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Erdos-Renyi
Random Graph Model



Simplest Model of Graphs

Erdos-Renyi Random Graphs [Erd6s-Renyi, ‘60]
Two variants:

Gn,p: undirected graph on n nodes and each

edge (U,v) appears i.i.d. with probability p

G, : undirected graph with n nodes, and
M uniformly at random picked edges

What kinds of networks

does such model produce?




Random Graph Model

N and p do not uniquely determine the graph!

The graph is a result of a random process
We can have many different realizations given
the samenandp
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Random Graph Model: Edges

How likely is a graph on E edges?
P(E): the probability that a given G,
generates a graph on exactly E edges:

Emax —
P(E)=| =7 [P @=p)™

where E_,=Nn(n-1)/2 is the maximum possible number of edges
in an undirected graph of n nodes

Example
. n=y4
P(E) is exactly the . p=0.5
Binomial distribution >>> = i”l"f 6

Number of successes in a sequence of
E,..x independent yes/no experiments




Properties of G,

Degree distribution: P(k)
Path length: h
Clustering coefficient: C

What are values of these

properties for G, ,?



Node Degrees in a Random Graph

What is expected degree of a node?

Let X, be a rnd. var. measurinlg the degree of node v
We want to know:E[X,]1=D_ j P(X, = j)
j=0
For the calculation we will need: Linearity of expectation
For any random variables Y,,Y,,..., Y,
If Y=Y, +Y,+...Y,, then E[Y]= % E[Y]
An easier way:

Decompose X, to X,= X, (+X ,+...+X| 4

where X, , is a {0,1}-random variable
which tells if edge (v,u) exists or not

n-1
O
E[Xv] — aE[Xvu] — (n - 1)p How to think about this?

* Prob. of node v linking to node u is p
u=1 » v can link (flips a coin) to all other (n-1) nodes
* Thus, the expected degree of node v is: p(n-1)



Degree Distribution

Fact: Degree distribution of G, is Binomial.
Let P(K) denote a fraction of nodes with
degree K:

(.5 and n=2{
(.7 and n=2{
(1.5 and n=4/
P k _ k 1_ n—1—k o
o
K \ =
/ [ Probability of g
Select k nodes Probability of missing the rest of 0 10 » ko 0

out of n-1 having k edges the n-1-k edges

V4 \ /2
81 _ 0}
Mean, variance of a binomial distribution S — Al P 1 U » 1
— 1/2
k_ (n—l) k ¢ P (l’l—l)u (n—l)
o p By the law of large numbers, as the network size
5 iIncreases, the distribution becomes increasingly
S = p(]_ - p) (n - ]_) narrow—we are increasingly confident that the degree
of a node is in the vicinity of k.




Clustering Coefficient of G,,,
2€,

Where e, is the number

Remember: Ci — : of edges between i’s
ki (kl —1) neighbors

Edges in G, appear i.i.d. with prob. p

So: ei :pki(ki _1)
/ 2 \ Number of distinct pairs of

Each pair is connected neighbors of node i of degree k;

p-ki(ki—1) _
k. (k. —1) n-1

Then: C =

Clustering coefficient of a random graph is small.
For a fixed avg. degree (that is p=1/n), C decreases with the graph size n.



Network Properties of G,

n-1
k ]pk(l— p)"

Clustering coefficient: C=p=k/n

Degree distribution: P(k):(

Path length: next!



Network Properties of G,

Degree distribution: P(k):(

n-1

K

]pk 1-p)""

Clustering coefficient: C=p=k/n

Path length: O(log n)



Paul Erdos

" I
G,, Is so cool!

