
NOSQL

EECS3421 - Introduction to Database Management Systems

How to leverage the NOSQL boom?

Overview

• Part I: Structured, unstructured, semi-structured data

• Part II: What is NOSQL?

• Part III: NOSQL taxonomy

Thanks to Suprio Ray for some material in these slides

Part I: Structured, Unstructured and

Semi-structured Data

Structured vs. unstructured data

• Databases are highly structured

− Well-known data format: relations and tuples

− Every tuple conforms to a known schema

− Data independence? Woe unto you if you lose the schema

• Plain text is unstructured

− Cannot assume any predefined format

− Apparent organization makes no guarantees

− Self-describing: little external knowledge needed

... but have to infer what the data means

9

Structured vs. unstructured data (examples)

Structured vs unstructured data

source: https://www.igneous.io/blog/structured-data-vs-unstructured-data

https://www.igneous.io/blog/structured-data-vs-unstructured-data

Semi-structured data

• Observation: most data has some structure

− Text: sentences, paragraphs, sections, ...

− Books: chapters

− Web pages: HTML

• Idea of semistructured data:

− Enforce “well-formatted” data

=> Always know how to read/parse/manipulate it

− Optionally, enforce “well-structured” data also

=> Adheres to a less-strict schema

=> Might help us interpret the data, too

13Pro: highly portable Con: verbose/redundant

Semi-structured data: JSON

14

Describing a menu:

Semi-structured data: XML

15

Describing a menu:

Part II: What is NOSQL?

NoSQL

source: Mark Madsen

NoSQL Definition

From www.nosql-database.org:

Next generation databases mostly addressing some of the

points: being non-relational, distributed, open-source and

horizontal scalable. The original intention has been modern

web-scale databases. The movement began early 2009 and is

growing rapidly. Often more characteristics apply as: schema-

free, easy replication support, simple API, eventually

consistent / BASE (not ACID), a huge data amount, and more.

Motivation: avoid RDBMS/SQL limitations

• Harder to scale - expensive

• Joins across multiple nodes - hard

• How does RDBMS handle data growth - hard

• Rigid schema design - not manageable

• Need for a DBA - expensive

NoSQL Distinguishing Characteristics

• Can handle large data volumes

− “big data”

• Scalable replication and distribution

− Thousands of machines distributed around the world

− “Queries” can return answers quickly

• Schema-less (schema-at-read vs schema-at-write)

• ACID transaction properties are not needed – BASE

• CAP Theorem

Scaling vertically vs. horizontally

Vertical Scaling / Scale Up

• Upgrade to more powerful

hardware

• Issues:

− additional investment

− single point of failure

(SPOF)

Horizontal Scaling / Scale Out

• Add extra identical boxes to

server

• Issues

− network communication

− workload balancing

− additional Investment

Network partition

To scale out, you need a distributed store (cluster of servers)

=> can lead to network partition

=> refers to failures of network

that causes communication

interruptions

AWS data centers

with worldwide

underwater cables

(src: http://turnkeylinux.github.io/aws-datacenters/)

CAP Theorem

It is impossible for a distributed data store to simultaneously
provide more than two out of the following three guarantees

Consistency: Every read receives the most recent write or an error
Availability: Every request receives a (non-error) response – without guarantee that it contains the
most recent write
Partition tolerance: The system continues to operate despite an arbitrary number of messages being
dropped (or delayed) by the network between nodes

CAP Theorem & example data stores

CAP Theorem in real-life

Amazon shopping cart:

adding to the shopping cart

• Availability

− always want to honor

requests to add items to a

shopping cart

• Consistency

CAP Theorem in real-life

Amazon shopping cart:

checkout process

• Availability

• Consistency

− you favor consistency

because several services

are simultaneously

accessing the data (credit

card processing, shipping

and handling, reporting)

ACID vs. BASE

Pritchett, D.: BASE: An Acid Alternative (queue.acm.org/detail.cfm?id=1394128)

Relational

• Atomicity
• Consistency
• Isolation
• Durability

NoSQL

• Basically
• Available (CP)
• Soft-state
• Eventually consistent (AP)

