Link Prediction In
Networks

Link Prediction in Networks

Estimating Scores for Missing Edges

Classification Approach (Omitted)
Case studies:

Facebook: Supervised Random Walks for Link
Prediction

Twitter: The who to follow service at Twitter

Link Prediction Motivation

Recommending in online social networks
Predicting the participation of in events
Suggesting between the members of a

company/organization that are external to the hierarchical
structure of the organization itself
Predicting between members of
communities/organizations who have not been directly
observed together
Suggesting between researchers based on co-
authorship
Overcoming the data-sparsity problem

using collaborative filtering

[LibenNowell-Kleinberg ‘03]

Link Prediction in Networks

Given G|[ty, ty] a graph on edges up
to time t}),
of links (not in G[t, t;]) that are

predicted to appear in G[tq, t{]
G [to, tol
G[ty, t1]

n = |E,,|: # new edges that appear during
the test period [ty, t1]

Take top n elements of L and count correct edges

[LibenNowell-Kleinberg ‘03]

Link Prediction

Predict links in a evolving collaboration

network
training period Core
authors | papers | collaborations! || authors | |[Eyq| | |[Enew|
astro-ph 5343 H816 41852 1561 6178 5751
cond-mat 5469 6700 19881 1253 1899 1150
eT—qc 2122 | 3287 5724 186 | 519 | 400
hep-ph H414 10254 47806 1790 6654 | 3294
hep-th 5241 9498 15842 1438 2311 1576

Because network data is very sparse

Consider only nodes with degree of at least 3

Because we don't know enough about these nodes to
make good inferences

Link Prediction

Methodology:

For each pair of nodes (x,y) compute score c(x,y)

For example, c(x,y) could be the # of
common neighbors of x and y

Sort pairs (x,y) by the decreasing score c(x,y)

Note: Only consider/predict edges where
both endpoints are in the core (deg. > 3)

Predict top n pairs as new links

See which of these links actually
appearin G[ty, t;]

[LibenNowell-Kleinberg ‘03]

Link Prediction

Different scoring functions c(x,y) =
Graph distance: (negated) Shortest path length
Common neighbors: [I'(x) N T'(y)|
Jaccard’s coefficient: |[I'(x) N T'(y)|/|T'(x) U T'(y)|
Adamic/Adar:)., cr)nr(y) 1/10g [T(2)]
Preferential attachment: [['(x)| - |[T'(y)] I'(x) ... neighbors
PageRank: ;. (y) + 73, (x) of node X

1, (y) ... stationary distribution score of y under the random walk:
with prob. 0.15, jump to x
with prob. 0.85, go to random neighbor of current node

Then, for a particular choice of c(-)
For every pair of nodes (x,y) compute c(x,y)
Sort pairs (x,y) by the decreasing score c(x,y)
Predict top N pairs as new links

Link Prediction Methods

Link Prediction Methods

How to assign the score c¢(x, y) for each pair
(x, y)?

Some form of similarity between x and y

Some form of node proximity between x and y

Methods

Neighborhood-based (shared neighbors)
Network proximity based (paths between x and y)
Other

Methods for Link Prediction

Neighborhood-based Methods

Let I'(x) be the set of neighbors of xin G4

Methods
Common Neighbors Overlap

Jaccard
Adamic/Adar
Preferential Attachment

Neighborhood-based Methods

Intuition: The larger the overlap of the neighbors
of two nodes, the more likely the nodes to be
linked in the future

Common neighbors
A: adjacency matrix, A, *: #paths of length 2

score(z,y) = |['(x) NI'(y)

Jaccard coefficient

The probability that both x and y have a feature for a
randomly selected feature that either x or y has

[(x) NT(y)

score(T,) = =
R () Ul (y)

Neighborhood-based Methods

Adamic/Adar

Assigns large weights to common neighbors z of x and y
which themselves have few neighbors (weight rare features

more heavily) i
score|r,y) = Z -
e - log |T(=)|

=e{)N (y)

