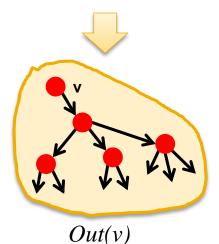
Network Properties: Characterizing/ Measuring Networks

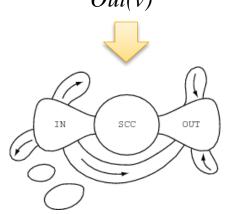
Agenda

- Characterizing/Measuring Networks
 - Network Properties
- Case Study: A Real World Network (MSN)

Structure of Networks

- For example, last time we talked about Observations and Models for the Web graph:
 - 1) We took a real system: the Web
 - 2) We represented it as a directed graph
 - 3) We used the language of graph theory
 - Strongly Connected Components
 - 4) We designed a computational experiment:
 - Find In- and Out-components of a given node v
 - 5) We learned something about the structure of the Web: BOWTIE!

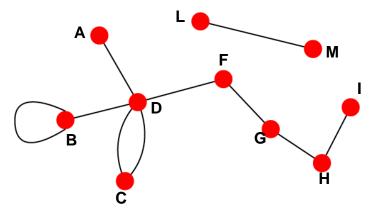




Undirected vs. Directed Networks

Undirected graphs

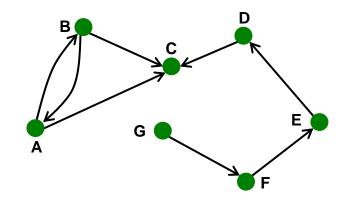
 Links: undirected (symmetrical, reciprocal relations)



- Undirected links:
 - Collaborations
 - Friendship on Facebook

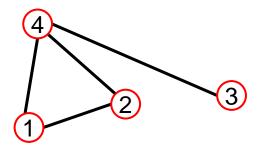
Directed graphs

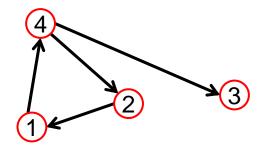
Links: directed (asymmetrical relations)



- Directed links:
 - Phone calls
 - Following on Twitter

Adjacency Matrix



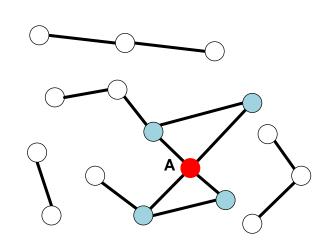


 $A_{ii} = I$ if there is a link from node i to node j $A_{ii} = 0$ otherwise

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \qquad A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

Note that for a directed graph (right) the matrix is not symmetric.



G G E

Source: Node with $k^{in} = 0$ **Sink:** Node with $k^{out} = 0$ Node degree, k_i : the number of edges adjacent to node i

$$k_A = 4$$

Avg. degree:
$$\overline{k} = \langle k \rangle = \frac{1}{N} \mathop{a}_{i=1}^{N} k_i = \frac{2E}{N}$$

In directed networks we define an in-degree and out-degree. The (total) degree of a node is the

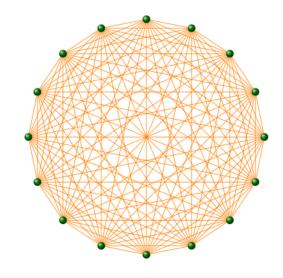
sum of in- and out-degrees.
$$k_C^{in} = 2 \qquad k_C^{out} = 1 \qquad k_C = 3$$

$$\overline{k} = \frac{E}{N}$$
 $\overline{k^{in}} = \overline{k^{out}}$

Complete Graph

The maximum number of edges in an undirected graph on N nodes is

$$E_{\text{max}} = \binom{N}{2} = \frac{N(N-1)}{2}$$



An undirected graph with the number of edges $E=E_{max}$ is called a complete graph, and its average degree is N-1

Networks are Sparse Graphs

Most real-world networks are sparse

$$\mathbf{E} \ll \mathbf{E}_{\text{max}} \quad (\text{or } \overline{\mathbf{k}} \ll \mathbf{N-1})$$

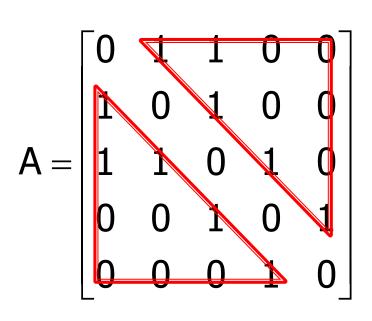
WWW (Stanford-Berkeley):	N=319,717	$\langle k \rangle = 9.65$
Social networks (LinkedIn):	N=6,946,668	$\langle k \rangle = 8.87$
Communication (MSN IM):	N=242,720,596	$\langle k \rangle = 11.1$
Coauthorships (DBLP):	N=317,080	$\langle k \rangle = 6.62$
Internet (AS-Skitter):	N=1,719,037	$\langle k \rangle = 14.91$
Roads (California):	N=1,957,027	$\langle k \rangle = 2.82$
Proteins (S. Cerevisiae):	N=1,870	$\langle k \rangle = 2.39$

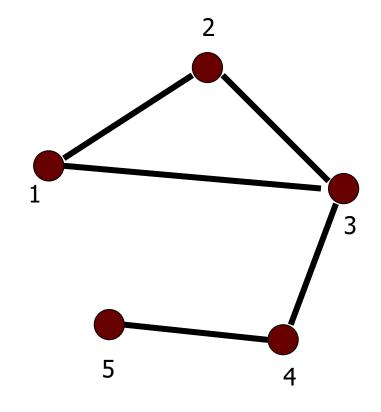
(Source: Leskovec et al., Internet Mathematics, 2009)

Consequence: Adjacency matrix is filled with zeros!