Recap: Transactions – ACID Properties

• Atomic: all of the work in a transaction completes
(commit) or none of it completes

• Consistent: a transaction transforms the database from
one consistent state to another consistent state;
consistency is defined in terms of constraints

• Isolated: the results of any changes made during a
transaction are not visible until the transaction has
committed

• Durable: the results of a committed transaction survive
failures

BASE Transactions

Acronym contrived to be the opposite of ACID

• Basically Available: system seems to work all the time -

some parts of system remain available on failure

• Soft state: it does not have to be consistent all the time

• Eventually Consistent: as the data is written, the latest

version is on at least one node. The data is then

versioned/replicated to other nodes within the system.

Eventually, the same version is on all nodes

BASE Transactions

• Characteristics

− Availability first

− Best effort

− Weak consistency – stale data OK

− Approximate answers OK

− Simpler and faster

NoSQL advantages

• Cheap, easy to implement (open source)

• Data are replicated to multiple nodes (therefore

identical and fault-tolerant) and can be partitioned

− Down nodes easily replaced

− No single point of failure

• Can scale up and down

• Doesn't require a schema

What am I giving up?

• Joins (in many cases)

• ACID transactions

• SQL, as a sometimes frustrating, but still powerful
query language

• Easy integration with other SQL-based applications

Part III: NOSQL Taxonomy

NoSQL Taxonomy

NoSQL Taxonomy - example data stores

Complexity vs size

Key-Value store

Key-Value stores

• Very simple interface

– Data model: (key, value) pairs

– Operations:

 put(key, value)

 value = get(key)

• Implementation: efficiency, scalability, fault-tolerance

– Records distributed to nodes based on key

– Replication: scalability and fault-tolerance

• Examples

– Redis, Memcached, Riak

Redis

• History

− Started in early 2009 - Salvatore Sanfilippo, an Italian

developer

− He was working on a real-time web analytics solution and

realized that MySQL could not provide necessary

performance

• Distributed data structure server

• Simple API

• Automatic data partitioning across multiple nodes

Distributed data structure

• Distributed hash table (DHT)

− Decentralized hash lookup service

− (key, value) pairs are stored in DHT and any participating

node can retrieve the value given a key

− The key-space is spread across many buckets on the

network

− Each bucket is replicated (for fault-tolerance)

Logical data model

• Key

− Printable ASCII

• Value

− Primitives

 Strings

− Containers (of strings)

 Hashes

 Lists

 Sets

 Sorted Sets

Logical data model

• Key

− Printable ASCII

• Value

− Primitives

 Strings

− Containers (of strings)

 Hashes

 Lists

 Sets

 Sorted Sets

Logical data model

• Key
− Printable ASCII

• Value
− Primitives

 Strings

− Containers (of strings)
 Hashes

 Lists

 Sets

 Sorted Sets

Logical data model

• Key
− Printable ASCII

• Value
− Primitives

 Strings

− Containers (of strings)
 Hashes

 Lists

 Sets

 Sorted Sets

Logical data model

• Key
− Printable ASCII

• Value
− Primitives

 Strings

− Containers (of strings)
 Hashes

 Lists

 Sets

 Sorted Sets

Redis-cli

• API: primitive

− SET foo bar

− GET foo

=> bar

• API: list
− LPUSH mylist a // now mylist holds 'a‘

− LPUSH mylist b // now mylist holds 'b','a'

− LPUSH mylist c // now mylist holds 'c','b','a’

− LRANGE mylist 0 1

=> c,b

Redis-cli

• API: hash
− HMSET myuser name Salvatore surname Filippo country Italy

− HGET myuser surname

 Filippo

• API: set
− SADD myset a

− SADD myset b

− SADD myset foo

− SADD myset bar

− SMEMBERS myset

=> bar,a,foo,b

Column stores

Column family store

• Not to be confused with the relational-db version of it

− Sybase-IQ, etc.