Let’s also look at its evolution



“"Evolution” of a Random Graph

Graph structure of an as p changes:
| . . . . |

| | | |
p ‘ 1/(n-1) c/(n-1) log(n)/(n-1) 2*log(n)/(n-1) ‘
O Giant component  Avg. deg const. Fewer isolated  No isolated nodes.
appears Lots of isolated nodes.
Empty nodes. ComPIEte
graph graph

Emergence of a Giant Component:
avg. degree k=2E/n or p=k/(n-1)
k=1-&: all components are of size 2(log n)
k=1+&: 1 component of size £2(n), others have size 2(log n)



G,, Simulation Experiment

Fraction of nodes in largest CC

pin-1)

Gy, N=100,000, k=p(n-1) = 0.5 ... 3

Fraction of nodes in the
largest component



Back to MSN vs. G,

MSN n=180M
Degree distribution: L [x]
Path length: mé.G O(logn) M
Clustering coefficient: 0.11 ZEZE]

GCC exists

Connected component: 99% when®oL.
k=14,




Real Networks vs. G, ,

Are real networks like random graphs?
Average path length: ©
Giant connected component: ©
Clustering Coefficient: ®

Degree Distribution: ®
Problems with the random network model:

Degree distribution differs from that of real networks

Giant component in most real networks
does NOT emerge through a phase transition

No “local” structure — clustering coefficient is too low
Most important: Are real networks random?

The answer is simply: NO!



Real Networks vs. G, ,

If G, is wrong, why did we spend time on it?
It is the reference model for the rest of the class

It will help us calculate many quantities, that can
then be compared to the real data

It will help us understand to what degree is a
particular property the result of some random
process

So, while G,,is WRONG, it will turn out
to be extremly USEFUL!



The Small-World Model

Can we have high clustering while also having short paths?




Six Degrees of Kevin Bacon

Origins of a small-world idea:
The Bacon number:

Create a network of Hollywood actors
Connect two actors if they

co-appeared in the movie évrgx.gn?okm

Bacon number: number of steps to —

Kevin Bacon Ehis Presleyhas  Bacon number of 2
As of Dec 2007, the highest (finite) g
Bacon number reported is 8 ]
Only approx. 12% of all actors S Coigr
cannot be linked to Bacon Bty Srop 2005

........

Kevin Bacon I
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http://www.ams.org/mathscinet/collaborationDistance.html

The Small-World Experiment

What is the typical shortest path
length between any two people?

Experiment on the global friendship

network
Can’t measure, need to probe explicitly

Small-world experiment [vilgram 67]

Picked 300 people in Omaha, Nebraska
and Wichita, Kansas

Ask them to get a letter to a
stock-broker in Boston by passing
it through friends

How many steps did it take?




[Milgram, '67]

The Small-World Experiment

64 chains completed:
(i.e., 64 letters reached the target)

It took 6.2 steps on the
average, thus
“6 degrees of separation”

Further observations: AT .

NUMBER OF INTERMEDIARIES

NUMBER OF CHAINS

People who owned stock
had shorter paths to the stockbroker
than random people: 5.4 vs. 6.7

People from the Boston area have even
closer paths: 4.4



Milgram: Further Observations

. — FWWW&_
Boston vs. occupation networks: A
Criticism: - /K T
Funneling: s © 4

31 of 64 chains passed through 1 of 3 people
as their final step = Not all links/nodes are equal

Starting points and the target were non-random
There are not many samples (only 64)

People refused to participate (25% for Milgram)
Not all searches finished (only 64 out of 300)

Some sort of social search: People in the experiment
follow some strategy instead of forwarding the letter to
everyone. They are not finding the shortest path!

People might have used extra information resources



[Dodds-Muhamad-Watts, ‘03]

Columbia Small-World Study

In 2003 Dodds, Muhamad and Watts
performed the experiment using e-mail:

18 targets of various backgrounds
24,000 first steps (~1,500 per target)
65% dropout per step

384 chains completed (1.5%)

150 .

— ool | Avg. chain length = 4.01

= Problem: People stop participating
50T 1 Correction factor: n"(n) = n(h)
0= e H(l r)

1 2 3 4 5 6 7 8 8 10
Path length, h i, drop out rate at hop i



[Dodds-Muhamad-Watts, ‘03]

Small-World in Email Study

After the correction: o —A Al
Typical path lengthh=7 ¢ _ | o ]j

[T
i 2 3 45 6 7 8 9 10
Path length, h

n*(h)

5 X |

Some not well understood
phenomena in social networks:
Funneling effect: Some target’s friends
are more likely to be the final step
Conjecture: High reputation/authority
Effects of target’s characteristics:
Structurally why are high-status

target easier to find
Conjecture: Core-periphery network structure




What is the structure of
a social network?