(Density of the matrix (E/N^2): WWW=1.51×10⁻⁵, MSN IM = 2.27×10⁻⁸)

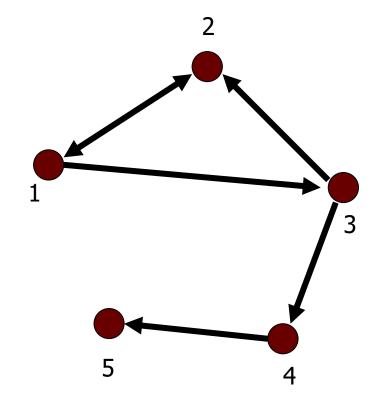
- Adjacency Matrix
 - symmetric matrix for undirected graphs



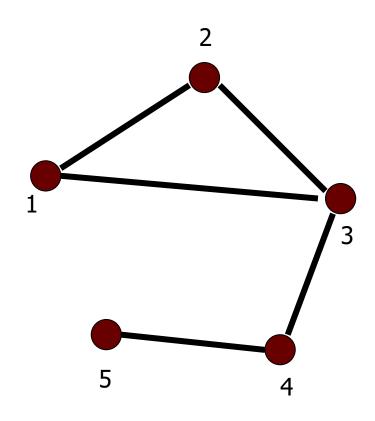


- Adjacency Matrix
 - unsymmetric matrix for directed graphs

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$



- Adjacency List
 - For each node keep a list with neighboring nodes



- Adjacency List
 - For each node keep a list of the nodes it points to

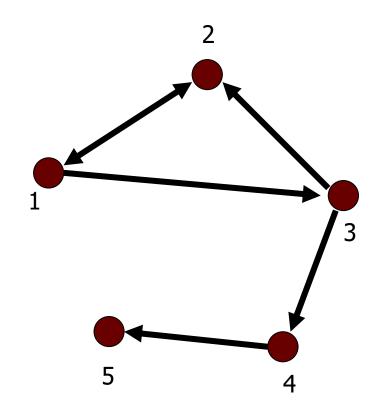
1: [2, 3]

2: [1]

3: [2, 4]

4: [5]

5: [null]



- List of edges
 - Keep a list of all the edges in the graph

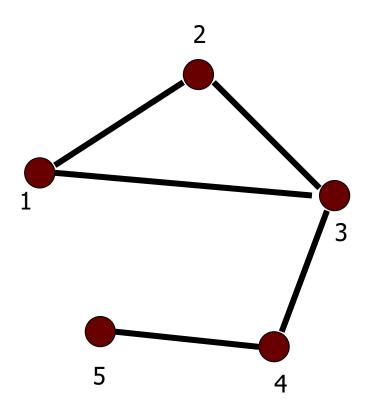
(1,2)

(2,3)

(1,3)

(3,4)

(4,5)



- List of edges
 - Keep a list of all the directed edges in the graph

(1,2)

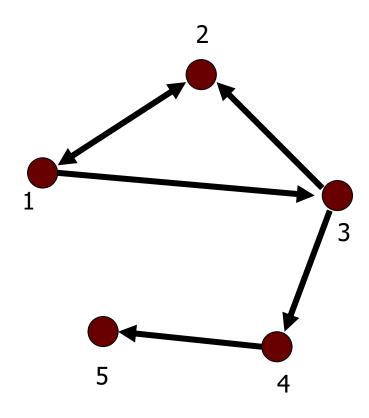
(2,1)

(1,3)

(3,2)

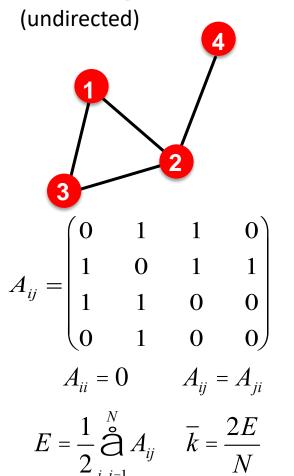
(3,4)

(4,5)



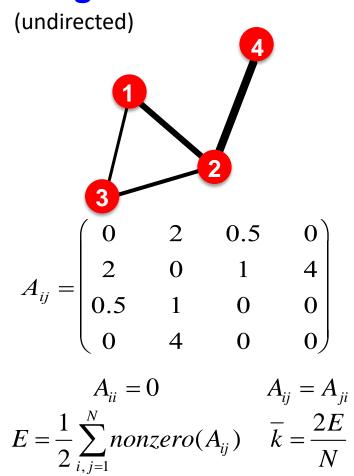
More Types of Graphs:

Unweighted



Examples: Friendship, Hyperlink

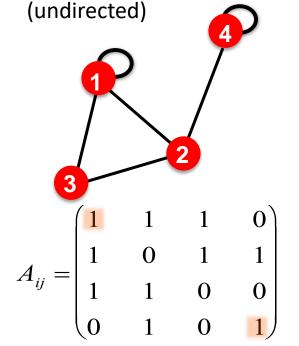
Weighted



Examples: Collaboration, Internet, Roads

More Types of Graphs:

Self-edges (self-loops)

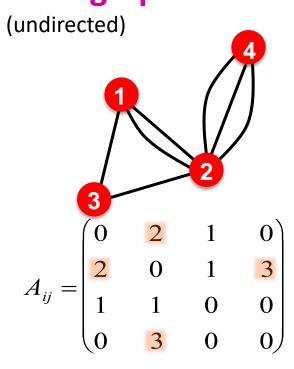


$$A_{ii} \neq 0$$
 $A_{ij} = A_{ji}$

$$E = \frac{1}{2} \sum_{i, j=1, i \neq j}^{N} A_{ij} + \sum_{i=1}^{N} A_{ii}$$

Examples: Proteins, Hyperlinks

Multigraph



$$A_{ii} = 0 A_{ij} = A_{ji}$$

$$E = \frac{1}{2} \sum_{i,j=1}^{N} nonzero(A_{ij}) \bar{k} = \frac{2E}{N}$$

Examples: Communication, Collaboration

Network Representations

WWW >> directed multigraph with self-edges

Facebook friendships >> undirected, unweighted

Citation networks >> unweighted, directed, acyclic

Collaboration networks >> undirected multigraph or weighted graph

Mobile phone calls >> directed, (weighted?) multigraph

Protein Interactions >> undirected, unweighted with self-interactions

Bipartite Graph

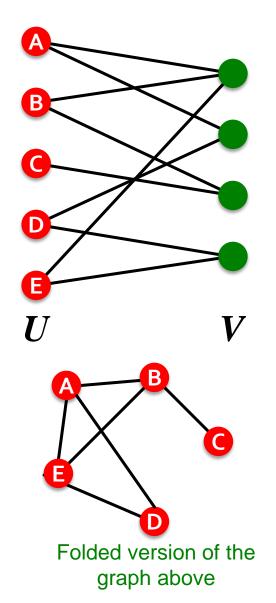
Bipartite graph is a graph whose nodes can be divided into two disjoint sets U and V such that every link connects a node in U to one in V; that is, U and V are independent sets

Examples:

- Authors-to-papers (they authored)
- Actors-to-Movies (they appeared in)
- Users-to-Movies (they rated)

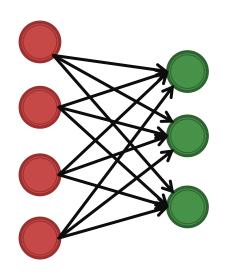
"Folded" networks:

- Author collaboration networks
- Movie co-rating networks



Web Cores

- Cores: Small complete bipartite graphs (of size 3x3, 4x3, 4x4)
 - Similar to the triangles in undirected graphs
- Found more frequently than expected on the Web graph
- Correspond to communities of enthusiasts (e.g., fans of japanese rock bands)



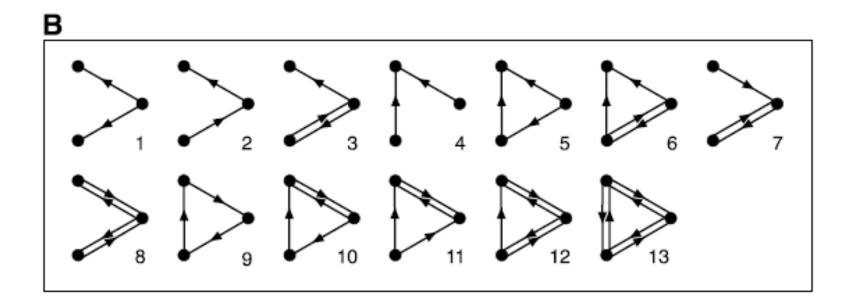
Motifs

- Most networks have the same characteristics with respect to global measurements
 - can we say something about the local structure of the networks?

 Motifs: Find small subgraphs that are overrepresented in the network

Example

Motifs of size 3 in a directed graph

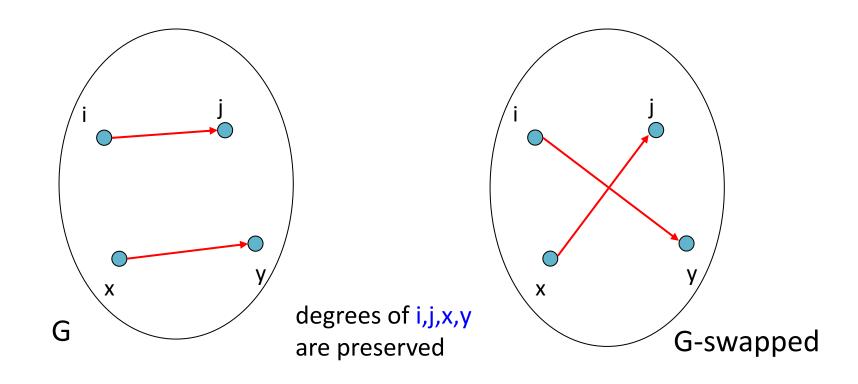


Finding Interesting Motifs

- Sample a part of the graph of size S
- Count the frequency of the motifs of interest
- Compare against the frequency of the motif in a random graph (null model) with the same number of nodes and the same degree distribution