Preferential attachment

Based on the premise that the probability that a new edge
has node x as its endpoint is proportional to |T(x)], i.e.,
nodes like to form ties with ‘popular’ nodes

score(x,y) = |T(z)||T(y)|

Methods for Link Prediction

Network Proximity Methods

Intuition: The “closer” two nodes are in the
network, the more likely are to be linked in the
future

Methods

based on shortest path length between x and y

based on all paths between x and y

Katzg measure (unweighted, weighted)

Random walk-based
hitting time
commute time
Rooted PageRank
SimRank

Shortest Path Based

For x, y € VxXV-E_,,

score(x, y) = (negated) length of shortest
path between xandy

If there are more than n pairs of nodes tied for
the shortest path length, order them at random

Ensemble of All Paths

KatzB measure

score(x,y) 1= Z 3t |pall:hsph'ﬁ-r'!{:]'jf
=1
Sum over all paths of length ¢

0<6<1: a parameter of the predictor, exponentially
damped to count short paths more heavily

Ensemble of All Paths

KatzB measure

-
score(x,y) := Z 3t |path5ﬂ

=1

00
Z B - |[}-E|1.']'|5_;,r::| = BAxy + ﬁz'[eqzlr_'r' + ﬁ;{'[eqjlr}r' + .-
[—1

Unweighted version: path, (1) = 1, if x and y have
collaborated, 0 otherwise

Weighted version: path, (1) = #times x and y have
collaborated

Random Walk Based

Consider a random walk on G,,4 that starts at x and
iteratively moves to a neighbor of x chosen uniformly

at random from [(x)
Hitting H, (from x to y): the expected number of steps it
takes for the random walk starting at x to reach y
score(x,y) =-H,,

Commute Time C, , (from x to y): the expected number of
steps to travel from x toy and from y to x
score(x, y) =- (H,,+H,,)

v

..._.l

Not symmetric, can be shown
how = O(n?))

3
h?ﬂ' = 'E](ﬂ J' clique of
size n/f2

n/2 vertices

Random Walk Based

The hitting time and commute time measures
are sensitive to parts of the graph far away from
x and y = periodically reset the walk

Random walk on G_ 4 that starts at x and has a
probability a of returning to x at each step
Rooted PageRank

Starts from x

with probability (1 — a) moves to a random neighbor
with probability a returns to x

score(x, y) = stationary probability of y in a
rooted PageRank

Intuition: Two objects are similar, if they are
related to similar objects

Two objects x and y are similar, if they are
related to objects a and b respectively and a and
b are themselves similar

Zm-:r[x} Zb,_,_:l-[y] similarity(a, b)

similarity(z., y) == ~ - : :
VY | T(z)| - T(y)

Expresses the average similarity between
neighbors of x and neighbors of y
score(x, y) = similarity(x, y)

Methods for Link Prediction

Other Methods

Low-rank Approximations
Unseen bigrams
High-level Clustering

Low Rank Approximations

Intuition: represent the adjacency matrix M with a
lower rank matrix M,
Method

Apply SVD (singular value decomposition)
Obtain the rank-k matrix that best approximates M

Singular Value Decomposition

o 2

S . o Vv

A=U Z V'=[4, 4, - U] ’ k
[nxr][rxr] [rxn] o \7

r: rank of matrix A
0,2 0,2 ... 20, : singular values (square roots of eig-vals AA", ATA)
Ul,ﬂz,- - -,Gr . left singular vectors (eig-vectors of AAT)
\71 / \72/' iy \7r : right singular vectors (eig-vectors of A'A)
oo oo T

T TRyl
A=c,UV, +0,U,V, +---+0c,U.V,

A, =c6,0,V] +0,0,V] +--+0,0,V, ke{l2,..,r}

Unseen bigrams

Unseen bigrams: Predict pairs of words that co-occur in a test
corpus, but not in the corresponding training corpus

Not just score(x, y) but score(z, y) for nodes z that are similar
tox --- S,1®): the & nodes most related to x

ol
[z:2eT(y)N Sy }|

score,,, weighted (T, y)

s Score(x, z)
zel(y)NSz .

