
Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides

 Link Prediction in Networks
▪ Estimating Scores for Missing Edges
▪ Classification Approach (Omitted)

 Case studies:
▪ Facebook: Supervised Random Walks for Link

Prediction
▪ Twitter: The who to follow service at Twitter

▪ Recommending new friends in online social networks
▪ Predicting the participation of actors in events
▪ Suggesting interactions between the members of a

company/organization that are external to the hierarchical
structure of the organization itself

▪ Predicting connections between members of
communities/organizations who have not been directly
observed together

▪ Suggesting collaborations between researchers based on co-
authorship

▪ Overcoming the data-sparsity problem in recommender
systems using collaborative filtering

 The link prediction task:

▪ Given 𝐺[𝑡0, 𝑡0
′] a graph on edges up

to time 𝑡0
′ , output a ranked list L

of links (not in 𝐺[𝑡0, 𝑡0
′]) that are

predicted to appear in 𝐺[𝑡1, 𝑡1
′]

 Evaluation:

▪ n = |Enew|: # new edges that appear during
the test period [𝑡1, 𝑡1

′]

▪ Take top n elements of L and count correct edges

[LibenNowell-Kleinberg ‘03]

𝐺[𝑡0, 𝑡0
′]

𝐺[𝑡1, 𝑡1
′]

 Predict links in a evolving collaboration
network

 Core: Because network data is very sparse
▪ Consider only nodes with degree of at least 3
▪ Because we don't know enough about these nodes to

make good inferences

[LibenNowell-Kleinberg ‘03]

 Methodology:

▪ For each pair of nodes (x,y) compute score c(x,y)

▪ For example, c(x,y) could be the # of
common neighbors of x and y

▪ Sort pairs (x,y) by the decreasing score c(x,y)

▪ Note: Only consider/predict edges where
both endpoints are in the core (deg. ≥ 3)

▪ Predict top n pairs as new links

▪ See which of these links actually
appear in 𝐺[𝑡1, 𝑡1

′]

X

 Different scoring functions 𝒄(𝒙, 𝒚) =
▪ Graph distance: (negated) Shortest path length
▪ Common neighbors: |Γ 𝑥 ∩ Γ(𝑦)|
▪ Jaccard’s coefficient: Γ 𝑥 ∩ Γ 𝑦 /|Γ 𝑥 ∪ Γ(𝑦)|

▪ Adamic/Adar: σ𝑧∈Γ 𝑥 ∩Γ(𝑦) 1/log |Γ(𝑧)|

▪ Preferential attachment: |Γ 𝑥 | ⋅ |Γ(𝑦)|

▪ PageRank: 𝑟𝑥(𝑦) + 𝑟𝑦(𝑥)
▪ 𝑟𝑥 𝑦 … stationary distribution score of y under the random walk:
▪ with prob. 0.15, jump to x
▪ with prob. 0.85, go to random neighbor of current node

 Then, for a particular choice of c(·)
▪ For every pair of nodes (x,y) compute c(x,y)
▪ Sort pairs (x,y) by the decreasing score c(x,y)
▪ Predict top n pairs as new links

[LibenNowell-Kleinberg ‘03]

Γ(x) … neighbors

of node x

 How to assign the score c(x, y) for each pair
(x, y)?

▪ Some form of similarity between x and y

▪ Some form of node proximity between x and y

 Methods

▪ Neighborhood-based (shared neighbors)

▪ Network proximity based (paths between x and y)

▪ Other

Neighborhood-based

Let Γ(x) be the set of neighbors of x in Gold

 Methods

▪ Common Neighbors Overlap

▪ Jaccard

▪ Adamic/Adar

▪ Preferential Attachment

 Common neighbors

▪ A: adjacency matrix, Ax,y
2: #paths of length 2

 Jaccard coefficient

▪ The probability that both x and y have a feature for a
randomly selected feature that either x or y has

Intuition: The larger the overlap of the neighbors
of two nodes, the more likely the nodes to be
linked in the future

 Adamic/Adar

▪ Assigns large weights to common neighbors z of x and y
which themselves have few neighbors (weight rare features
more heavily)

 Preferential attachment

▪ Based on the premise that the probability that a new edge
has node x as its endpoint is proportional to |Γ(x)|, i.e.,
nodes like to form ties with ‘popular’ nodes

Network proximity based

Intuition: The “closer” two nodes are in the
network, the more likely are to be linked in the
future

 Methods
▪ based on shortest path length between x and y

▪ based on all paths between x and y
▪ Katzβ measure (unweighted, weighted)

