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 Erdös-Renyi Random Graph Model
 The Small-World Model
 The Configuration Model
 Power-law distributions
▪ Exponential vs Power-law Distributions
▪ Scale-free Networks
▪ The anatomy of the long-tail
▪ Consequence of Power-Law Degrees

 Preferential Attachment Model





 Erdös-Renyi Random Graphs [Erdös-Renyi, ‘60]
 Two variants:
▪ Gn,p: undirected graph on n nodes and each 

edge (u,v) appears i.i.d. with probability p

▪ Gn,m : undirected  graph with n nodes, and 
m uniformly at random picked edges

What kinds of networks 
does such model produce?



 n and p do not uniquely determine the graph!

▪ The graph is a result of a random process

 We can have many different realizations given 
the same n and p

n = 10 

p= 1/6



 How likely is a graph on E edges?
 P(E): the probability that a given Gnp

generates a graph on exactly E edges:

where Emax=n(n-1)/2 is the maximum possible number of edges 
in an undirected graph of n nodes
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P(E) is exactly the
Binomial distribution >>>
Number of successes in a sequence of 
Emax independent yes/no experiments

Example
n = 4
p = 0.5 
Emax = 6 
E = k



Degree distribution: P(k)

Path length: h

Clustering coefficient: C

What are values of these 
properties for Gnp?



 What is expected degree of a node?
▪ Let Xv be a rnd. var. measuring the degree of node v

▪ We want to know:

▪ For the calculation we will need: Linearity of expectation
▪ For any random variables Y1,Y2,…,Yk

▪ If Y=Y1+Y2+…Yk, then E[Y]= i E[Yi]

 An easier way:
▪ Decompose Xv to Xv= Xv,1+Xv,2+…+Xv,n-1

▪ where Xv,u is a {0,1}-random variable 
which tells if edge (v,u) exists or not

How to think about this?

• Prob. of node v linking to node u is p

• v can link (flips a coin) to all other (n-1) nodes

• Thus, the expected degree of node v is: p(n-1)
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 Fact: Degree distribution of Gnp is Binomial.
 Let P(k) denote a fraction of nodes with 

degree k:
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 Remember:

 Edges in Gnp appear i.i.d. with prob. p

 So:

 Then:
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Clustering coefficient of a random graph is small.

For a fixed avg. degree (that is p=1/n), C decreases with the graph size n.
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Degree distribution: 

Clustering coefficient: C=p=k/n

Path length: next!
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Degree distribution: 

Clustering coefficient: C=p=k/n

Path length: O(log n)
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Paul Erdos

Paul Erdös



 Graph structure of Gnp as p changes:

 Emergence of a Giant Component:
avg. degree k=2E/n or p=k/(n-1)

▪ k=1-ε: all components are of  size Ω(log n)

▪ k=1+ε: 1 component of  size Ω(n), others have size Ω(log n)

0 1

p
1/(n-1)

Giant component 

appears

c/(n-1)
Avg. deg const. 

Lots of isolated 

nodes.

log(n)/(n-1)
Fewer isolated 

nodes.

2*log(n)/(n-1)
No isolated nodes.

Empty
graph

Complete
graph



 Gnp, n=100,000, k=p(n-1) = 0.5 … 3

Fraction of nodes in the 

largest component



Degree distribution: 

Path length: 6.6      O(log n)

Clustering coefficient: 0.11        k / n

Connected component:  99%

C ≈ 8·10-8

h  ≈ 8.2

MSN        Gnp

GCC exists

when k>1.

k ≈ 14.

n=180M
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 Are real networks like random graphs?
▪ Average path length: ☺

▪ Giant connected component: ☺

▪ Clustering Coefficient: 

▪ Degree Distribution: 
 Problems with the random network model:
▪ Degree distribution differs from that of real networks

▪ Giant component in most real networks 
does NOT emerge through a phase transition

▪ No “local” structure – clustering coefficient is too low
 Most important: Are real networks random?
▪ The answer is simply: NO!



 If Gnp is wrong, why did we spend time on it?

▪ It is the reference model for the rest of the class

▪ It will help us calculate many quantities, that can 
then be compared to the real data

▪ It will help us understand to what degree is a 
particular property the result of some random 
process

So, while Gnp is WRONG, it will turn out 
to be extremly USEFUL!



Can we have high clustering while also having short paths?

Vs.

High clustering coefficient, 
High diameter

Low clustering coefficient
Low diameter



Origins of a small-world idea:
 The Bacon number:
▪ Create a network of Hollywood actors

▪ Connect two actors if they 
co-appeared in the movie

▪ Bacon number: number of steps to 
Kevin Bacon

 As of Dec 2007, the highest (finite) 
Bacon number reported is 8

 Only approx. 12% of all actors 
cannot be linked to Bacon



9/28/2020 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Erdös numbers are small!