(]

L A
SCOT€. peighted x,y)

Clustering

Compute score(x, y) for all edges in E_,4
Delete the (1-p) fraction of the edges whose
score is the lowest, for some parameter p
Re-compute score(x, y) for all pairs in the
subgraph

Evaluation & Results

How to Evaluate the Prediction

Each link predictor p outputs a ranked list L,

of pairs in VxV-E_,, in decreasing order of
confidence
focus on Core network, (d > 3)
Ex .= E ey N (Core x Core) = |Ex__, |

Evaluation method: Size of intersection of

the first n edge predictions from L, that are in Core
x Core, and

the actual set Ex*_,,,

How many of the (relevant) top-n predictions are correct (precision?)

Evaluation: Baseline Predictor

Random Predictor: Randomly select pairs of
authors who did not collaborate in the
training interval

Probability that a random prediction is correct:

|Em.=r.!=|

(|D::re|) |Ef;.!.ri |

In the datasets, from 0.15% (cond-mat) to 0.48% (astro-ph)

Average Relevance Performance

random predictions

Relative performance

Improvement over random predictor

random predictor

]
]
B B
|
]
™ mwm
]
i 1 -+]
- % - = . = . . = =
=) &0 T = — = 4 - = =
= +2 = o = = o = = =1 =
- = 3 g 2 o Y
2 =0 = =0 = =0
e 2 £z 2 E £ - o o= E
a % 5 £ &8 = £ g =
= = 8 = = & & 5
E 3 = 2 = e =0
- _.,.. = =, =
:

= gverage ratio over the five
datasets of the given predictor's
performance versus a baseline
predictor's performance.

= the error bars indicate the
minimum and maximum of this
ratio over the five datasets.

= the parameters for the starred
predictors are: (1) for weighted
Katz, B=0.005; (2) for Katz
clustering, f1 =0.001; p =0.15; B2
=0.1; (3) for low-rank inner
product, rank = 256; (4) for rooted
Pagerank, a =0.15; (5) for unseen
bigrams, unweighted, common
neighbors with & = 8; and (6) for
SimRank, C(y) =0.8.

common neighbors predictor

auIr) Surg
aour)sip ydeis
Nueyqumig
sureIsq usasum
pesoep

yueyese J pojool

s,

z1ey ponySom

_|-|A jonpord Iouul yurI-mof

_ - _ Sutesnd zyeyy

_|-|A Tepy /omrepy

W
p S
O
o
=
R}
v
Z
-
O
c
=
O
O

.00
1.00

,_”C.h.:.”—.rw,_”nﬁ IHCn—Q.\%TzH TOTIUIOD SNSIDA OT)el L.ZH._.,.H:”,_”CHHLQ OATYRTOY

Improvement over #common neighbors

Results

Results: Common Neighbors

Improvement over graph distance predictor

Z 200

= = = = &

[LibenNowell-Kleinberg * 03]

Results: Improvement

Performance score: Fraction
of new edges that are guessed
correctly.

)
o

common neighbors predictor

o Ta

Relative performance ratio versus random predictions

1
22€D (@) (y) BRI

random predictor

Relative performance ratio versus common neighbors predictor

g8 . " -
= o * ge]] = — - -
= = i =~ ¢ - = ~ =
e =] — 1 — = — —
= = = 2] = - = =~ —
- L = < o o® -, W =~ <
= ~ QL — c +
=Ty — = & P <z ® o
o = Q —_ = > =1 [y =
shz lg =S = g @ S B
= — pcy — vl -
= =]] = - _
= — [al el =) — r—
_— = —= 2] =
= o ®
- = = - =
\ g [aw
= o0 T —
=] ol
=
2
<