▪ Random walk-based
▪ hitting time

▪ commute time

▪ Rooted PageRank

▪ SimRank

For x, y ∈ V×V−Eold,

score(x, y) = (negated) length of shortest
path between x and y

If there are more than n pairs of nodes tied for
the shortest path length, order them at random

 Katzβ measure

▪ Sum over all paths of length l

▪ 0<β<1: a parameter of the predictor, exponentially
damped to count short paths more heavily

 Katzβ measure

▪ Unweighted version: pathx,y(1) = 1, if x and y have
collaborated, 0 otherwise

▪ Weighted version: pathx,y(1) = #times x and y have
collaborated

Consider a random walk on Gold that starts at x and
iteratively moves to a neighbor of x chosen uniformly
at random from Γ(x)
 Hitting Hx,y (from x to y): the expected number of steps it

takes for the random walk starting at x to reach y
score(x, y) = − Hx,y

 Commute Time Cx,y (from x to y): the expected number of
steps to travel from x to y and from y to x

score(x, y) = − (Hx,y + Hy,x)

Not symmetric, can be shown

 The hitting time and commute time measures
are sensitive to parts of the graph far away from
x and y → periodically reset the walk

 Random walk on Gold that starts at x and has a
probability α of returning to x at each step

 Rooted PageRank
▪ Starts from x

▪ with probability (1 – a) moves to a random neighbor

▪ with probability a returns to x

score(x, y) = stationary probability of y in a
rooted PageRank

Intuition: Two objects are similar, if they are
related to similar objects

 Two objects x and y are similar, if they are
related to objects a and b respectively and a and
b are themselves similar

 Expresses the average similarity between
neighbors of x and neighbors of y

score(x, y) = similarity(x, y)

Other Methods

 Low-rank Approximations
 Unseen bigrams
 High-level Clustering

Intuition: represent the adjacency matrix M with a
lower rank matrix Mk

 Method

▪ Apply SVD (singular value decomposition)

▪ Obtain the rank-k matrix that best approximates M

 r: rank of matrix A

 σ1≥ σ2≥ … ≥σr : singular values (square roots of eig-vals AAT, ATA)

 : left singular vectors (eig-vectors of AAT)

 : right singular vectors (eig-vectors of ATA)





 




































==

r

2

1

r

2

1

r21
T

v

v

v

σ

σ

σ

uuuVΣUA















[n×r] [r×r] [r×n]

r21 u,,u,u





r21 v,,v,v





T

rrr

T

222

T

111 vuσvuσvuσA





+++=

 rk ,,...2,1,vuσvuσvuσA T

kkk

T

222

T

111k +++=





 Unseen bigrams: Predict pairs of words that co-occur in a test
corpus, but not in the corresponding training corpus

 Not just score(x, y) but score(z, y) for nodes z that are similar
to x --- Sx

(δ): the δ nodes most related to x

▪ Compute score(x, y) for all edges in Eold

▪ Delete the (1-p) fraction of the edges whose
score is the lowest, for some parameter p

▪ Re-compute score(x, y) for all pairs in the
subgraph

 Each link predictor p outputs a ranked list Lp

of pairs in V×V−Eold in decreasing order of
confidence

▪ focus on Core network, (d > 3)

E∗new = Enew ∩ (Core × Core) = |E∗new|

 Evaluation method: Size of intersection of

▪ the first n edge predictions from Lp that are in Core
× Core, and

▪ the actual set E∗new

How many of the (relevant) top-n predictions are correct (precision?)

 Random Predictor: Randomly select pairs of
authors who did not collaborate in the
training interval

▪ Probability that a random prediction is correct:

In the datasets, from 0.15% (cond-mat) to 0.48% (astro-ph)

 Improvement over random predictor
▪ average ratio over the five
datasets of the given predictor's
performance versus a baseline
predictor's performance.
▪ the error bars indicate the
minimum and maximum of this
ratio over the five datasets.
▪ the parameters for the starred
predictors are: (1) for weighted
Katz, β= 0.005; (2) for Katz
clustering, β1 = 0.001; ρ = 0.15; β2
= 0.1; (3) for low-rank inner
product, rank = 256; (4) for rooted
Pagerank, α = 0.15; (5) for unseen
bigrams, unweighted, common
neighbors with δ = 8; and (6) for
SimRank, C (γ) = 0.8.