Generating a Random Graph

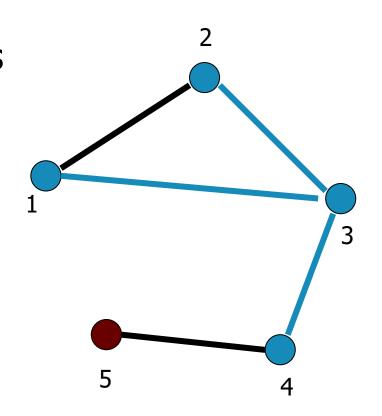
- Find edges (i,j) and (x,y) such that edges (i,y) and (x,j) do not exist, and swap them
 - repeat for a large enough number of times



Subgraphs

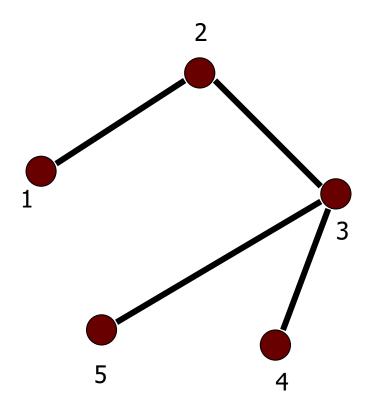
Subgraph: Given V' ⊆ V, and E' ⊆ E, the graph G'=(V',E') is a subgraph of G.

Induced subgraph: Given
V' ⊆ V, let E' ⊆ E is the set of all edges between the nodes in V'. The graph G'=(V',E'), is an induced subgraph of G



Trees

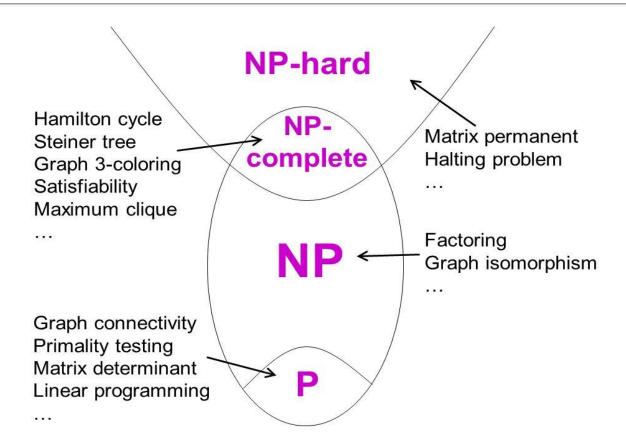
Connected Undirected graphs without cycles



Spanning Tree

- For any connected graph, the spanning tree is a subgraph and a tree that includes all the nodes of the graph
- There may exist multiple spanning trees for a graph
- The weigh of a spanning tree (among multiple spanning trees) of a graph is the summation of the edge weights in that spanning tree
- Minimum Spanning Tree (MST): The spanning tree with the minimum weight

Classes of Complexity



P: Solvable in polynomial time

NP: Verified in polynomial time, but no known solution in polynomial time

NP-hard: At least as difficult as the hardest NP problems

NP-complete: The hardest of NP problems

More Network Properties...

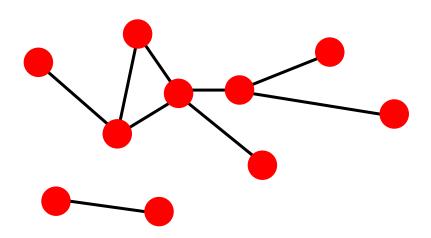
Degree Distribution

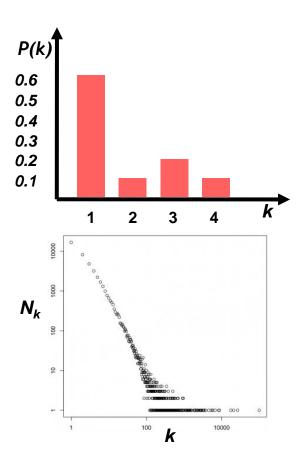
• Degree distribution P(k): Probability that a randomly chosen node has degree k

 N_k = # nodes with degree k

Normalized histogram:

$$P(k) = N_k / N \rightarrow plot$$



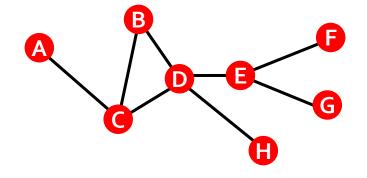


Paths in a Graph

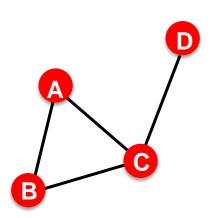
 A path is a sequence of nodes in which each node is linked to the next one

$$P_n = \{i_0, i_1, i_2, ..., i_n\} \qquad P_n = \{(i_0, i_1), (i_1, i_2), (i_2, i_3), ..., (i_{n-1}, i_n)\}$$

