EECS4414/5414: Information Networks

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for material in the slides

what is a network or a graph?

Network Components

Network (or Graph) G(N,E)
Objects: nodes (vertices) N
Relationships: links (edges) E

Built on the mathematics of graph theory

networks are ubiquitous

World economy

Human cell

Railroads

Brain

Internet

Friends & Family

Media & Information

Society

What do the following things have in common?

Complex systems that can be modeled as Networks!

Behind many systems there is an intricate wiring diagram, a network, that defines the interactions between the components

We will never understand these systems unless we understand the networks behind them!

But, why should <u>we</u> care about networks? Why now?

Why Networks?

Universal language for describing complex data

Networks: Why Now?

Networks: Size Matters

Network data: Orders of magnitude

- 436-node network of email exchange at a corporate research lab [Adamic-Adar, SocNets '03]
- 43,553-node network of email exchange at an university [Kossinets-Watts, Science '06]
- 4.4-million-node network of declared friendships on a blogging community [Liben-Nowell et al., PNAS '05]
- 240-million-node network of communication on Microsoft Messenger [Leskovec-Horvitz, WWW '08]
- 800-million-node Facebook network [Backstrom et al. '11]

How can we study networks?

network analysis helps to reveal the underlying dynamics of these systems, not easily observable before

what do we study in networks?

Networks: Structure & Process

Structure and evolution

- What is the structure of a network?
- Why and how did it become to have such structure?

Processes and dynamics

 Networks provide "skeleton" for spreading of information, behavior, diseases

how do we reason about networks?

Reasoning About Networks

- Empirical studies/properties: Study network data to find organizational principles
- Mathematical models: Probabilistic, graph theory
- Algorithms: Methods for analyzing graphs

Properties

Six degrees of separ.

Power-law degrees

Strength of weak ties

Densif. power law, Shrinking diameter

Models

Erdös-Renyi model

Small-world model

Community model

Cascade model

Algorithms

Decentralized search Link prediction

Link analysis

Community detection

Map of Superpowers

Applying Our Superpowers

Social media analytics

Viral marketing

Applying Our Superpowers

Predicting epidemics: Ebola

Drug design

examples of network studies

Networks: Social

Facebook social graph

4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]

Networks: Communication

Graph of the Internet (Autonomous Systems)

Power-law degrees [Faloutsos-Faloutsos-Faloutsos, 1999] Robustness [Doyle-Willinger, 2005]

Networks: Media

Connections between political blogs Polarization of the network [Adamic-Glance, 2005]
Networks: Infrastructure

Seven Bridges of Königsberg

[Euler, 1735] Return to the starting point by traveling each link of the graph once and only once.

Networks: Citation

[Börner et al., 2012]

Networks: Knowledge

Understand how humans navigate Wikipedia

Get an idea of how people connect concepts

[West-Leskovec, 2012]

Networks: Economy

Bio-tech companies

[Powell-White-Koput, 2002]

Networks: Brain

Human brain has between ~100 billion neurons, ~1,000 trillion synapses [Sporns, 2011]

Networks: Biology

Protein-Protein Interaction Networks:

Nodes: Proteins Edges: 'physical' interactions

Metabolic networks:

Nodes: Metabolites and enzymes Edges: Chemical reactions

Web – The Lab for Humanity

examples of network analysis impact

Networks: Impact

Google (~Australia?) Market cap: \$1700 billion

Cisco (~Hungary?)
 Market cap: \$200 billion

Meta (~Switzerland?)

Market cap: \$940 billion

licensed under (CC) Attribution-NonCommercial-ShareAlike 2.0 Germany | Ludwig Gatzke | http://flickr.com/photos/stabilo-boss/

Networks: Impact

Predicting epidemics

Real

Predicted

Networks Really Matter

- If you want to understand the spread of diseases, can you do it without social networks?
- If you want to understand the structure of the Web, it is hopeless without working with the Web's topology
- If you want to understand dissemination of news or evolution of science, it is hopeless without considering the information networks

EECS4414/5414 Administrivia

Logistics: Communication

Website

http://www.eecs.yorku.ca/~papaggel/courses/eecs4414/

eClass/Moodle

https://eclass.yorku.ca/course/view.php?id=100607

Piazza Q&A website

- https://piazza.com/yorku.ca/summer2024/eecs44145414
- You need to register with your yorku.ca email Please participate and help each other!

e-mail for personal issues

papaggel@eecs.yorku.ca

Prerequisites

Course Prerequisites

- EECS-3421: Introduction to Database Systems
- EECS-3101: Design and Analysis of Algorithms
- MATH-2030: Elementary Probability
- General prerequisites
- No single topic in the course is too hard by itself
- But we will cover and touch upon many topics and this is what makes the course hard
 - Good background in:
 - Algorithms and graph theory
 - Probability and Statistics
 - Linear algebra