Factor Improvement Over Random

predictor astro-ph | cond-mat gr-qc | hep-ph | hep-th
probability that a random prediction is correct 0.475% 0.147% | 0.341% | 0.207% | 0.153%
sraph distance (all distance-two pairs) 9.4 25.1 21.3 12.0 29.0
common neighbors 15.0 40.8 27.1 26.9 46.9
preferential attachment 4.7 6.0 7. 15.2 7.4
Adamic/Adar 16.8 54.4 30.1 33.2 50.2
Jaccard 16.4 42.0 19.8 27.6 41.5
simRBank v = 0.8 4.5 39.0 227 26.0 41.5
hitting time 6.4 23.7 24.9 3.8 13.3
hitting time—normed by stationary distribution 0.5 23.7 11.0 11.3 21.2
commute time 5.2 15.4 33.0 17.0 23.2
commute time—normed by stationary distribution 5.3 16.0 11.0 11.3 16.2
rooted PageRank a = 0.01 10.8 27.8 33.0 18.7 29.1
a = 0.05 13.8 39.6 35.2 24.5 ji.1

a=0.15 16.6 40.8 27.1 27.5 412.3

a=0.30 17.1 42.0 24.9 29.8 j6.5

a = 0.50 16.8 40.8 24.2 30.6 {6.5

Katz (weighted) A =0.05 3.0 21.3 19.8 2.4 12.9
3 = 0.005 13.4 54.4 30.1 24.0 51.¢

3 = 0.0005 4.5 53.8 30.1 32.5 51.5

Katz (unweighted) A =0.05 10.9 41.4 37.4 18.7 47.7
3 = 0.005 16.8 41.4 37.4 24. 49.4

3 = 0.0005 16.7 41.4 37.4 24.8 49.4

Factor Improvement Over Random

predictor astro-ph | cond-mat gr-qc | hep-ph | hep-th
probability that a random prediction is correct 0.475% 0.147% | 0.341% | 0.207% | 0.153%
graph distance (all distance-two pairs) 9.4 25.1 21.3 12.0 29.0
common neighbors 18.0 40.8 271 26.9 46.9
Low-rank approximation: rank = 1024 15.2 53.8 29.3 34.8 49.8
Inner product rank = 256 14.6 46.7 29.3 32.3 46.9
rank = 64 13.0 44.4 27.1 30.7 47.3

rank = 16 10.0 21.3 31.5 27.8 35.3

rank = 4 8.8 15.4 42.5 19.5 22.8

rank = 1 6.9 5.9 44.7 17.6 14.5

Low-rank approximation: rank = 1024 8.2 16.6 6.6 18.5 21.6
Matrix entry rank = 256 15.4 36.1 8.1 26.2 37.4
rank = 64 13.7 46.1 16.9 28.1 40.7

rank = 16 0.1 21.3 26.4 23.1 34.0

rank = 4 8.8 15.4 39.6 20.0 22.4

rank = 1 6.9 5.0 44.7 17.6 14.5

Low-rank approximation: rank = 1024 11.4 27.2 30.1 27.0 32.0
Katz (3 = 0.005) rank = 256 15.4 42.0 11.0 34.2 38.6
rank = 64 13.1 45.0 19.1 32.2 41.1

rank = 16 0.2 21.3 27.1 24.8 34.9

rank = 4 7.0 15.4 41.1 19.7 22.8

rank = 1 0.4 5.9 44.7 17.6 14.5

unseen bigrams common neighbors, § = 8 13.5 36.7 301 15.6 46.9
(weighted) common neighbors, § = 16 13.4 39.6 38.9 18.5 48.6
Katz (3 = 0.005), § =8 16.8 37.9 24.9 24.1 51.1

Katz (5 = 0.005), § = 16 16.5 39.6 35.2 24.7 50.6

unseen bigrams common neighbors, § = 8 14.1 40.2 27.9 22.2 39.4
{unweighted) common neighbors, § = 16 15.3 39.0 42.5 22.0 42.5
Katz (5 =0.005), § =8 153.1 36.7 32.3 21.6 37.8

Katz (3 = 0.005), § = 16 10.3 20.6 41.8 12.2 37.8

clustering: p=0.10 7.4 37.3 46.9 32.9 37.8
Katz (1 = 0.001, 52 =0.1) p=0.15 12.0 46.1 46.9 21.0 44.0
p =020 4.6 34.3 19.8 21.2 35.7

p=025 3.3 27.2 20.5 19.4 17.4

Evaluation: Prediction Overlap

How similar are the

cone Fiiche nt

| s f) g | 2] | 5| .| 2| predictions made by the

S| 2| g 2| | P £l £| E| i different methods?