6-Degrees: Should We Be Surprised?

Assume each human is connected to 100 other people
Then:

Step 1: reach 100 people

Step 2: reach 100*100 = 10,000 people

Step 3: reach 100*100*100 = 1,000,000 people
Step 4: reach 100*100*100*100 = 100M people

In 5 steps we can reach 10 billion people
What’s wrong here?

92% of new FB friendships are to a friend-of-a-friend
[Backstom-Leskovec ‘11]




Clustering Implies Edge Locality

MSN network has 7 orders of magnitude
larger clustering than the corresponding G, !
Other examples:

Actor Collaborations (IMDB): N = 225,226 nodes, avg. degree k=61
Electrical power grid: N = 4,941 nodes, k = 2.67
Network of neurons: N =282 nodes, k=14

h,ceval P\ andom Crandom
Film actors 3.65 299 | 0.79 0.00027
Power Grid 18.70 12.40| 0.080 0.005
C. elegans 2.65 2.25| 0.28 0.05

h ... Average shortest path length
C ... Average clustering coefficient
“actual” ... real network

“random” ... random graph with same avg. degree




The “"Controversy”

Consequence of expansion:
Short paths: O(log n)

This is “best” we can do if we
have a constant degree

But clustering is low! o darater
But nEtworkS ha\le Low clustering coefficient
“local” structure:

Triadic closure:
Friend of a friend is my friend

High clustering but
diameter is also hlgh High clustering coefficient

HOW can we have bOth? High diameter




Small-World: How?

Could a network with high clustering be
at the same time a small world?

How can we at the same time have
high clustering and small diameter?

High clustering Low clustering
High diameter Low diameter

Clustering implies edge “locality”
Randomness enables “shortcuts”



[Watts-Strogatz, ‘98]

Solution: The Small-World Model

Small-world Model [Watts-Strogatz ‘98]
Two components to the model:
(1) Start with a low-dimensional regular lattice
(In our case we use a ring as a lattice)
Has high clustering coefficient

Now introduce randomness (“shortcuts”)

(2) Rewire:

Add/remove edges to create
shortcuts to join remote parts
of the lattice

For each edge with prob. p move
the other end to a random node




[Watts-Strogatz, ‘98]

The Small-World Model

REGULAR HETUOREK SMALL LWORLD HETLIORE RAHDOM HETLORK

P=0 IHCREASIHG RAHDOMHESS F=1
High clustering High clustering Low clustering
High diameter Low diameter Low diameter

N 1 k
he— (== h:IogN C=£
2k 2 log&x N

Rewiring allows us to “interpolate” between
a regular lattice and a random graph



The Small-World Model

l I T I_|—| '__l__=:“1-——|-—-4-—l__l__l__|__ﬁ_h‘__._hl I T TTT EI I I T T I|
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Il ° o shortcuts.
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Prob. of rewiring, p



Small-World: Summary

Could a network with high clustering be at the
same time a small world?

Yes! You don’t need more than a few random links
The Watts Strogatz Model:

Provides insight on the interplay between clustering
and the small-world

Captures the structure of many realistic networks
Accounts for the high clustering of real networks
Does not lead to the correct degree distribution
Does not enable navigation (offline lecture)



How to Navigate a Network?

(offline) What mechanisms do people
use to navigate networks and find the
target?

The chains progress from the starting
position (Omaha) to the target area
(Boston) with each remove. Dlagram
shows the number of miles from the
target area, with the distance of each
remove averaged over compleled
and uncompleted chains.




The Configuration
Model



Intermezzo: Configuration Model

Goal: Generate a random graph with a
given degree sequence Ky, K, ... Ky
Configuration model:

L —®

o= NIRE =) P
)k o— Al 18] |c .