• Multi-dimensional map

• Sparsely populated table whose rows can contain

arbitrary columns Column families

• Examples

− Cassandra

− Hbase

− Amazon SimpleDB

Some statistics

• Facebook Search

• MySQL > 50 GB Data

− Writes Average : ~300 ms

− Reads Average : ~350 ms

• Rewritten with Cassandra > 50 GB Data

− Writes Average : 0.12 ms

− Reads Average : 15 ms

Document stores

Document store

• Key-document store

− the document can be seen as a value so you can consider

this is a super-set of key-value

• Big difference with key-value store

− that in document stores one can query also on the

document, i.e. the document portion is structured (not just

a blob of data)

• Examples

− MongoDB

− CouchDB

MongoDB

• A document-oriented database

− documents encapsulate and encode data

• Uses BSON/JSON format

• Schema-less

− No more configuring database columns with types

• No transactions

• No joins

MongoDB basics

• A MongoDB instance may have zero or more databases

• A database may have zero or more collections
− Can be thought of as the relation (table) in RDBMS, but with

differences

• A collection may have zero or more documents
– Docs in the same collection don’t even need to have the same
fields

– Docs are the records in RDBMS

– Docs can embed other documents

– Documents are addressed in the database via a unique key

• A document may have one or more fields

• MongoDB Indexes is much like their RDBMS counterparts

RDBMS vs MongoDB

RDBMS MongoDB

Database Database

Table, View Collection

Row Document (JSON, BSON)

Column Field

RDBMS vs MongoDB

RDBMS MongoDB

Database Database

Table, View Collection

Row Document (JSON, BSON)

Column Field

{

"_id": ObjectId("5114e0bd42…"),

"first": "John",

"last": "Doe",

"age": 39,

"interests": ["Mountain Biking”]

}

JSON is a human-readable format

BSON (Binary Structured Object Notation)

is a serialization encoding format for JSON

used for storing and accessing documents

Example JSON document

Collection example

{

"_id": ObjectId("5114e0bd42…"),

"first": "John",

"last": "Doe",

"age": 39,

"interests": ["Mountain Biking “]

},

{

"_id": ObjectId(“4a14e0f361…"),

"first": “Caroline",

"last": “Smith",

"age": 32,

"interests": ["Reading", “Yoga”]

}

Obligatory, and

automatically

generated by

MongoDB

DB Operations

• Inserting a record

• Query (the whole collection)

• Query (all titles released earlier than 1994)

Graph stores

Graph store

• Based on Graph Theory

• Scale vertically

• You can use graph algorithms easily

• Example, Neo4j

Relational vs. Graph: data model

Finding friends

Relational vs. Graph: data model

Finding friends

• Bob’s friends

SELECT p1.Person

FROM Person p1

JOIN PersonFriend

ON PersonFriend.FriendID = p1.ID

JOIN Person p2

ON PersonFriend.PersonID = p2.ID

WHERE p2.Person = 'Bob'

Relational vs. Graph: data model

Finding friends

• Bob’s friends-of-friends

SELECT p1.Person AS PERSON, p2.Person AS

FRIEND_OF_FRIEND

FROM PersonFriend pf1

JOIN Person p1

ON pf1.PersonID = p1.ID

JOIN PersonFriend pf2

ON pf2.PersonID = pf1.FriendID

JOIN Person p2

ON pf2.FriendID = p2.ID

WHERE p1.Person = ‘Bob' AND pf2.FriendID <> p1.ID

Relational vs. Graph: data model

Finding friends

• Bob’s friends-of-friends-of-....

SELECT p1.Person AS PERSON, p2.Person AS

FRIEND_OF_FRIEND

FROM PersonFriend pf1

JOIN Person p1

ON pf1.PersonID = p1.ID

JOIN PersonFriend pf2

ON pf2.PersonID = pf1.FriendID

JOIN Person p2

ON pf2.FriendID = p2.ID

WHERE p1.Person = ‘Bob' AND pf2.FriendID <> p1.ID

Join complexity increases with

each additional depth

Relational model and connected data

• Relational model deals with connected data by

means of join

• Join tables add complexity; they mix business data

with foreign key metadata

• Foreign key constraints add additional development

and maintenance overhead just to make the

database work

• Things get more complex and more expensive the

deeper we go into the network

Enter, property graph model...