Programming:

You should be able to write non-trivial programs (in Python or C)

Course Intellectual Content

Topics Covered

Component I

basic graph theory, network measurements, network models

Component II

link analysis, link prediction, network ties, community detection, graph partitioning

Component III

information cascades & epidemics, graph mining, machine learning with graphs, influence maximization, connections to problems in the social sciences and economics

"Suggested" Textbooks

+ a few more reference books
+ recent research papers on topics covered

Work	Weight	Comment
2 Assignments	20%	A1: 10% A2: 10%
Research Project (team large project + report in research paper format)	40%	Proposal: 10% Project milestone: 20% In-class presentation: 20% Final report & code: 50%
Final Exam*	40%	Final exam grade must be > 40%

* There will be no final exam for grad students (marking scheme to be determined):

- either: Project: 80%, but more substantial and in teams of two
- or: Project: 60% + A lecture/presentation on a relevant research topic: 20%

Course Projects

Substantial course project:

- Experimental evaluation of algorithms and models on an interesting network dataset
- A theoretical project that considers a model, an algorithm and derives a rigorous result about it
- Develop scalable algorithms for massive graphs
- Performed in groups of up to 3
 - Graduate students: team of up to 2
- Project is the main work for the class
 - We will help with ideas, and mentoring
 - Need to start thinking about this now
- Class presentation

Network Analysis Tools

Highly recommend SNAP:

- SNAP C++: more challenging but more scalable
- SNAP.PY: Python ease of use, most of C++ scalability
- Other tools include:
 - NetworkX
 - JUNG
 - iGraph

Example Research Questions/ Topics

Topics

- Measuring real networks
- Modeling the evolution of networks
- Identifying important nodes in the graph
- Finding communities in graphs
- Link prediction and recommendation
- Modeling information cascades in networks

•••

Understanding Large Graphs

- What does a network look like?
 - Measure different properties to understand the structure

Triangles in the graph

Modeling Real Networks

- Real life networks are not "random"
- Can we define a model that generates graphs with statistical properties similar to those in real life?
- The rich-get-richer model

We need to accurately model the mechanisms that govern the evolution of networks (for prediction, simulations, understanding)

Ranking Nodes on the Web

- Is my home page as important as the facebook page?
- We need algorithms to compute the importance of nodes in a graph
- The PageRank Algorithm
 - A success story of network use

It is impossible to create a web search engine without understanding the web graph

Link Prediction

- Given a snapshot of a social network at time *t*, we seek to accurately predict the edges that will be added to the network during the interval from time *t* to a given future time *t'*.
- Applications
 - Accelerate the growth of a social network (e.g., Facebook, LinkedIn, Twitter)
 - Maximize information cascades

Sandy Baker 8 mutual friends 42 Add as Friend

How do we predict future links?

Clustering and Communities

What is community?

 "Cohesive subgroups are subsets of actors among whom there are relatively strong, direct, intense, frequent, or positive ties." [Wasserman & Faust '97]

Karate club example [W. Zachary, 1970]

Information/Virus Cascade

- How do viruses spread between individuals? How can we stop them?
- How does information propagates in social and information networks? What items become viral? Who are the influencers and trend-setters?
- We need models and algorithms to answer these questions

Online advertising relies heavily on online social networks and word-of-mouth marketing. There is currently need for models for understanding the spread of Covid-19 virus.

Mining Social Media

- Social Media (Twitter, Facebook, Instagram) have supplanted the traditional media sources
 - Information is generated and disseminated by users
- Interesting problems:
 - Automatically detect events using Twitter
 - Earthquake response
 - Crisis detection and management
 - Sentiment mining
 - Track the evolution of events: socially, geographically, over time

•••

Research in Graph Mining

Current hot research topics:

- Graph representation learning
- Graph neural networks
- Graph attention mechanisms
- Graph generative models
- Graph classification, clustering, anomaly detection
- Dynamic graph analysis and mining
- Relevant research conferences
 - Data Mining: KDD, ICDM, WSDM, WWW, ...
 - ML: ICML, NeurIPS, ECML/PKDD, ...

Starter Topic: Structure of the Web Graph

Structure of Networks?

Network is a collection of objects where some pairs of objects are connected by links What is the structure of the network?

Components of a Network

- Objects: nodes, vertices
- Interactions: links, edges
- System: network, graph

N E G(N,E)

Networks or Graphs?