Find out your Erdos number: http://www.ams.org/mathscinet/collaborationDistance.html

http://www.ams.org/mathscinet/collaborationDistance.html


 What is the typical shortest path 
length between any two people?
▪ Experiment on the global friendship 

network
▪ Can’t measure, need to probe explicitly 

 Small-world experiment [Milgram ’67]

▪ Picked 300 people in Omaha, Nebraska 
and Wichita, Kansas

▪ Ask them to get a letter to a 
stock-broker in Boston by passing 
it through friends

 How many steps did it take?



 64 chains completed:
(i.e., 64 letters reached the target)

▪ It took 6.2 steps on the 
average, thus 
“6 degrees of separation”

 Further observations:

▪ People who owned stock
had shorter paths to the stockbroker 
than random people: 5.4 vs. 6.7

▪ People from the Boston area have even 
closer paths: 4.4

Milgram’s small world experiment

[Milgram, ’67]



 Boston vs. occupation networks:
 Criticism:
▪ Funneling:
▪ 31 of 64 chains passed through 1 of 3 people 

as their final step → Not all links/nodes are equal

▪ Starting points and the target were non-random

▪ There are not many samples (only 64)

▪ People refused to participate (25% for Milgram)
▪ Not all searches finished (only 64 out of 300)

▪ Some sort of social search: People in the experiment 
follow some strategy instead of forwarding the letter to 
everyone. They are not finding the shortest path!

▪ People might have used extra information resources



 In 2003 Dodds, Muhamad and Watts 
performed the experiment using e-mail:

▪ 18 targets of various backgrounds

▪ 24,000 first steps (~1,500 per target)

▪ 65% dropout per step

▪ 384 chains completed (1.5%)

[Dodds-Muhamad-Watts, ’03]

Avg. chain length = 4.01
Problem: People stop participating
Correction factor:

Path length, h
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 After the correction:
▪ Typical path length h = 7

 Some not well understood 
phenomena in social networks:
▪ Funneling effect: Some target’s friends 

are more likely to be the final step
▪ Conjecture: High reputation/authority

▪ Effects of target’s characteristics: 
Structurally why are high-status 
target easier to find
▪ Conjecture: Core-periphery network structure

Path length, h
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[Dodds-Muhamad-Watts, ’03]



What is the structure of 
a social network?



 Assume each human is connected to 100 other people
Then:
▪ Step 1: reach 100 people
▪ Step 2: reach 100*100 = 10,000 people
▪ Step 3: reach 100*100*100 = 1,000,000 people
▪ Step 4: reach 100*100*100*100 = 100M people
▪ In 5 steps we can reach 10 billion people

 What’s wrong here?
▪ 92% of new FB friendships are to a friend-of-a-friend 

[Backstom-Leskovec ‘11]



 MSN network has 7 orders of magnitude 
larger clustering than the corresponding Gnp!

 Other examples:

h ... Average shortest path length

C ... Average clustering coefficient

“actual” … real network

“random” … random graph with same avg. degree

Actor Collaborations (IMDB): N = 225,226 nodes, avg. degree k = 61

Electrical power grid: N = 4,941 nodes, k = 2.67

Network of neurons: N = 282 nodes, k = 14

Network hactual hrandom Crandom

Film actors 3.65 2.99 0.00027

Power Grid 18.70 12.40 0.005

C. elegans 2.65 2.25 0.05



 Consequence of expansion:
▪ Short paths: O(log n)

▪ This is “best” we can do if we 
have a constant degree 

▪ But clustering is low!
 But networks have 

“local” structure:
▪ Triadic closure:

Friend of a friend is my friend

▪ High clustering but 
diameter is also high

 How can we have both?

Low diameter
Low clustering coefficient

High clustering coefficient
High diameter



 Could a network with high clustering be 
at the same time a small world?
▪ How can we at the same time have 

high clustering and small diameter?

▪ Clustering implies edge “locality”

▪ Randomness enables “shortcuts”

High clustering

High diameter

Low clustering

Low diameter



Small-world Model [Watts-Strogatz ‘98]
Two components to the model:
 (1) Start with a low-dimensional regular lattice
▪ (In our case we use a ring as a lattice)
▪ Has high clustering coefficient

 Now introduce randomness (“shortcuts”)

 (2) Rewire: 
▪ Add/remove edges to create 

shortcuts to join remote parts 
of the lattice

▪ For each edge with prob. p move 
the other end to a random node

[Watts-Strogatz, ‘98]



High clustering
High diameter

High clustering
Low diameter

Low clustering
Low diameter
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Rewiring allows us to “interpolate” between 
a regular lattice and a random graph

[Watts-Strogatz, ‘98]
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 Could a network with high clustering be at the 
same time a small world?

