs. James

Network constraint:

- James: $c_I = 0.309$
- Robert: $c_R = 0.148$

- Constraint: To what extent are person's contacts redundant
 - Low: disconnected contacts
 - High: contacts that are close or strongly tied

Lower *c* is better!

[Ron Burt]

Spanning Holes Matters

Network Communities

Network Communities

 Granovetter's theory suggest that networks are composed of tightly connected sets of nodes

Network communities:

Communities, clusters, groups, modules

Sets of nodes with lots of connections inside and few to outside (the rest of the network)

Finding Network Communities

- How to automatically find such densely connected groups of nodes?
- Ideally such automatically detected clusters would then correspond to real groups
- For example:

Communities, clusters, groups, modules

Social Network Data

Zachary's Karate club network:

- Observe social ties and rivalries in a university karate club
- During his observation, conflicts led the group to split
- Split could be explained by a minimum cut in the network

NCAA Football Network

Nodes: Teams Edges: Games played

NCAA Football Network

Facebook Ego-network

Facebook Ego-network

Protein-Protein Interactions

Protein-Protein Interactions

Community Detection

How to find communities?

We will work with **undirected** (unweighted) networks

Method 1: Strength of Weak Ties

Edge betweenness: Number of shortest paths passing over the edge
 Intuition:

Edge strengths (call volume) in a real network

b=16

b = 7.5

Edge betweenness in a real network

Method 1: Girvan-Newman

Divisive hierarchical clustering based on the notion of edge betweenness:

Number of shortest paths passing through the edge Girvan-Newman Algorithm:

- Undirected unweighted networks
- Repeat until no edges are left:
 - Calculate betweenness of edges
 - Remove edges with highest betweenness
- Connected components are communities
- Gives a hierarchical decomposition of the network

Girvan-Newman: Example

Need to re-compute betweenness at every step

Girvan-Newman: Example

Hierarchical network decomposition:

Girvan-Newman: Results

Communities in physics collaborations

Girvan-Newman: Results

Zachary's Karate club: Hierarchical decomposition

We need to resolve 2 questions

 How to compute betweenness?
 How to select the number of clusters?

 Want to compute betweenness of paths starting at node A

Breadth first search starting from A:

Count the number of shortest paths from A to all other nodes of the network:

Compute betweenness by working up the tree: If there are multiple paths count them fractionally

The algorithm:

Add edge flows:
-- node flow =
1+∑child edges
-- split the flow up
based on the parent
value

• Repeat the BFS procedure for each starting node *U*

Compute betweenness by working up the tree: If there are multiple paths count them fractionally

The algorithm: •Add edge flows: -- node flow = 1+∑child edges -- split the flow up based on the parent value

• Repeat the BFS procedure for each starting node *U*

We need to resolve 2 questions

 How to compute betweenness?
 How to select the number of clusters?

Network Communities

- Communities: sets of tightly connected nodes
 Define: Modularity Q
 - A measure of how well a network is partitioned into communities

Given a partitioning of the network into groups s ∈ S:

 $Q \propto \sum_{s \in S} [(\# \text{ edges within group } s) - (\text{expected } \# \text{ edges within group } s)]$

Need a null model!

Null Model: Configuration Model

- Given real G on n nodes and m edges, construct rewired network G'
 - Same degree distribution but random connections
 - Consider G' as a multigraph

- The expected number of edges between nodes
 - *i* and *j* of degrees k_i and k_j equals to: $k_i \cdot \frac{k_j}{2m} = \frac{k_i k_j}{2m}$
 - The expected number of edges in (multigraph) G':

$$= \frac{1}{2} \sum_{i \in N} \sum_{j \in N} \frac{k_i k_j}{2m} = \frac{1}{2} \cdot \frac{1}{2m} \sum_{i \in N} k_i (\sum_{j \in N} k_j) =$$

$$= \frac{1}{4m} 2m \cdot 2m = m$$
Note:
$$\sum_{u \in N} k_u = 2m$$

Modularity of partitioning S of graph G:

• $Q \propto \sum_{s \in S} [$ (# edges within group s) – (expected # edges within group s)]

•
$$Q(G,S) = \underbrace{\frac{1}{2m}}_{S \in S} \sum_{i \in S} \sum_{j \in S} \left(A_{ij} - \frac{k_i k_j}{2m} \right)$$

Normalizing cost.: -1A_{ij} = 1 \text{ if } i \rightarrow j.

Modularity values take range [-1,1]

- It is positive if the number of edges within groups exceeds the expected number
- **0.3-0.7<Q** means significant community structure

Modularity: Number of clusters

Modularity is useful for selecting the number of clusters:

modularity

Why not optimize Modularity directly?