Adamic, Adar || 1150 | 638 | 520 | 193 | 242 | 1011 | 905 | G628 | 372 | 486 e e
Froeen| e s m el # common predictions

i

hitting time 115 7 141 247 130 156
[] Jaccard's coefficient 1150 | 414 382 | 504 | B45 158
weighted Katz 1150 | 1013 | 488 | 344 174
low-rank inner product 1150 | 453 | 320 148
rooted Pagerank 1150 G678 461
SimRank 1150 | 423

unseen bigrams 1150

E o = 1

o = o= . . = %
Y = -] — = = - =
& o ED . S oF = = 9
| | | E| | =| =| ¥
oy = - + % o :.. =
2 = g = Bl = T = = Z
o : = = . g £ = L =
=2, e Ea = %] = o =
92 65 53 22 13 a7 72 14 19

Adamic/ Adar

o | &

Katz clustering 11 20 0

co rrect common neighbors] 13 ”

hitting time 40

| &
A
2] B2 1
al=
| I | S

= = Jaccard's coefficient 71

p re d I Ctl 0 n S woighted Katz
low-rank inner product i a9 26 16
rooted Pagerank G0] 39
SimRank G 34
unseen bigrams GE

s
=1
| er .
(3] el =0 =] G =
=

=1 &
| F5) =

Extensions

Improve performance. Even the best (Katz
clustering on gr-qc) correct on only about 16%
of its prediction

Improve efficiency on very large networks
(approximation of distances)

Treat more recent links (e.g., collaborations)
as more important

Additional information (paper titles, author
institutions, etc) latently present in the graph

Facebook: Supervised Random
Walks for Link Prediction

[WSDM '11]

Supervised Link Prediction

Can we learn to predict new friends?

Facebook’s People You May Know

Let’s look at the FB data: = _

92% of new friendshipson = .
FB are friend-of-a-friend

9999999

uuuuu

[No Path

More mutual friends helps

Supervised Link Prediction

Goal: Recommend a list of possible friends
Supervised machine learning setting:

Labeled training examples:

For every user s have a list of others she
will create links to {d; ... d;} in the future

Use FB network from May 2012 and {d; ... di}
are the new friendships you created since then

These are the “positive” training examples ® “positive” nodes

, ® “negative” nodes
Use all other users as “negative” example

. Green nodes
Task: are the nodes
For a given node s, score nodes {d; ... d} to which s

creates links in

higher than any other node in the network the future

Supervised Link Prediction

How to combine node/edge features and
the network structure?

Estimate strength of each friendship (u, v) using:
Profile of user u, profile of user v
Interaction history of users u and v

This creates a weighted graph

Do Personalized PageRank from s
and measure the “proximity” (the
visiting prob.) of any other

node w from s

] @® "positive” nodes
Sort nodes w by decreasing ® "negative” nodes

“proximity”

[WSDM "11]

Supervised Random Walks

Let s be the starting node
Let f z(u, v) be a function that

assigns strength a,,,, to edge (u, v)
Aupy = f,B (u,v) = exp(— Zi Bi - Xuv[i])
X,,,, is a feature vector of (u, v) @ positive” nodes
Features of node u @ "negative” nodes

Features of node v

Features of edge (u, v)
Note: f is the weight vector we will later estimate!

Do Random Walk with Restarts from s where
transitions are according to edge strengths a,,,,

SRW: Prediction

Random Walk with

Restarts on the
|:> |:> weighted graph.
Each node w has a
PageRank proximity p,,

W

Network Set edge Sort nodes w by the
str(_engths decreasing PageRank
a,, = T,(uv) score p,,
How to estimate edge strengths? U

How to set parameters f§ of f,(u,v)?
. R d top k
Idea: Set 8 such that it (correctly) noges with the hichest
predicts the known future links ~ Proxmiypytonodes

[WSDM "11]
Personalized PageRank

a,, ... Strength of edge (u, v)
Random walk transition matrix:

(g 1€ (. ..