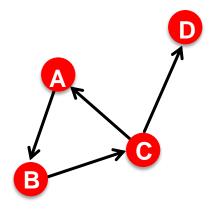
- Path can intersect itself and pass through the same edge multiple times
 - E.g.: ACBDCDEG
 - In a directed graph a path can only follow the direction of the "arrow"



Distance in a Graph



 $h_{B,D} = 2$



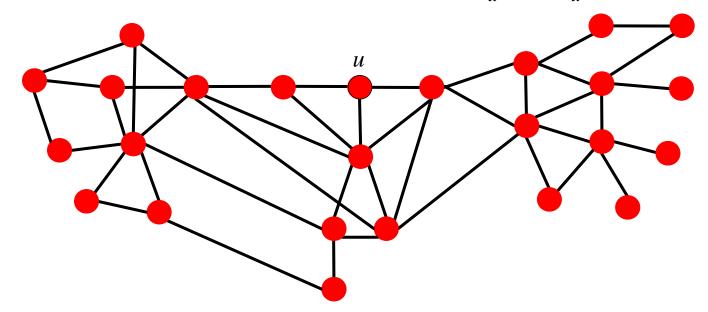
 $h_{B,C} = 1, h_{C,B} = 2$

- Distance (shortest path, geodesic)
 between a pair of nodes is defined
 as the number of edges along the
 shortest path connecting the nodes
 - *If the two nodes are disconnected, the distance is usually defined as infinite
- In directed graphs paths need to follow the direction of the arrows
 - Consequence: Distance is not symmetric: $h_{A,C} \neq h_{C,A}$

Finding Shortest Paths

Breadth First Search:

- Start with node u, mark it to be at distance $h_u(u)=0$, add u to the queue
- While the queue not empty:
 - Take node v off the queue, put its unmarked neighbors w into the queue and mark $h_u(w) = h_u(v) + 1$



Shortest Paths on Weighted Graphs

- Shortest paths on weighted graphs are harder to construct
 - There are several well known algorithms for finding single-source, or all-pairs shortest paths
- Single-source Shortest Path (SSSP)
 - Dijkstra's algorithm (non-negative weights)
 - Bellman-Ford algorithm (allows negative weights)
- All-pairs Shortest Paths (APSP)
 - Floyd-Warshall algorithm (allows negative weights)
 - Johnson's algorithm (allows negative weights)

Network Diameter

- Diameter: the maximum (shortest path)
 distance between any pair of nodes in a graph
- Average path length for a connected graph (component) or a strongly connected (component of a) directed graph

$$\overline{h} = rac{1}{2E_{ ext{max}}} \sum_{i,j
eq i} h_{ij}$$
 where h_{ij} is the distance from node i to node j

 Many times we compute the average only over the connected pairs of nodes (that is, we ignore "infinite" length paths)

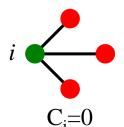
Clustering Coefficient

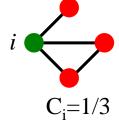
Clustering coefficient:

- What portion of i's neighbors are connected?
- Node i with degree k_i
- $C_i \in [0,1]$

$$C_i = \frac{2e_i}{k_i(k_i - 1)}$$

where e_i is the number of edges between the neighbors of node i





$$i$$
 $C=1$

- Average clustering coefficient: $C = \frac{1}{N} \sum_{i=1}^{N} C_{i}$

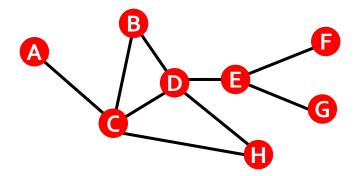
$$C = \frac{1}{N} \sum_{i}^{N} C_{i}$$

Clustering Coefficient: Example

Clustering coefficient:

- What portion of i's neighbors are connected?
- lacksquare Node i with degree k_i

where e_i is the number of edges between the neighbors of node i



$$k_B=2$$
, $e_B=1$, $C_B=2/2=1$

$$k_D = 4$$
, $e_D = 2$, $C_D = 4/12 = 1/3$

. . .

Key Network Properties

Degree distribution: P(k)

Path length: h

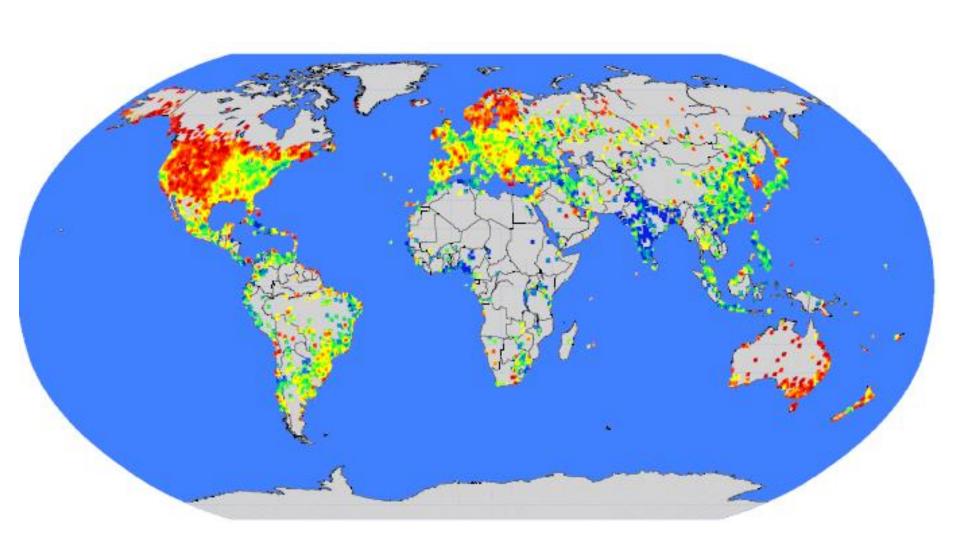
Clustering coefficient: C

Let's measure P(k), h and C on a real-world network!