• Node

− contain properties

• Relationship

− connect nodes

− a start node and an end node

− always has a direction

− a label

• Properties

− keys are strings and the values are arbitrary data types

Property graph model

name: Alice

age: 32

name: Bob

Age: 35

name: James

age: 27

Finding relations is easy!

Advantages of property graph model

• Flexibility
− Allow us to add new nodes and new relationships without

compromising the existing network or migrating data

− Original data and its intent remain intact

• Expressive power
− We can see who LOVES whom (and whether that love is

requited!)

− We can see who’s MARRIED_TO someone else

− We can see who is a COLLEAGUE_OF of whom and

who is BOSS_OF them all

• Performance

Relational vs. Graph: performance

• Finding friends-of-friends in a social network

− Maximum depth 5

− 1 million people, each with approximately 50 friends

Cypher: graph query language of NEO4J

• Declarative graph pattern matching language

− “SQL for graphs”

− Tabular results

• Cypher is evolving steadily

− Syntax changes between releases

• Supports queries

− Including aggregation, ordering and limits

− Mutating operations in product roadmap

(a) - - >

(b)

Two nodes, one relationship

a b

Two nodes, one relationship

START a=node(*)

MATCH (a)-->(b)

RETURN a, b;

a b

b

a

b

a

b

a

START a=node(*)

MATCH (a)-->(b)

RETURN a, b;

Pattern matching

Two nodes, one relationship

START a=node(*)

MATCH (a)-[:ACTED_IN]->(m)

RETURN a.name, r.roles, m.title;

a m

ACTED_IN

Paths

(a)-->(b)-->(c)

a b c

b

c

a

b

c

a

b

a

Pattern matching

START a=node(*)

MATCH (a)-[:ACTED_IN]->(m)<-[:DIRECTED]-(d)

RETURN a.name, d.name, count(*) AS count

ORDER BY(count) DESC

LIMIT 5;

Sort & Limit

Constraints on properties

START tom=node:node_auto_index(name="Tom Hanks")

MATCH (tom)-[:ACTED_IN]->(movie)

WHERE movie.released < 1992

RETURN DISTINCT movie.title;

(Movies in which Tom Hanks acted, that were released before 1980)

Variable length paths

(a)-[*1..3]->(b)

a b

a b

a b

Friends-of-Friends

START keanu=node:node_auto_index(name="Keanu Reeves")

MATCH (keanu)-[:KNOWS*2]->(fof)

RETURN DISTINCT fof.name;

NoSQL summary

• NoSQL databases reject:

− Overhead of ACID transactions

− “Complexity” of SQL

− Burden of up-front schema design

• Programmer responsible for

− Determining the consistency level

− Navigating access path

Should I be using NoSQL Databases?

• NoSQL Data storage systems make sense for

applications that need to deal with very large semi-

structured data

− log analysis

− social networking feeds

• Most organizational databases are not that large and

have low update/query rates

− regular relational databases are the right solution for such

environments

References

• I. Robinson, J. Webber, E. Eifrem. Graph Databases. O’Reilly, 2013

• Neo4J intro tutorial.

• NoSQL. Dr. Kristie Hawkey. Dalhousie University

• NoSQL. Perry Hoekstra. Perficient, Inc.

• NoSQL. Akmal Chaudhri

• Massively Parallel Cloud Data Storage Systems. S. Sudarshan. IIT Bombay

• NoSQL Theory, Implementations, an introduction. Firat Atagun

• http://www.datastax.com/docs/1.0/ddl/column_family

• http://redis.io/topics/twitter-clone

• REDIS. REmote DIctionary Server. Chris Keith and James Tavares

• Advanced Topics in Database Management. Stan Zdonik. Brown University

• An introduction to MongoDB. Rácz Gábor

• MongoDB. Mohamed Zahran. NYU

• Handling an 1,800 Percent Traffic Spike During Super Bowl XLVI. Jim Houska
and Jim Houska