Randomly pair up
“mini”-nodes

Nodes with spokes Resulting graph

Useful as a “null” model of networks

We can compare the real network G and a “random”
G’ which has the same degree sequence as G



Another Example

Suppose that the degree sequence is

4 1 3 2

® & O e

Create multiple copies of the nodes
0 00 ¢ OO0 00
Pair the nodes uniformly at random

660 ® 0EG we

Generate the resulting network

s



Other Properties

The giant component phase transition for this
model happens when

> k(k~2)p, =0
k=0

p,: fraction of nodes with degree k

The clustering coefficient is given by
o 1))
(k)

The diameter is logarithmic




Power-Law Degree
Distributions




Power-law distributions
Exponential vs Power-law Distributions
Scale-free Networks

The anatomy of the long-tail
Mathematics of Power-laws
Estimating Power-law Exponent Alpha
Consequence of Power-Law Degrees



Network Formation Processes

What do we observe that
needs explaining
Small-world model?
Diameter

Clustering coefficient
Preferential Attachment:

Node degree distribution

What fraction of nodes has degree k (as a function of k)?

Prediction from simple random graph models:
p(k) = exponential function of k

Observation: Often a power-law: p(k) = k¢



Degree Distributions

Pik)

Expected based on G,

Buk)

Found in data

J} T T T rrTTT T """'|
\b..bh_ _a
]
| \Q\ ]
O
\\ o
\\
B . i
N \‘o\ _
N ©
\‘\‘-
\\o
\\
° 10’ 10° 10° 10



[Leskovec et al. KDD ‘o8]

Node Degrees in Networks

Take a network, plot a histogram of P(k) vs. k

_ 0.7 | | | | | | |

~

l 0.6 - Plot: fraction of nodes -

= 05 with degree k: —

I | p(k) = [tuldy = KJl

; 0.3 — -

E 02 L _ Flickr social

8 | network

S 0.1 — n= 584,207,
0 N (SRS

0 500 10001500 2000 2500 3000 3500 4000
Degree, k



[Leskovec et al. KDD ‘o8]

Node Degrees in Networks

Plot the same data on log-log scale:

0
o 10 | P(k) o< k=175 mmmmme 1 How to distinguish:
| 10—1 __«,"% B P(k) « exp(—k) vs.
> SN 1 P(k) k™7
- 2 [ %‘-’%\ | _
g 107 ¢ "*’%@Slope — g =175 i Take logarithms:
< o | __._#%% - if y = f(x) =e * then
= 107 ‘%@- I log(y) = —x
5, i Flickr social i If y = x~% then
E 10 - network _: ]og(y) = — log(x)
3 _ || n=1584,207, ] So, on log-log axis
2 10" | m=3,555,115 — power-law looks like
a® - i : :

m a straight line of

100 101 slope —a !

Degree, k



Node Degrees: Faloutsos3

Internet Autonomous Systems
[Faloutsos, Faloutsos and Faloutsos, 1999]

Domain2 10000 — ———
// I Domain 3 971108 .out" *
‘, o exp(7 BB585) *x* [ 215632 )
B

T 1000 |
N “‘Z/\//// .\ J
Domainl % '_"_"_"_':\_\__:__._‘_1?—?:’ ~—® e
| / \/' -.l 100 |

'\V /

] Host
u \_ u ® Router

O Domain 1

1 10 100

Internet domain topology




Node Degrees: Web

The World Wide Web [Broder et al., 2000]

In-degree (May 99, Oct 99 distr. Out-degree ¢May 99, Oct 99) distr.
le+ld T T T let+ld [ [ [
le+@9 | In-degree <May 992 o ] 1e+@9 | Out-degreese (May 992 o |
le+B858 o In-degree (Oct 992 + o " IE+EB:; Out-degree (0Oct 292 + -

n
T le+@7 [ 4 o let@?s -
m
g le+B8E | - X le+ds
pa o 1@aeEe [
o laapea - - o
A
5 looea |- 1 & teees -
= 2 i
g 18@@ _ g 18848
E o
186 - - 1aa
18 _ 1@
I I I ! 1 | |
1 5 B i
1 ig  1@@ y— 1 16 160 18680

in-degree out-degree



Node Degrees: Barabasi&Albert

Other Networks [Barabasi-Albert, 1999]