_ if (u,v) € K
/ . o Qoqg ! 2
CQLL;-_* — < Z 1! (W]

k 0 otherwise

PageRank transition matrix: ® positive” nodes
_ f | egative” nodes
Qij = (1 —a)Q;; +al(j = s)
Where with prob. a we jump back to node s

Compute PageRank vector: p = p! Q

Rank nodes w by decreasing p,,

[WSDM "11]

The Optimization Problem

Positive examples

D ={d,,..,d,}
Negative examples

L = {other nodes}
What do we want?

. 2 We prefer small
1min F (5) — | ‘5 ‘ ‘ weights f3 to prevent ® "positive” nodes
6 overfitting .“negative” nodes

such that
Every positive example has to have

\V/ dGD’ ZEL . pl < pd higher PageRank score than every

negative example
Note:

Exact solution to this problem may not exist
So we make the constraints “soft” (i.e., optional)

[WSDM 11]

Making Constraints “Soft”

Want to minimize:

min F'(§) = Z h(pt — pa) + A||B|]7

B deD,le L
. A 2 Penalty for
Loss: h(x) = 0ifx <0, or x“ else violating the

constraint
that Pa = D1

© o © o o o o o
RN W WOy 0O R

8 6 4

P < Py

0.4 6 8

P=Py P = Py

Solving the Problem: Intuition

How to minimize F? y V.
min () = Z h(pi — pa) + A||B]I°
B deD,leL

Both p, and p, depend on f
Given f assign edge weights a,,, = fp(u, v)

Using Q = [a,,] compute PageRank scores pg

Rank nodes by the decreasing score

Goal: Want to find f such that p, < p,

[WSDM "11]

Solving the Problem: Intuition

How to minimize F(f) ?
min F'(3) = Z h(pr — pa) + Al|BIJ7

B deD,leL

Idea:

Start with some random S(®

Evaluate the derivative of F(f) and
do a small step in the opposite direction

oF(p®
B+ — gD _ gﬁ)

Repeat until convergence

Gradient Descent =

FB) = 3 hipi—pa) + MBI

]] aF (t) deD.IeL
What’s the derivative (57) ?

ap
OF(B) Oh(p; — pa) _,
— 3
93 [z; o5 T2
oh (p[pd C)pz (‘)pd) h(x) = max{z, 0}2
Z — Pa) 06 NG)+ 208 Easy!
»d | 0\
We know:
p=0"Q thatis pu= 3, pQu
So:

Ipu - dp; | Q) ju
05 =2 Qigg o8 TP o5

J

Gradient Descent

. . Opu Op; ~ 0Qju
We just got: = =) Qju—m~ 55 TP 55
Few details:

J

Computing aqu/ Jp is easy. Remember: <. {UZ e
op;

We want — o5 L hut it appears on both Ay = f3(u, v)

sides of the equation. Notice the = exp <_Zﬁi 'Xuv[i]>

whole thing looks like a PageRank ;

equation:x =Q -x +z
As with PageRank we can use the
power-iteration to solve it:

(0)
Start with a random op
B
| | a_p(t+1) B a_p(t)
Then iterate: T = (v + op

To optimize F([3), use gradient descent:

Pick a random starting point ,8(0)

Using current ,B(t) compute edge strenghts and

the transition matrix Q
Compute PageRank scores p

Compute the gradient with
respect to weight vector 8

Update g(t+D

Iteration, (t)

18

0 10 20 30 40 50 60 70 80 90 100

[WSDM '11]
Data: Facebook

Facebook Iceland network
174,000 nodes (55% of population)
Avg. degree 168
Avg. person added 26 friends/month
For every node s:
Positive examples:
D = { new friendships s created in Nov ‘09 }

Negative examples:
L = { other nodes s did not create new links to }

Limit to friends of friends:
On avg. there are 20,000 FoFs (maximum is 2 million)!