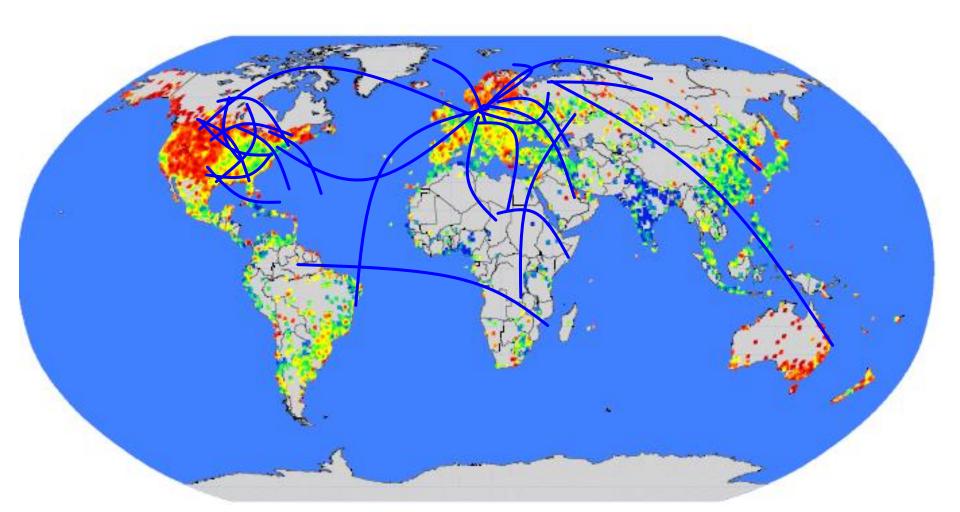
The MSN Messenger

- MSN Messenger activity in June 2006:
 - 245 million users logged in
 - 180 million users engaged in conversations
 - More than 30 billion conversations
 - More than 255 billion exchanged messages