10 E 0 0
L 2 10 i\ 10 Y
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Actor collaborations Web graph Power-grid




Exponential vs. Power-Law

__ 06
X
a
-1
02 |
p(x) =c /720 40 60 80 100

X

Above a certain x value, the power law is
always higher than the exponential!



[Clauset-Shalizi-Newman 2007]

Exponential vs. Power-Law

Power-law vs. Exponential
on log-log and semi-log (log-lin) scales

- semi-log

X ... logarithmic axis X ... linear
y ... logarithmic axis y ... logarithmic



Exponential vs. Power-Law

Bell Curve Power Law Distribution
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Power-Law Degree Exponents

Power-law degree exponent is
typically2<oa <3
Web graph:
o, =2.1, a,,.=2.4[Broder et al. 00]

Autonomous systems:
o = 2.4 [Faloutsos?, 99]

Actor-collaborations:
o = 2.3 [Barabasi-Albert 00]

Citations to papers:
o ~ 3 [Redner 98]

Online social networks:
o ~ 2 [Leskovec et al. 07]
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Scale-Free Networks

Definition:

Networks with a power-law tail in
their degree distribution are called
“scale-free networks”

Where does the name come from?
Scale invariance: There is no characteristic scale
Scale-free function: f(ax) = af(x)
Power-law function: f(ax) = a*x* = a*f(x)
Log() or Exp() are not scale free!

f(ax) = log(ax) = log(a) + log(x) = log(a) + f(x)
f(ax) = exp(ax) = exp(x)® = f(x)*



[Clauset-Shalizi-Newman 2007]

Power-Laws are Everywhere
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[Chris Anderson, Wired, 2004]

Anatomy of the Long Talil

RHAPSDDY AMAZON.COM [N  NETFLIX |

Online services carry far more inventory than traditional retailers. TOTAL INVENTO®Y: . TOTAL INVENTO&Y: . TOTAL INVENTORY:
Rhapsody, for exsmple, offers 19 times as many songs as 735,000 songs ; 1.3 million books ; 25,000 DYDs

Wal-Mart's stock of 39,000 tunes. The appetite for Rhapsody’s

mare obscure tunes (chared below in yellow ) makées up the

so-called Lomg Tall. Meanwhile, even as consumers flock to

mainstream books, music, and films right], there is real demand

for niche fare found only online. : Inm-n-
ml- Man lm-u L T
L T wisen: 130100 b shece """'"m'

OBSCURE PRODUCTS YOU CAN'T GET ANYWHERE BUT ONLINE

TOTAL SALES 1 TOTAL SALES

Songs
Pkl available at

55 both Wal-Mart

available only
on Rhapsody
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Titles ranked by popularity




Consequence of
Power-Law Degrees




Random vs. Scale-free network

Random network Scale-free (power-law) network
(Erdos-Renyi random graph) P

Degree
distribution is
Power-law

Degree distribution is Binomial




Consequence: Network Resilience

How does network
connectivity change

as nodes get removed?
[Albert et al. 00; Palmer et al. 01]

Nodes can be removed:

Random failure:
Remove nodes uniformly at random

Targeted attack:
Remove nodes in order of decreasing degree
This is important for robustness of the internet

as well as epidemiology



Network Resilience

20 [ Targeted AS network - . G, Network

< |® attack | Targeted
=4 attack
|5 d »

’ |
= n . i
310 W .20 . .
- Random S . n
S | failures I .

- . . -
= 9 sssmunnnguen¥usm Random
- failures ..l
! | .