 Improvement over #common neighbors

 Improvement over graph distance predictor

[LibenNowell-Kleinberg ’ 03]

Performance score: Fraction
of new edges that are guessed
correctly.

correct
predictions

How similar are the
predictions made by the
different methods?
common predictions

 Improve performance. Even the best (Katz
clustering on gr-qc) correct on only about 16%
of its prediction

 Improve efficiency on very large networks
(approximation of distances)

 Treat more recent links (e.g., collaborations)
as more important

 Additional information (paper titles, author
institutions, etc) latently present in the graph

 Can we learn to predict new friends?

▪ Facebook’s People You May Know

▪ Let’s look at the FB data:

▪ 92% of new friendships on
FB are friend-of-a-friend

▪ More mutual friends helps

[WSDM ‘11]

w

v

u

z

 Goal: Recommend a list of possible friends
 Supervised machine learning setting:

▪ Labeled training examples:

▪ For every user 𝑠 have a list of others she
will create links to {𝑑1 … 𝑑𝑘} in the future
▪ Use FB network from May 2012 and {𝑑1 … 𝑑𝑘}

are the new friendships you created since then

▪ These are the “positive” training examples

▪ Use all other users as “negative” example

▪ Task:

▪ For a given node 𝑠, score nodes {𝑑1 … 𝑑𝑘}
higher than any other node in the network

“positive” nodes
“negative” nodes

s

Green nodes

are the nodes

to which s

creates links in

the future

s

 How to combine node/edge features and
the network structure?
▪ Estimate strength of each friendship (𝑢, 𝑣) using:
▪ Profile of user 𝑢, profile of user 𝑣

▪ Interaction history of users 𝑢 and 𝑣

▪ This creates a weighted graph

▪ Do Personalized PageRank from 𝒔
and measure the “proximity” (the
visiting prob.) of any other
node 𝑤 from 𝑠

▪ Sort nodes 𝑤 by decreasing
“proximity”

“positive” nodes
“negative” nodes

s☺☺☺☺

 Let 𝑠 be the starting node
 Let 𝒇𝜷(𝒖, 𝒗) be a function that

assigns strength 𝒂𝒖𝒗 to edge 𝒖, 𝒗
𝑎𝑢𝑣 = 𝑓𝛽 𝑢, 𝑣 = exp −σ𝑖 𝛽𝑖 ⋅ x𝑢𝑣 𝑖
▪ 𝒙𝒖𝒗 is a feature vector of (𝒖, 𝒗)

▪ Features of node 𝑢

▪ Features of node 𝑣

▪ Features of edge (𝑢, 𝑣)

▪ Note: 𝜷 is the weight vector we will later estimate!

 Do Random Walk with Restarts from 𝑠 where
transitions are according to edge strengths 𝑎𝑢𝑣

[WSDM ’11]

“positive” nodes
“negative” nodes

s

 How to estimate edge strengths?

▪ How to set parameters β of fβ(u,v)?

 Idea: Set 𝛽 such that it (correctly)
predicts the known future links

s

Network

s

Set edge

strengths

auv = fβ(u,v)

Random Walk with

Restarts on the

weighted graph.

Each node w has a

PageRank proximity pw

Sort nodes w by the

decreasing PageRank

score pw

Recommend top k

nodes with the highest

proximity pw to node s

 𝒂𝒖𝒗 …. Strength of edge (𝒖, 𝒗)
 Random walk transition matrix:

 PageRank transition matrix:

▪ Where with prob. 𝛼 we jump back to node 𝑠

 Compute PageRank vector: 𝑝 = 𝑝𝑇 𝑄

 Rank nodes 𝑤 by decreasing 𝑝𝑤

[WSDM ’11]

“positive” nodes
“negative” nodes

s

 Positive examples
𝑫 = {𝒅𝟏, … , 𝒅𝒌}

 Negative examples
𝑳 = {𝒐𝒕𝒉𝒆𝒓 𝒏𝒐𝒅𝒆𝒔}

 What do we want?

▪ Note:
▪ Exact solution to this problem may not exist

▪ So we make the constraints “soft” (i.e., optional)

[WSDM ’11]

“positive” nodes
“negative” nodes

s

We prefer small

weights 𝛽 to prevent

overfitting

Every positive example has to have

higher PageRank score than every

negative example

 Want to minimize:

▪ Loss: ℎ(𝑥) = 0 if 𝑥 < 0, or 𝑥2 else

[WSDM ’11]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

pl=pdpl < pd pl > pd

L
o

ss

Penalty for

violating the

constraint

that 𝑝𝑑 > 𝑝𝑙

 How to minimize F?