Communication: Geography

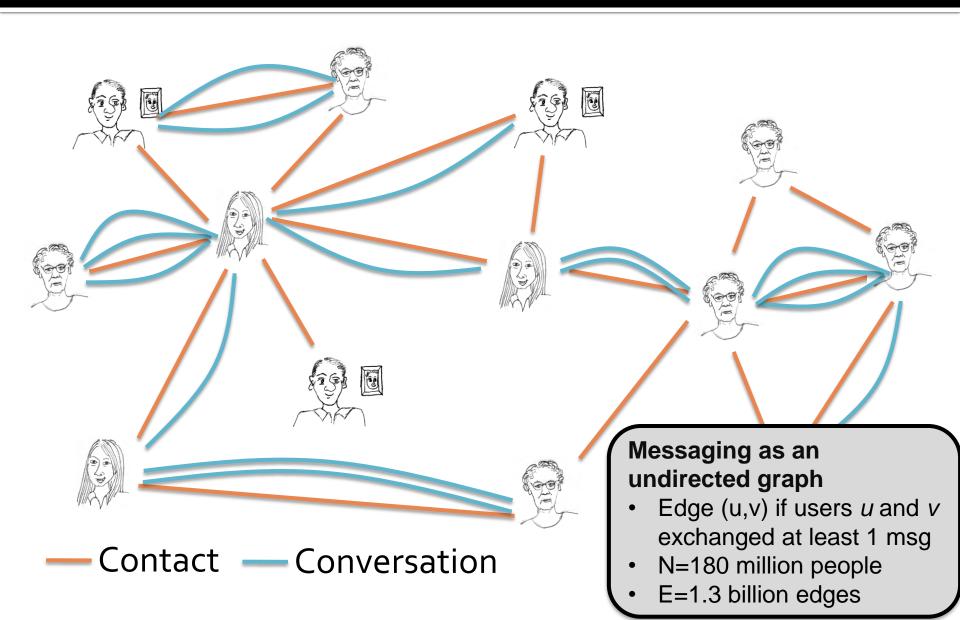


Communication network

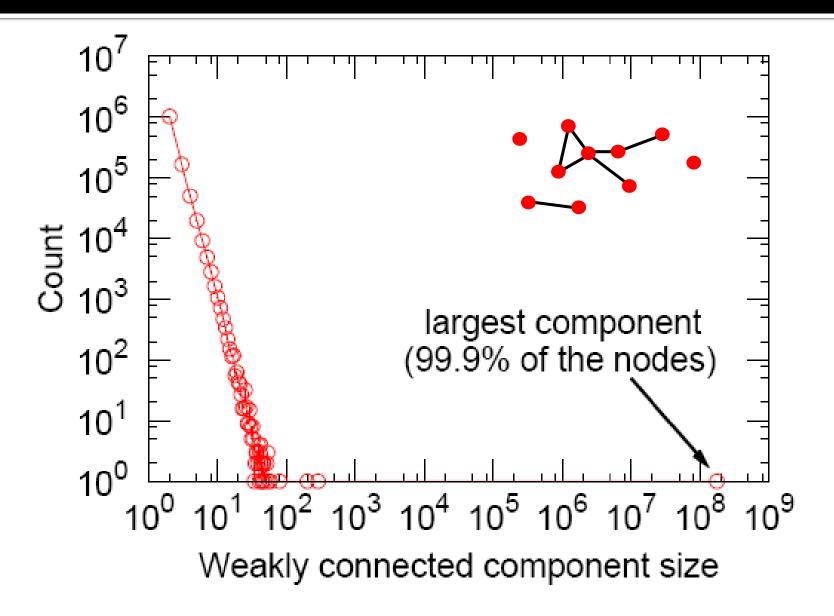


Network: 180M people, 1.3B edges

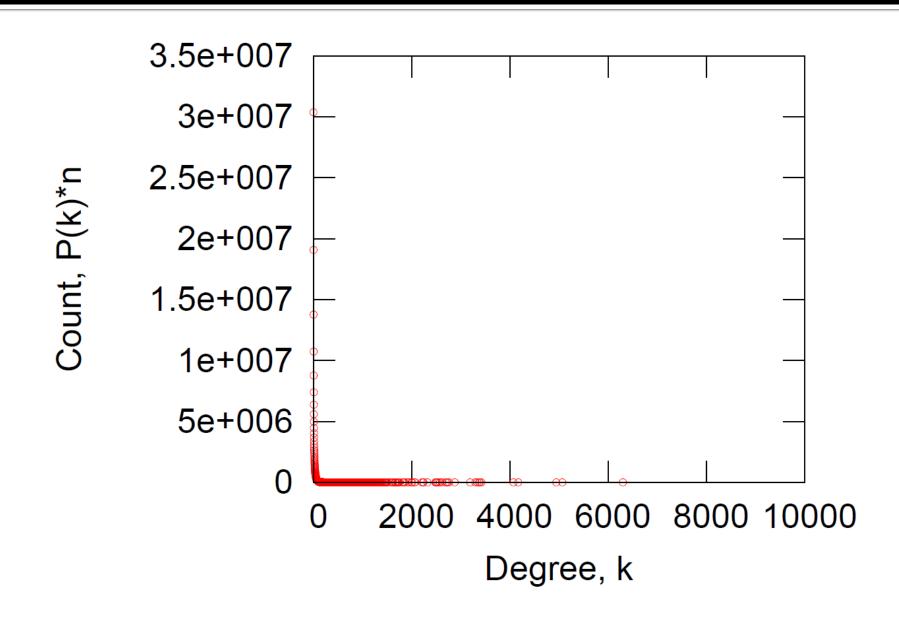
Messaging as a Multigraph



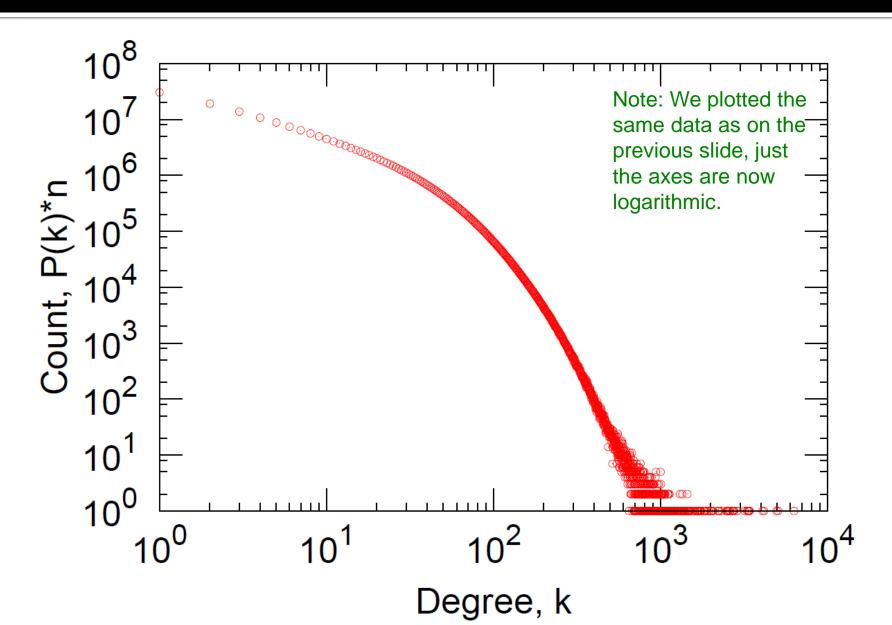
MSN Network: Connectivity



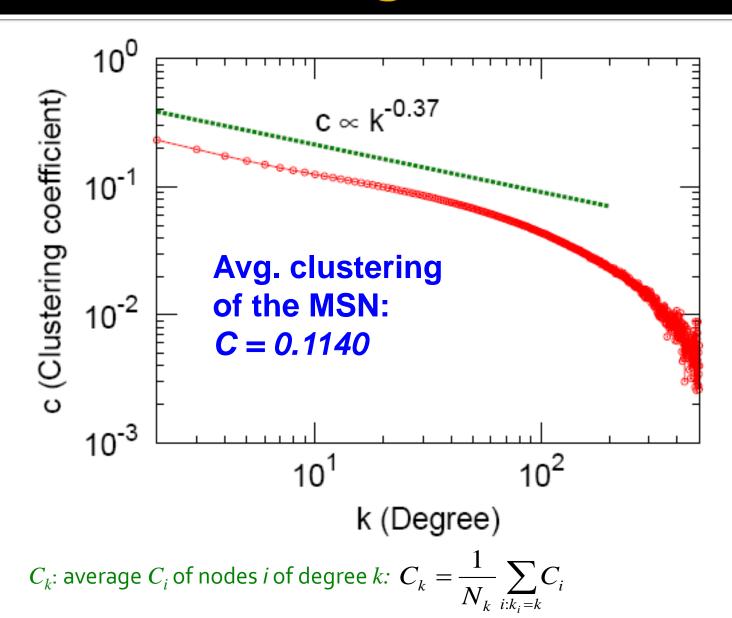
MSN: Degree Distribution



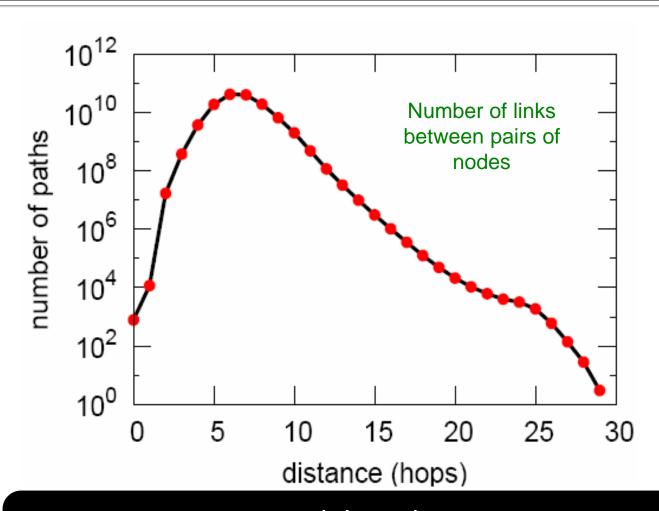
MSN: Log-Log Degree Distribution



MSN: Clustering



MSN: Diameter



Avg. path length **6.6** 90% of the nodes can be reached in < 8 hops

Steps		#Nodes
# HOUGES AS WE GO DITS OUT OF A FAITHOUT HOUSE	0	1
	1	10
	2	78
	3	3,96
	4	8,648
	5	3,299,252
	6	28,395,849
	7	79,059,497
	8	52,995,778
	9	10,321,008
	10	1,955,007
	11	518,410
	12	149,945
	13	44,616
	14	13,740
	15	4,476
	16	1,542
	17	536
	18	167
	19	71
	20	29
	21	16
	22	10
	23	3
	24	2
	25	3

MSN: Key Network Properties

Degree distribution:

Heavily skewed avg. degree= 14.4

Path length:

6.6

Clustering coefficient:

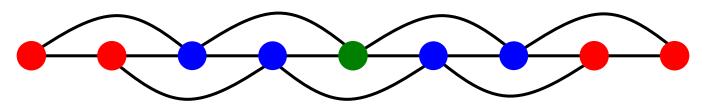