Experimental Setting

Node and Edge features for learning:
Node: Age, Gender, Degree
Edge: Age of an edge, Communication, Profile
visits, Co-tagged photos

Evaluation:

Precision at top 20
We produce a list of 20 candidates
By taking top 20 nodes x with highest PageRank score p,

Measure to what fraction of these nodes
s actually links to

Results: Facebook Iceland

Facebook: Predict future friends

Adamic-Adar already works great

Supervised Random Walks (SRW) gives slight

Improvement
Learning Method Prec(@Top20
Random Walk with Restart 6.80
Adamic-Adar 7.35
Common Friends 7.35
Degree 3.25
SRW: one edge type 6.87
SRW: multiple edge types 7.87

Results: Facebook

2.3x improvement over previous FB-PYMK
(People You May Know)

Fraction of Friending from PYMK

2.3X

Fract%

1/22/2010 3/13/2010 5/2/2010 6/21/2010

Results: Co-Authorship

Arxiv Hep-Ph collaboration network:

Poor performance of unsupervised methods

SRW gives a boost of 25%!

Learning Method Prec(@Top20
Random Walk with Restart 3.41
Adamic-Adar 3.13
Common Friends 3.11
Degree 3.05
SRW: one edge type 4.24
SRW: multiple edge types 4.25

Wtf: The Who to Follow
Service at Twitter

Introduction

Users you may be interested in

. MAarius & ericaen 2 . foliow
O as
B Jeff Hodges 2 follow
B e PRayINg sith Al 30rts Oof Aty thinga
Foliowed Oy . e
2 Brian Ellia 3 1

O 38 Trasgistaon rtiander. explorer of thamgs., prodext
ranscer Stwitts
~ y

Semantic differences between “interested in” and “similar to”

WtF (“Who to Follow")

WtF (“Who to Follow"): the Twitter user
recommendation service

help existing and new users to discover
connections to sustain and grow

used for search relevance, content discovery,
promoted products, etc.

Twitter Data:
200 million users
400 million tweets every day (as of early 2013)
http://www.internetlivestats.com/twitter-statistics/

The Twitter Graph

http://blog.ouseful.info/2011/07/07/visualising-twitter-friend-connections-
using-gephi-an-example-using-wireduk-friends-network/

—l
betsawrmay
“Wrecntos vun FetcA ey

S i e

Graph

Node: user -
iion
® - .,:*-wfmf\

. 3'-
-y
Natelannocn Vrv%]r‘&ml‘"’ & %
/_,q.,‘,.-.,\-, CEemy *.. -’r:w LON ™ot TEOwDamas
et e LS o o ol
“atiock

""“‘"b".] Gilnper rorysushorlang

(Directed) Edge: follows e

bengoldacte “gfguc 0\& 'M“ %

s IR

);- in ' 0 A

n ¥ s e ' »‘go\'ncn N“*A ‘A
"”W?f\anml MchoulPanerss o

' e
ANy e rendous

e Joasn

ruskini e
a_g”ndebononm*‘ Marthalanelox

BSMlabs
sonsdonirs P QODDBM’ o Sésmlmaklss L
NS P g [
g SarBnely 300D bruces "&'.:d”"" i s Wares

W
DaniBIPITK g iwace Smeatiiahy SR

T
helten ety “fimberners le6 e L
- ,WiFEd CShlrky ﬂ' g At ""';"’E'uﬁl'wbuﬂvf;{n

Tarvan ovgenymarazoV AN

WeedRiseatholiser g 0890 onnmaeda BlllGates
’Zrm man fés!oompanym«... Zittrain ey OB

Graph Statistics (Aug’12) = emisgmie - ond -

pomeraman99 “' i tlmorellly R

o chr1sa
E‘:(S'&:alWKBAndor% nfpatow Lo o biz richardtiranson’

g
Yoo TR MKAPOS Ty Eovars
beend ,,M,,.,ﬂ patwiced mckblllon »*nwoﬂl cristol divos

Over 20 billion edges i S L T

"i y
PR s lohnbattelie "QQW"SQD

jactbwe

Wt Actel Patrery

fopelstes Mal)oee
T ommelinzazee

Power law of in- and out-degrees -
Over 1000 with more than 1 million followers
25 users with more than 10 million followers