- Network often refers to real systems
 Web, Social network, Metabolic network
 Language: Network, node, link
- Graph is mathematical representation of a network
 - Web graph, Social graph (a Facebook term)
 Language: Graph, vertex, edge

We will try to make this distinction whenever it is appropriate, but in most cases we will use the two terms interchangeably

Networks: Common Language

Choosing Proper Representation

- How to build a graph:
 - What are nodes?
 - What are edges?
- Choice of the proper network representation of a given domain/problem determines our ability to use networks successfully:
 - In some cases there is a unique, unambiguous representation
 - In other cases, the representation is by no means unique
 - The way you assign links will determine the nature of the question you can study
Choosing Proper Representation

- If you connect individuals that work with each other, you will explore a professional network
- If you connect those that have a sexual relationship, you will be exploring sexual networks
- If you connect scientific papers that cite each other, you will be studying the citation network

If you connect all papers with the same word in the title, you will be exploring what? It is a network, nevertheless

Undirected vs. Directed Networks

Undirected

 Links: undirected (symmetrical, reciprocal)

- Examples:
 - Collaborations
 - Friendship on Facebook

Directed

 Links: directed (arcs)

- Examples:
 - Phone calls
 - Following on Twitter

Connectivity of Graphs

Connected (undirected) graph:

- Any two vertices can be joined by a path
- A disconnected graph is made up by two or more connected components

Largest Component: Giant Component

Isolated node (node H)

Bridge edge: If we erase it, the graph becomes disconnected. **Articulation point:** If we erase it, the graph becomes disconnected.

Connectivity of Directed Graphs

Strongly connected directed graph

- has a path from each node to every other node and vice versa (e.g., A-B path and B-A path)
- Weakly connected directed graph
 - is connected if we disregard the edge directions

Graph on the left is connected but not strongly connected (e.g., there is no way to get from F to G by following the edge directions).

Web as a Graph

Q: What does the Web "look like"?

Here is what we will do next:

- We will take a real system (i.e., the Web)
- We will represent the Web as a graph
- We will use language of graph theory to reason about the structure of the graph
- Do a computational experiment on the Web graph
- Learn something about the structure of the Web!

Web as a Graph

Q: What does the Web "look like" at a global level?

- Web as a graph:
 - Nodes = web pages
 - Edges = hyperlinks
 - Side issue: What is a node?
 - Dynamic pages created on the fly
 - "dark matter" inaccessible database generated pages

The Web as a Graph

In early days of the Web links were navigational
Today many links are transactional

The Web as a Directed Graph

What Does the Web Look Like?

- How is the Web linked?
- What is the "map" of the Web?

Web as a <u>directed graph</u> [Broder et al. 2000]:

- Given node v, what can v reach?
- What other nodes can reach v?

For example: $In(A) = \{A,B,C,E,G\}$ $Out(A)=\{A,B,C,D,F\}$

Directed Graphs

Two types of directed graphs:

Strongly connected:

- Any node can reach any node via a directed path In(A)=Out(A)={A,B,C,D,E}
- DAG Directed Acyclic Graph:
 - Has no cycles: if u can reach v, then v can not reach u

Any directed graph can be expressed in terms of these two types!

Strongly Connected Component

- Strongly connected component (SCC) is a set of nodes S so that:
 - Every pair of nodes in S can reach each other
 - There is no larger set containing S with this property

Strongly connected components of the graph: {A,B,C,G}, {D}, {E}, {F}

Graph Structure of the Web

There is a single giant SCC

- That is, there won't be two SCCs
- Heuristic argument:
 - It just takes 1 page from one SCC to link to the other SCC
 - If the 2 SCCs have millions of pages the likelihood of this not happening is very very small

Structure of the Web

Broder et al., 2000:

- Altavista crawl from October 1999
 - 203 million URLS
 - 1.5 billion links
- Computer: Server with 12GB of memory
- Undirected version of the Web graph:
 - 91% nodes in the largest weakly conn. component
 - Are hubs making the web graph connected?
 - Even if they deleted links to pages with in-degree >10
 WCC was still ≈50% of the graph

Structure of the Web

- Directed version of the Web graph:
 - Largest SCC: 28% of the nodes (56 million)
 - Taking a random node v
 - **Out(***v***)** ≈ **50%** (100 million)
 - In(v) ≈ 50% (100 million)
- What does this tell us about the conceptual picture of the Web graph?

Bow-tie Structure of the Web

203 million pages, 1.5 billion links [Broder et al. 2000]

What did We Learn/Not Learn ?

What did we learn:

- Some conceptual organization of the Web (i.e., the bowtie)
- What did we not learn:
 - Treats all pages as equal
 - Google's homepage == my homepage
 - What are the most important pages
 - How many pages have k in-links as a function of k?
 The degree distribution: ~ k⁻²
 - Link analysis ranking -- as done by search engines (PageRank)
 - Internal structure inside giant SCC
 - Clusters, implicit communities?
 - How far apart are nodes in the giant SCC:
 - Distance = # of edges in shortest path
 - Avg = 16 [Broder et al.]