Modularity Optimization

Method 2: Modularity Optimization

Let's split the graph into 2 communities!
Want to directly optimize modularity!

$$\max_{S} Q(G,S) = \frac{1}{2m} \sum_{s \in S} \sum_{i \in S} \sum_{j \in S} \left(A_{ij} - \frac{k_i k_j}{2m} \right)$$

Community membership vector s:

s_i = **1** if node *i* is in community **1**
-**1** if node *i* is in community -**1**
$$\frac{s_i s_j + 1}{2} = \frac{1.. \text{ if } s_i = s_j}{0.. \text{ else}}$$

•
$$Q(G,s) = \frac{1}{2m} \sum_{i \in N} \sum_{j \in N} \left(A_{ij} - \frac{k_i k_j}{2m} \right) \frac{(s_i s_j + 1)}{2}$$

= $\frac{1}{4m} \sum_{i,j \in N} \left(A_{ij} - \frac{k_i k_j}{2m} \right) s_i s_j$

Modularity Matrix

Note: each row/col of B sums to $\mathbf{0}: \sum_{i} A_{ii} = k_i$, Define: $\sum_{i} \frac{k_i k_j}{2m} = k_i \sum_{j} \frac{k_j}{2m} = k_i$ $k_i k_j$ Modularity matrix: $B_{ij} = A_{ij}$ – 2m■ Membership: *s* = {−1, +1} • Then: $Q(G,s) = \frac{1}{4m} \sum_{i \in N} \sum_{j \in N} \left(A_{ij} - \frac{\kappa_i \kappa_j}{2m} \right) s_i s_j$ $= \frac{1}{4m} \sum_{i,j \in N} B_{ij} S_i S_j$ $=\frac{1}{4m}\sum_{i}s_{i}\sum_{j}B_{ij}s_{j}=\frac{1}{4m}s^{T}Bs$ $= B_{i} \cdot s$

Task: Find s∈{-1,+1}ⁿ that maximizes Q(G,s)

Quick Review of Linear Algebra

Symmetric matrix A

• That is positive semi-definite: $A = U \cdot U^T$

- $\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$
- Then solutions λ , x to equation $A \cdot x = \lambda \cdot x$:
 - **Eigenvectors** x_i ordered by the magnitude of their corresponding **eigenvalues** λ_i ($\lambda_1 \leq \lambda_2 \dots \leq \lambda_n$)
 - x_i are orthonormal (orthogonal and unit length)
 - x_i form a coordinate system (basis)
- If A is positive-semidefinite: $\lambda_i \ge 0$ (and they always exist)
 Eigen Decomposition theorem: Can rewrite matrix A in terms of its eigenvectors and eigenvalues: $A = \sum_i x_i \cdot \lambda_i \cdot x_i^T$

Modularity Optimization

- Rewrite: $Q(G, s) = \frac{1}{4m} s^{T} B s$ in terms of its eigenvectors and eigenvalues: $= s^{T} \left[\sum_{i=1}^{n} x_{i} \lambda_{i} x_{i}^{T} \right] s = \sum_{i=1}^{n} s^{T} x_{i} \lambda_{i} x_{i}^{T} s = \sum_{i=1}^{n} (s^{T} x_{i})^{2} \lambda_{i}$
- So, if there would be no other constraints on s then to maximize Q, we make s = x_n
 - Why? Because $\lambda_n \geq \lambda_{n-1} \geq \cdots$
 - Remember s has fixed length!
 - Assigns all weight in the sum to λ_n (largest eigenvalue)
 - All other $s^T x_i$ terms are **zero** because of orthonormality

Finding the vector s

- Let's consider only the first term in the summation (because λ_n is the largest): $\max_{s} Q(G,s) = \sum_{i=1}^{n} (s^T x_i)^2 \lambda_i \approx (s^T x_n)^2 \lambda_n$
- Let's maximize: $\sum_{j=1}^{n} s_j \cdot x_{n,j}$ where $s_j \in \{-1,+1\}$ To do this, we set:

 $s_j = \begin{cases} +1 & \text{if } x_{n,j} \ge 0 \text{ (j-th coordinate of } x_n \ge 0) \\ -1 & \text{if } x_{n,j} < 0 \text{ (j-th coordinate of } x_n < 0) \end{cases}$

Continue the bisection hierarchically

Summary: Modularity Optimization

Fast Modularity Optimization Algorithm:

- Find leading eigenvector x_n of modularity matrix B
- Divide the nodes by the signs of the elements of x_n
- Repeat hierarchically until:
 - If a proposed split does not cause modularity to increase, declare community indivisible and do not split it

 $v^{(t+1)} = \frac{Bv^{(t)}}{\|Bv^{(t)}\|}$

- If all communities are indivisible, stop
- How to find x_n? Power method!
 - Start with random v⁽⁰⁾, repeat :
 - When converged $(\mathbf{v}^{(t)} \approx \mathbf{v}^{(t+1)})$, set $\mathbf{x}_n = \mathbf{v}^{(t)}$

<u>Summary:</u> Modularity

Girvan-Newman:

- Based on the "strength of weak ties"
- Remove edge of highest betweenness

Modularity:

- Overall quality of the partitioning of a graph
- Use to determine the number of communities

Fast modularity optimization:

 Transform the modularity optimization to a eigenvalue problem