 Both pl and pd depend on β

▪ Given β assign edge weights 𝑎𝑢𝑣 = 𝑓𝛽(𝑢, 𝑣)

▪ Using 𝑄 = [𝑎𝑢𝑣] compute PageRank scores 𝑝𝛽

▪ Rank nodes by the decreasing score

 Goal: Want to find β such that pl < pd

[WSDM ’11]

v3

v1
v2

s

 How to minimize 𝑭(𝜷) ?

 Idea:

▪ Start with some random 𝛽(0)

▪ Evaluate the derivative of 𝐹(𝛽) and
do a small step in the opposite direction

𝛽(𝑡+1) = 𝛽(𝑡) − 𝜂
𝜕𝐹 𝛽(𝑡)

𝜕𝛽

▪ Repeat until convergence

[WSDM ’11]

s

𝛽(0)

𝑭(𝜷)
𝛽(50)

𝛽(100)

 What’s the derivative
𝜕𝐹 𝛽(𝑡)

𝜕𝛽
?

 We know:

that is
 So:

[WSDM ’11]

Easy!

Details!

 We just got:
▪ Few details:
▪ Computing 𝜕𝑄𝑗𝑢/𝜕𝛽 is easy. Remember:

▪ We want
𝜕𝑝𝑗

𝜕𝛽
but it appears on both

sides of the equation. Notice the
whole thing looks like a PageRank
equation: 𝑥 = 𝑄 ⋅ 𝑥 + 𝑧

 As with PageRank we can use the
power-iteration to solve it:

▪ Start with a random
𝜕𝑝

𝜕𝛽

(0)

▪ Then iterate:
𝜕𝑝

𝜕𝛽

(𝑡+1)
= 𝑄 ⋅

𝜕𝑝

𝜕𝛽

(𝑡)
+

𝜕𝑄𝑗𝑢

𝜕𝛽
⋅ 𝑝

[WSDM ’11]

𝑎𝑢𝑣 = 𝑓𝛽 𝑢, 𝑣

= exp −෍

𝑖

𝛽𝑖 ⋅ x𝑢𝑣 𝑖

Details!

 To optimize 𝑭(𝜷), use gradient descent:

▪ Pick a random starting point 𝛽(0)

▪ Using current 𝛽(𝑡) compute edge strenghts and
the transition matrix 𝑄

▪ Compute PageRank scores 𝑝

▪ Compute the gradient with

respect to weight vector 𝛽(𝑡)

▪ Update 𝛽(𝑡+1)

Iteration, (t)

L
o
s
s
,

h
(·

)

Details!

 Facebook Iceland network
▪ 174,000 nodes (55% of population)

▪ Avg. degree 168

▪ Avg. person added 26 friends/month
 For every node s:
▪ Positive examples:
▪ 𝐷 = { new friendships 𝑠 created in Nov ‘09 }

▪ Negative examples:
▪ 𝐿 = { other nodes 𝑠 did not create new links to }

▪ Limit to friends of friends:
▪ On avg. there are 20,000 FoFs (maximum is 2 million)!

[WSDM ’11]

s

 Node and Edge features for learning:

▪ Node: Age, Gender, Degree

▪ Edge: Age of an edge, Communication, Profile
visits, Co-tagged photos

 Evaluation:

▪ Precision at top 20

▪ We produce a list of 20 candidates
▪ By taking top 20 nodes 𝑥 with highest PageRank score 𝑝𝑥

▪ Measure to what fraction of these nodes
𝑠 actually links to

 Facebook: Predict future friends

▪ Adamic-Adar already works great

▪ Supervised Random Walks (SRW) gives slight
improvement

 2.3x improvement over previous FB-PYMK
(People You May Know)

2.3x

 Arxiv Hep-Ph collaboration network:

▪ Poor performance of unsupervised methods

▪ SRW gives a boost of 25%!

Semantic differences between “interested in” and “similar to”

 WtF (“Who to Follow"): the Twitter user
recommendation service

▪ help existing and new users to discover
connections to sustain and grow

▪ used for search relevance, content discovery,
promoted products, etc.

