
Transactions

Controlling Concurrent Behavior

EECS3421 - Introduction to Database Management Systems

Why Transactions?

• Database systems are normally being accessed by many

users or processes at the same time

− Both queries and modifications

• Unlike operating systems, which support interaction of

processes, a DMBS needs to keep processes from

troublesome interactions

2

Example: Troublesome Interaction

• Example: Two people withdraw $100 from the same

account using different ATM’s at about the same time

− The DBMS better make sure one account deduction doesn’t

get lost

• Compare with OS processes: An OS allows two people to

edit a document at the same time; If both write, one’s

changes get lost

3

Transactions

• Transaction = process involving database queries and/or

modification

• Normally with some strong properties regarding

concurrency

• Formed in SQL from single statements or embedded in

code

4

ACID Transactions

• ACID transactions are:

− Atomic: Whole transaction or none is done

− Consistent: Database constraints preserved

− Isolated: It appears to the user as if only one process

executes at a time

− Durable: Effects of a transaction survive a crash

• Optional: weaker forms of transactions are often

supported as well

5

COMMIT

• The SQL statement COMMIT causes a transaction to

complete

− Its database modifications are now permanent in the

database

6

ROLLBACK

• The SQL statement ROLLBACK also causes the

transaction to end, but by aborting

− No effects on the database

• Failures like division by 0 or a constraint violation can also

cause rollback, even if the programmer does not request

it

7

Example: Interacting Processes

• Assume the usual Sells(bar,beer,price) relation, and

suppose that Joe’s Bar sells only Bud for $2.50 and Miller

for $3.00

• Sally is querying Sells for the highest and lowest price Joe

charges

• Joe decides to stop selling Bud and Miller, but to sell only

Heineken at $3.50

8

Sally’s Program

Sally executes the following two SQL statements called

(min) and (max) to help us remember what they do

(max) SELECT MAX(price) FROM Sells

WHERE bar = ‘Joe’’s Bar’;

(min) SELECT MIN(price) FROM Sells

WHERE bar = ‘Joe’’s Bar’;

9

Joe’s Program

At about the same time, Joe executes the following steps:

(del) and (ins)

(del) DELETE FROM Sells

WHERE bar = ‘Joe’’s Bar’;

(ins) INSERT INTO Sells

VALUES(‘Joe’’s Bar’, ‘Heineken’, 3.50);

10

Problem: Interleaving of Statements

• Although (max) must come before (min), and (del) must

come before (ins), there are no other constraints on the

order of these statements, unless we group Sally’s and/or

Joe’s statements into transactions

11

Example: Strange Interleaving

• Suppose the steps execute in the order

(max)(del)(ins)(min)

Joe’s Prices:

Statement:

Result:

• Sally sees MAX < MIN!

12

{2.50,3.00}

(del) (ins)

{3.50}

(min)

3.50

{2.50,3.00}

(max)

3.00

Fixing the Problem by Using Transactions

• If we group Sally’s statements (max)(min) into one

transaction, then she cannot see this inconsistency

• Sally sees Joe’s prices at some fixed time

− Either before or after he changes prices, or in the middle,

but the MAX and MIN are computed from the same prices

13

Another Problem: Rollback

• Suppose Joe executes (del)(ins), not as a transaction, but

after executing these statements, decides to cancel it and

issues a ROLLBACK statement

• If Sally executes her statements after (ins) but before the

rollback, she sees a value, 3.50, that never existed in the

database

14

Solution

• If Joe executes (del)(ins) as a transaction, its effect

cannot be seen by others until the transaction executes

COMMIT

− If the transaction executes ROLLBACK instead, then its

effects can never be seen

15

Isolation Levels

• SQL defines four isolation levels = choices about what

interactions are allowed by transactions that execute at

about the same time

• Only one level (“serializable”) = ACID transactions

• Each DBMS implements transactions in its own way

16

Choosing the Isolation Level

Within a transaction, we can say:

SET TRANSACTION ISOLATION LEVEL X

where X =

1. SERIALIZABLE

2. REPEATABLE READ

3. READ COMMITTED

4. READ UNCOMMITTED

17

Serializable Transactions

• If Sally = (max)(min) and Joe = (del)(ins) are each

transactions, and Sally runs with isolation level

SERIALIZABLE, then she will see the database either

before or after Joe runs, but not in the middle

18

Isolation Level Is Personal Choice

• Your choice, e.g., run serializable, affects only how you

see the database, not how others see it

• Example: If Joe runs serializable, but Sally doesn’t, then

Sally might see no prices for Joe’s Bar

− i.e., it looks to Sally as if she ran in the middle of Joe’s

transaction

19

Read-Commited Transactions

• If Sally runs with isolation level READ COMMITTED, then

she can see only committed data, but not necessarily the

same data each time

• Example: Under READ COMMITTED, the interleaving

(max)(del)(ins)(min) is allowed, as long as Joe commits

− Sally sees MAX < MIN

20

Repeatable-Read Transactions

• Requirement is like read-committed, plus: if data is read

again, then everything seen the first time will be seen the

second time

− But the second and subsequent reads may see more

tuples as well

21

Example: Repeatable Read

• Suppose Sally runs under REPEATABLE READ, and the

order of execution is (max)(del)(ins)(min)

− (max) sees prices 2.50 and 3.00

− (min) can see 3.50, but must also see 2.50 and 3.00,

because they were seen on the earlier read by (max)

22

Read Uncommitted

• A transaction running under READ UNCOMMITTED can

see data in the database, even if it was written by a

transaction that has not committed (and may never)

• Example: If Sally runs under READ UNCOMMITTED, she

could see a price 3.50 even if Joe later aborts

23