▪ Yes! You don’t need more than a few random links

 The Watts Strogatz Model:

▪ Provides insight on the interplay between clustering 
and the small-world 

▪ Captures the structure of many realistic networks

▪ Accounts for the high clustering of real networks

▪ Does not lead to the correct degree distribution

▪ Does not enable navigation (offline lecture)



 (offline) What mechanisms do people 
use to navigate networks and find the 
target?





 Goal: Generate a random graph with a 
given degree sequence k1, k2, … kN

 Configuration model:

 Useful as a “null” model of networks

▪ We can compare the real network G and a “random” 
G’ which has the same degree sequence as G

B

Nodes with spokes
Randomly pair up

“mini”-n0des

A
C

D
A B C D

B

A C

D

Resulting graph



 Suppose that the degree sequence is

 Create multiple copies of the nodes

 Pair the nodes uniformly at random

 Generate the resulting network

4 1 3 2



 The giant component phase transition for this 
model happens when

 The clustering coefficient is given by

 The diameter is logarithmic
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 Power-law distributions
▪ Exponential vs Power-law Distributions
▪ Scale-free Networks
▪ The anatomy of the long-tail

 Mathematics of Power-laws
 Estimating Power-law Exponent Alpha
 Consequence of Power-Law Degrees



What do we observe that 
needs explaining
 Small-world model?

▪ Diameter

▪ Clustering coefficient

 Preferential Attachment:

▪ Node degree distribution

▪ What fraction of nodes has degree 𝒌 (as a function of 𝒌)?

▪ Prediction from simple random graph models: 
p(𝒌) = exponential function of 𝒌

▪ Observation: Often a power-law: 𝒑(𝒌) = 𝒌−𝜶



Expected based on Gnp
Found in data

𝑷 𝒌 ∝ 𝒌−𝜶



 Take a network, plot a histogram of 𝑷(𝒌) vs. 𝒌

Flickr social 
network

n= 584,207, 

m=3,555,115

[Leskovec et al. KDD ‘08]

Plot: fraction of nodes 

with degree 𝑘:
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 Plot the same data on log-log scale:

Flickr social 
network

n= 584,207, 

m=3,555,115

[Leskovec et al. KDD ‘08]

How to distinguish:

𝑃(𝑘) ∝ exp(−𝑘) vs.

𝑃(𝑘) ∝ 𝑘−𝛼 ?

Take logarithms: 

if 𝑦 = 𝑓(𝑥) = 𝑒−𝑥 then 

log 𝑦 = −𝑥
If 𝑦 = 𝑥−𝛼 then 

log 𝑦 = −𝛼 log(𝑥)
So, on log-log axis 

power-law looks like 

a straight line of 

slope −𝛼 !

Slope  = −𝛼 = 1.75
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 Internet Autonomous Systems
[Faloutsos, Faloutsos and Faloutsos, 1999]

Internet domain topology



 The World Wide Web [Broder et al., 2000]



 Other Networks [Barabasi-Albert, 1999]

Power-gridWeb graphActor collaborations



 Above a certain 𝒙 value, the power law is 
always higher than the exponential!

20 40 60 80 100

0.2

0.6

1

1)( −= cxxp

xcxp −=)(

5.0)( −= cxxp

x

p
(x

)



 Power-law vs. Exponential 
on log-log and semi-log (log-lin) scales

[Clauset-Shalizi-Newman 2007]
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 Power-law degree exponent is 
typically 2 <  < 3
▪ Web graph:
▪ in = 2.1, out = 2.4 [Broder et al. 00]

▪ Autonomous systems:
▪  = 2.4 [Faloutsos3, 99]

▪ Actor-collaborations:
▪  = 2.3 [Barabasi-Albert 00]

▪ Citations to papers:
▪   3 [Redner 98]

▪ Online social networks:
▪   2 [Leskovec et al. 07]



 Definition:
Networks with a power-law tail in 
their degree distribution are called 
“scale-free networks”

 Where does the name come from?

▪ Scale invariance: There is no characteristic scale

▪ Scale-free function: 𝒇 𝒂𝒙 = 𝒂𝝀𝒇(𝒙)

▪ Power-law function: 𝒇 𝒂𝒙 = 𝒂𝝀𝒙𝝀 = 𝒂𝝀𝒇(𝒙)

Log() or Exp() are not  scale free!

