
University of Toronto
CSC343H1S Winter 2011

Relational Algebra Exercises for Tutorial

Solve all queries below using only select, project, Cartesian product, and natural join. Do not use
theta-join, set operations, renaming or assignment.

First Schema

Suppliers(sID, sName, address)

Parts(pID, pName, colour)

Catalog(sID, pID, price)

Catalog[sID] ⊆ Suppliers[sID]

Catalog[pID] ⊆ Parts[pID]

Notice:

• In this schema, everywhere we want values to match across relations, the attributes have
matching names. And everywhere the attributes have matching names, we want values to
match across relations.

• This means that natural join will do exactly what we want in all cases.

Questions:

1. If sID is a key for the Suppliers relation, could it be a key for the Catalog relation?

Answer: Just because it is a key in one relation doesn’t mean it is in another; being a key is
relative to the relation. But is it a key for Catalog? No. We almost surely want to be able
to list multiple parts by one supplier in our catalog.

2. Find the names of all red parts.

Answer:

ΠpName(σcolour=“red”Parts)

3. Find all prices for parts that are red or green. (A part may have different prices from different
manufacturers.)

Answer:

Πprice((σcolour=“red”∨colour=“green”Parts) ./ Catalog)

4. Find the sIDs of all suppliers who supply a part that is red or green.

Answer:

ΠsID((σcolour=“red”∨colour=“green”Parts) ./ Catalog)

5. Find the sIDs of all suppliers who supply a part that is red and green.

Answer: Trick question. Each tuple has only one colour, and each part has only one tuple
(since pID is a key), so no part can be recorded as both red and green.

6. Find the names of all suppliers who supply a part that is red or green.

Answer:

ΠsName((ΠsID((σcolour=“red”∨colour=“green”Parts) ./ Catalog)) ./ Suppliers)

1



Second Schema

Employees(number, name, age, salary)

Supervises(boss, employee)

Supervises[boss] ⊆ Employees[number]

Supervises[employee] ⊆ Employees[number]

Notice:

• In this schema, wherever we want values to match across relations, the attributes do not
have matching names. This means that natural join will not force things to match up as we’d
like.

• In fact, since there are no attribute names in common across the two relations, natural join
is no different from Cartesian product.

• We are forced to use selection to enforce the necessary matching.

Questions:

1. What does it say about our domain that employee is a key for Supervises?

Answer: Every employee has one boss.

2. Does the schema allow for an employee with no boss?

Answer: Yes.

3. How would the world have to be different if boss were a key for Supervises?

Answer: It would mean that every boss could have at most one employee. Not very sensible!

4. How would the world have to be different if both boss and employee together were a key for
Supervises?

Answer: This would imply that neither alone is a key, since keys are minimal. Thus, bosses
could have multliple employees (sensible) and employees could have multiple bosses (possibly
sensible).

5. Find the names and salaries of all bosses who have an employee earning more than 100.
Hint: Below each subexpression, write the names of the attributes in the resulting relation.

Answer:

Πname,salaryσboss = number((Πbossσnumber=employee((Πnumberσsalary>100Employee)×Supervises))×
Employee)

2



Third Schema

This schema is for a salon. Services could be things like “haircut” or “manicure”.

Clients(CID, name, phone)

Staff(SID, name)

Appointments(CID, date, time, service, SID)

Appointments[CID] ⊆ Clients[CID]

Appointments[SID] ⊆ Staff[SID]

Notice:

• In this schema, everywhere we want values to match across relations, the attributes have
matching names. But there are also attributes with matching names whose values we do not
want to match across relations.

• In those cases, that natural join will get rid of many tuples that we need, so we must use
Cartesian product and make any necessary matching happen using select. (Unless we can
remove the problem attributes first.)

Questions:

1. Find the appointment time and client name of all appointments for staff member Giuliano on
Feb14. (Assume that you can compare a date value to “Feb 14” using “=”). At each step,
use projection to pare down to only the attributes you need.

Answer:

Πname,time((ΠCID,SID,timeσdate=“Feb14”Appointments) ./ (ΠSIDσname=“Giuliano”Staff) ./
Clients)

2. Now solve the same problem but begin by putting all three relations together in full — with
all of their attributes.

Answer:

This time, we mustn’t use natural join or we’ll force the client name and staff names to match,
which would be very inappropriate! So we use Cartesian product and are stuck enforcing all
the things that do need to match, like SID when we combine Staff and Appointments.

I’m not going to write out this version of the query.

3. Which answer is better?

Answer:

The first is more “efficient” because it produces smaller intermediate relations. But since this
is all just math, it doesn’t matter! (And in a DMBS, where queries are actually executed and
can therefore be more or less efficient, the DBMS optimizes our queries.)

3