I ] ! | I ] I ] i 0 | 1 1 1
OD_O 02 04 06 08 10 00 02 04 06 08 1.0
Fraction of removed nodes Fraction of removed nodes

Real networks are resilient to random failures
G,, has better resilience to targeted attacks

Need to remove all pages of degree >5 to disconnect the Web
But this is a very small fraction of all web pages




Preferential Attachment
Model



Exponential vs. Power-Law Talls

Bell Curve Power Law Distribution
: | *
i= . 5 |*
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Model: Preferential attachment

Preferential attachment:
[de Solla Price ‘65, Albert-Barabasi ‘99, Mitzenmacher ‘03]

Nodes arrive in order 1,2,...,n
At step |, let d; be the degree of node | <}
A new node | arrives and creates m out-links

Prob. of J linking to a previous node I is
proportional to degree d; of node |

Z k

P(]—>1)=




Rich Get Richer

New nodes are more likely to link to
nodes that already have high degree

Herbert Simon’s result:

Power-laws arise from “Rich get richer” (cumulative
advantage)

Examples

Citations [de Solla Price ‘65]: New citations to a paper
are proportional to the number it already has

Herding: If a lot of people cite a paper, then it must be good,
and therefore | should cite it too

Sociology: Matthew effect

Eminent scientists often get more credit than a comparatively
unknown researcher, even if their work is similar

http://en.wikipedia.org/wiki/Matthew effect



http://en.wikipedia.org/wiki/Matthew_effect

The Model Gives Power-Laws

Claim: The described model generates
networks where the fraction of nodes with
in-degree K scales as: 1

—(1+—)

P(d. =k)ock °

where gq=1-p

So we get power-law 1
degree distribution o = 1 |

with exponent: 1 . p




Preferential attachment: Good news

Preferential attachment gives

power-law degrees!

Intuitively reasonable process

Can tune p to get the observed exponent
On the web, P[node has degree d] ~ d-%1

2.1=1+1/(1-p) 2 p~0.1




Preferential Attachment: Bad News

Preferential attachment is not so good at
predicting network structure
Age-degree correlation
Solution: Node fitness (virtual degree)

Links among high degree nodes:
On the web nodes sometime avoid linking to each other
Further questions:

What is a reasonable model for how people
sample through network node and link to them?

Short random walks



Generating Power-Law Values

A simple trick to generate values that follow a
power-law distribution:

Generate values r uniformly at random within the
interval [0,1]

Transform the values using the equation
X = Xpin (1 — 1) 7@

Generates values distributed according to power-
law with exponent «



Many models lead to Power-Laws

Copying mechanism (directed network)

Select a node and an edge of this node

Attach to the endpoint of this edge
Walking on a network (directed network)

The new node connects to a node, then to every first,
second, ... neighbor of this node

Attaching to edges

Select an edge and attach to both endpoints of this edge
Node duplication

Duplicate a node with all its edges
Randomly prune edges of new node



Distances in Preferential Attachm

. Size of the biggest hub is of order O(N). Most nodes can
const o =72 be connected within two steps, thus the average path
length will be independent of the network size.

Ultra The average path length increases slower than
small logarithmically. In G, all nodes have comparable degree,
world | 10glogn 5 o < 3 thus most paths will have comparable length. In a scale-

log(a-1) free network vast majority of the path go through the few
H .y high degree hubs, reducing the distances between nodes.
Some models produce a = 3. This was first derived by
log n o = 3 Bollobas et al. for the network diameter in the context of a
loglogn dynamical model, but it holds for the average path length

as well.

The second moment of the distribution is finite, thus in
|Og n o > 3 many ways the network behaves as a random network.
. Hence the average path length follows the result that we
Avg. path Degree derived for the random network model earlier.
length exponent

Small
world




Summary: Scale-Free Netwo

metabolic collaboration

internet
web web
l actor l citation
| | \l/ \Z
I I o
a=1 a =2 a =3
Second moment (k?) diverges (k?) finite
Average (k) diverges Average (k) finite
Ultra small world behavior Small world

The scale-free behavior is Behaves like a
relevant random network