0.11

Are these values "expected"?

Are they "surprising"?

To answer this we need a null-model!

Is MSN Network like a "chain"?



- $P(k) = \delta(k-4)$ $k_i = 4$ for all nodes $C = \frac{1}{N}(\frac{1}{2}(N-4) + 2 + 2\frac{2}{3}) = \frac{1}{2}$ as $N \to \infty$
- Path length: $h_{max} = \frac{N-1}{2} = O(N)$
 - Avg. shortest path-length: $\bar{h} < \frac{2}{N(N-1)} \frac{N-1}{2} \frac{N(N-1)}{2} = O(N)$
- So, we have: Constant degree, Constant avg. clustering coeff. Linear avg. path-length

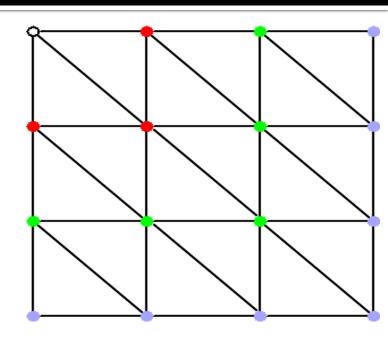
Note about calculations:

We are interested in quantities as graphs get large (N→∞)

Is MSN Network like a "grid"?

- $P(k) = \delta(k-6)$
 - k = 6 for each inside node
- C = 6/15 for inside nodes
- Path length:

$$\mathbf{h}_{\text{max}} = O(\sqrt{N})$$



- In general, for lattices:
 - Average path-length is $\overline{h} \approx N^{1/D}$ (D... lattice dimensionality)
 - Constant degree, constant clustering coefficient

What did we learn so far?

MSN Network is neither a chain nor a grid