𝑓 𝑎𝑥 = log 𝑎𝑥 = log 𝑎 + log 𝑥 = log 𝑎 + 𝑓 𝑥
𝑓 𝑎𝑥 = exp 𝑎𝑥 = exp 𝑥 𝑎 = 𝑓 𝑥 𝑎



Many other quantities follow heavy-tailed distributions

[Clauset-Shalizi-Newman 2007]



[Chris Anderson, Wired, 2004]





Random network
Scale-free (power-law) network

(Erdos-Renyi random graph)

Degree distribution is Binomial

Degree 
distribution is 
Power-law



 How does network
connectivity change 
as nodes get removed? 
[Albert et al. 00; Palmer et al. 01]

 Nodes can be removed:

▪ Random failure:

▪ Remove nodes uniformly at random

▪ Targeted attack:

▪ Remove nodes in order of decreasing degree

 This is important for robustness of the internet 
as well as epidemiology



 Real networks are resilient to random failures
 Gnp has better resilience to targeted attacks
▪ Need to remove all pages of degree >5 to disconnect the Web

▪ But this is a very small fraction of all web pages

Fraction of removed nodes
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Random
failures

Targeted
attack

Gnp networkAS network

Random
failures

Targeted
attack





Gnp ?Model:



 Preferential attachment: 
[de Solla Price ‘65, Albert-Barabasi ’99, Mitzenmacher ‘03]

▪ Nodes arrive in order 1,2,…,n

▪ At step j, let di be the degree of node i < j

▪ A new node j arrives and creates m out-links

▪ Prob. of j linking to a previous node i is 
proportional to degree di of node i
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 New nodes are more likely to link to 
nodes that already have high degree

 Herbert Simon’s result:
▪ Power-laws arise from “Rich get richer” (cumulative 

advantage)

 Examples
▪ Citations [de Solla Price ‘65]: New citations to a paper 

are proportional to the number it already has
▪ Herding: If a lot of people cite a paper, then it must be good, 

and therefore I should cite it too

▪ Sociology: Matthew effect
▪ Eminent scientists often get more credit than a comparatively 

unknown researcher, even if their work is similar
▪ http://en.wikipedia.org/wiki/Matthew_effect

http://en.wikipedia.org/wiki/Matthew_effect


 Claim: The described model generates 
networks where the fraction of nodes with 
in-degree k scales as:
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 Preferential attachment gives 
power-law degrees!

 Intuitively reasonable process
 Can tune p to get the observed exponent

▪ On the web, P[node has degree d] ~ d-2.1

▪ 2.1 = 1+1/(1-p) → p ~ 0.1



 Preferential attachment is not so good at 
predicting network structure

▪ Age-degree correlation

▪ Solution: Node fitness (virtual degree)

▪ Links among high degree nodes:

▪ On the web nodes sometime avoid linking to each other

 Further questions:

▪ What is a reasonable model for how people 
sample through network node and link to them?

▪ Short random walks



 A simple trick to generate values that follow a 
power-law distribution:

▪ Generate values 𝑟 uniformly at random within the 
interval [0,1]

▪ Transform the values using the equation

𝑥 = 𝑥𝑚𝑖𝑛 1 − 𝑟 −1/(𝛼−1)

▪ Generates values distributed according to power-
law with exponent 𝛼



 Copying mechanism (directed network)

▪ Select a node and an edge of this node

▪ Attach to the endpoint of this edge

 Walking on a network (directed network)

▪ The new node connects to a node, then to every first, 
second, … neighbor of this node

 Attaching to edges

▪ Select an edge and attach to both endpoints of this edge

 Node duplication

▪ Duplicate a node with all its edges

▪ Randomly prune edges of new node
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Size of the biggest hub is of order O(N). Most nodes can 

be connected within two steps, thus the average path 

length will be independent of the network size.

The average path length increases slower than 

logarithmically. In Gnp all nodes have comparable degree, 

thus most paths will have comparable length. In a scale-

free network vast majority of the path go through the few 

high degree hubs, reducing the distances between nodes. 

Some models produce 𝛼 = 3. This was first derived by 

Bollobas et al. for the network diameter in the context of  a 

dynamical model, but it holds for the average path length 

as well.

The second moment of the distribution is finite, thus in 

many ways the network behaves as a random network. 

Hence the average path length follows the result that we 

derived for the random network model earlier.Degree

exponent

Avg. path

length

Ultra

small

world

Small

world

Extra!



𝛼 = 1

Second moment 𝑘2 diverges 𝑘2 finite

Average 𝑘 diverges Average 𝑘 finite

Ultra small world behavior Small world

Behaves like a 

random network

The scale-free behavior is 

relevant

Regime full of anomalies…

web web
internet

actor

collaborationmetabolic

citation

𝛼 = 2 𝛼 = 3

Extra!