▪ Twitter Data:

▪ 200 million users

▪ 400 million tweets every day (as of early 2013)

▪ http://www.internetlivestats.com/twitter-statistics/

 Graph

▪ Node: user

▪ (Directed) Edge: follows

 Graph Statistics (Aug’12)

▪ Over 20 billion edges

▪ Power law of in- and out-degrees

▪ Over 1000 with more than 1 million followers

▪ 25 users with more than 10 million followers

http://blog.ouseful.info/2011/07/07/visualising-twitter-friend-connections-
using-gephi-an-example-using-wireduk-friends-network/

 Circle of Trust

▪ Based on an egocentric random walk (similar to
personalized (rooted) PageRank)

 Computed in an online fashion (from scratch
each time) given a set of parameters

▪ # of random walk steps

▪ reset probability

▪ pruning settings to discard low probability vertices

▪ parameters to control sampling of outgoing edges
at vertices with large out-degrees

 Directed edge

▪ Asymmetric nature of the follow relationship

▪ Friendships in other social networks such as Facebook or
LinkedIn are symmetric/reciprocal

▪ Similar to the user-item recommendations
problem where the “item” is also a user

 SALSA (Stochastic Approach for
Link-Structure Analysis)

▪ a variation of HITS
 HITS

▪ Intuition:
▪ Good hubs point to good authorities

▪ Good auth. are pointed by good hubs

▪ Recurs. comput. of hub score

▪ Recurs. comput. of auth. score

hubs authorities


→

=
jij

ji ah
:


→

=
ijj

ji ha
:

 Random walks to rank hubs and authorities

▪ Two different random walks (Markov chains): a
chain of hubs and a chain of authorities

▪ Each walk traverses nodes only in one side by
traversing two links in each step h→a→h, a→h→a

hubs authorities

Transition matrices of each chain: H and A
W: the adjacency of the directed graph
Wr: divide each entry by the sum of its row
Wc: divide each entry by the sum of its column

H = WrWc
T

A = Wc
T Wr

 Reduces to the problem of HITS with tightly
knit communities

▪ TKC effect

 Better for single-topic communities
 More efficient implementation

 The HITS algorithm favors the most dense
community of hubs and authorities

▪ Tightly Knit Community (TKC) effect

 The HITS algorithm favors the most dense
community of hubs and authorities

▪ Tightly Knit Community (TKC) effect

1

1

1

1

1

1

 The HITS algorithm favors the most dense
community of hubs and authorities

▪ Tightly Knit Community (TKC) effect

3

3

3

3

3

 The HITS algorithm favors the most dense
community of hubs and authorities

▪ Tightly Knit Community (TKC) effect

32

32

32

3∙2

3∙2

3∙2

 The HITS algorithm favors the most dense
community of hubs and authorities

▪ Tightly Knit Community (TKC) effect

33

33

33

32 ∙ 2

32 ∙ 2

 The HITS algorithm favors the most dense
community of hubs and authorities

▪ Tightly Knit Community (TKC) effect

34

34

34

32 ∙ 22

32 ∙ 22

32 ∙ 22

 The HITS algorithm favors the most dense
community of hubs and authorities

▪ Tightly Knit Community (TKC) effect

32n

32n

32n

3n ∙ 2n

3n ∙ 2n

3n ∙ 2n

after n iterations

 The HITS algorithm favors the most dense
community of hubs and authorities

▪ Tightly Knit Community (TKC) effect

1

1

1

0

0

0

after normalization
with the max
element as n → ∞

 Hubs:

▪ 500 top-ranked nodes from a
user's circle of trust

▪ user similarity (based on
homophily, also useful)

 Authorities:

▪ users that the hubs follow

▪ “interested in” user
recommendations

 SALSA’s recursive nature

▪ Two users are similar if they follow the same (or
similar) users (LHS)

▪ A user u is likely to follow those who are followed
by users that are similar to u (RHS)

 The random walk ensures fair distribution of
scores in both directions

 Similar users are selected from the circle of
trust of a user (via personalized PageRank)

 Approaches

▪ Offline experiments on retrospective data

▪ Online A/B testing on live traffic

 Various parameters may interfere:

▪ How the results are rendered

▪ Platform (mobile, etc.)

▪ New vs old users

 Add metadata to vertices (e.g., user profile
information) and edges (e.g., edge weights,
timestamp, etc.)

 Consider interaction graphs (e.g., graphs
defined in terms of retweets, favorites,
replies, etc.)

 Two phase algorithm

▪ 1st - Candidate generation: produce a list of
promising recommendations for each user, using
any algorithm

▪ 2nd - Rescoring: apply a machine-learned model to
the candidates, binary classification problem
(logistic regression)

 Evaluation

▪ 1st Phase: recall + diversity

▪ 2nd Phase: precision + maintain diversity