Algorithms: Circle of Trust

Circle of Trust

Based on an egocentric random walk (similar to
personalized (rooted) PageRank)

Computed in an online fashion (from scratch
each time) given a set of parameters

of random walk steps
reset probability

pruning settings to discard low probability vertices

parameters to control sampling of outgoing edges
at vertices with large out-degrees

Algorithms

Directed edge

Asymmetric nature of the follow relationship

Friendships in other social networks such as Facebook or
LinkedIn are symmetric/reciprocal

Similar to the user-item recommendations
problem where the “item” is also a user

Algorithms: SALSA

SALSA (Stochastic Approach for
Link-Structure Analysis)

a variation of HITS L] E
HITS 0
Intuition: 1 n
Good hubs point to good authorities 01—[
Good auth. are pointed by good hubs hubs authorities

Recurs. comput. of hub score h=>a
Ji—>]

Recurs. comput. of auth. score
P 3, = > h,

jrjoi

Algorithms: SALSA

Random walks to rank hubs and authorities

Two different random walks (Markov chains): a
chain of hubs and a chain of authorities

Each walk traverses nodes only in one side by
traversing two links in each step h2a=2>h, a>h—>a

Transition matrices of each chain: H and A u u

W: the adjacency of the directed graph u

W.: divide each entry by the sum of its row u

W._: divide each entry by the sum of its column u u
H=WW_IT u_,u

A= WCT Wr hubs authorities

Algorithms: SALSA

Reduces to the problem of HITS with tightly
knit communities
TKC effect
Better for single-topic communities
More efficient implementation

HITS and the TKC effect

The HITS algorithm favors the most
of hubs and authorities

Tightly Knit Community (TKC) effect

HITS and the TKC effect

The HITS algorithm favors the most
of hubs and authorities

Tightly Knit Community (TKC) effect

—_ =t

HITS and the TKC effect

The HITS algorithm favors the most
of hubs and authorities

Tightly Knit Community (TKC) effect

HITS and the TKC effect

The HITS algorithm favors the most
of hubs and authorities

Tightly Knit Community (TKC) effect

HITS and the TKC effect

The HITS algorithm favors the most
of hubs and authorities

Tightly Knit Community (TKC) effect

33
33
33

322
322

HITS and the TKC effect

The HITS algorithm favors the most
of hubs and authorities

Tightly Knit Community (TKC) effect

34
0>

34
u 32. 92
u 32 . 92

HITS and the TKC effect

The HITS algorithm favors the most
of hubs and authorities

Tightly Knit Community (TKC) effect

32n
32n _ _
o after n iterations

HITS and the TKC effect

The HITS algorithm favors the most
of hubs and authorities

Tightly Knit Community (TKC) effect

after normalization
with the max
elementas n —» «©

o O O

Algorithms: SALSA

Hubs:

500 top-ranked nodes from a
user's circle of trust

user similarity (based on
homophily, also useful)

Authorities:

users that the hubs follow

“interested in” user
recommendations

“hubs”

“Circle of Trust”

of user

“authorities”

users LHS follow

Algorithms: SALSA

SALSA’s recursive nature

Two users are similar if they follow the same (or
similar) users (LHS)

A user u is likely to follow those who are followed
by users that are similar to u (RHS)

The random walk ensures fair distribution of
scores in both directions

Similar users are selected from the circle of
trust of a user (via personalized PageRank)

Evaluation

Approaches
Offline experiments on retrospective data

Online A/B testing on live traffic
Various parameters may interfere:

How the results are rendered
Platform (mobile, etc.)
New vs old users

Extensions

Add metadata to vertices (e.g., user profile
information) and edges (e.g., edge weights,
timestamp, etc.)

Consider interaction graphs (e.g., graphs
defined in terms of retweets, favorites,
replies, etc.)

Extensions

Two phase algorithm

15t - Candidate generation: produce a list of
promising recommendations for each user, using
any algorithm
2"d - Rescoring: apply a machine-learned model to
the candidates, binary classification problem
(logistic regression)

Evaluation
15t Phase: recall + diversity

2"d Phase: precision + maintain diversity

