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Why Transactions?

• Database systems are normally being accessed by many 

users or processes at the same time

− Both queries and modifications

• Unlike operating systems, which support interaction of 

processes, a DMBS needs to keep processes from 

troublesome interactions
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Example: Troublesome Interaction

• Example: Two people withdraw $100 from the same 

account using different ATM’s at about the same time

− The DBMS better make sure one account deduction doesn’t 

get lost

• Compare with OS processes: An OS allows two people to 

edit a document at the same time; If both write, one’s 

changes get lost
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Transactions

• Transaction = process involving database queries and/or 

modification

• Normally with some strong properties regarding 

concurrency

• Formed in SQL from single statements or embedded in 

code
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ACID Transactions

• ACID transactions are:

− Atomic: Whole transaction or none is done

− Consistent: Database constraints preserved

− Isolated: It appears to the user as if only one process 

executes at a time

− Durable: Effects of a transaction survive a crash

• Optional: weaker forms of transactions are often 

supported as well
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COMMIT

• The SQL statement COMMIT causes a transaction to 

complete

− Its database modifications are now permanent in the 

database
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ROLLBACK

• The SQL statement ROLLBACK also causes the 

transaction to end, but by aborting

− No effects on the database

• Failures like division by 0 or a constraint violation can also 

cause rollback, even if the programmer does not request 

it
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Example: Interacting Processes

• Assume the usual Sells(bar,beer,price) relation, and 

suppose that Joe’s Bar sells only Bud for $2.50 and Miller 

for $3.00

• Sally is querying Sells for the highest and lowest price Joe 

charges

• Joe decides to stop selling Bud and Miller, but to sell only 

Heineken at $3.50
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Sally’s Program

Sally executes the following two SQL statements called 

(min) and (max) to help us remember what they do

(max) SELECT MAX(price) FROM Sells

WHERE bar = ‘Joe’’s Bar’;

(min) SELECT MIN(price) FROM Sells

WHERE bar = ‘Joe’’s Bar’;
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Joe’s Program

At about the same time, Joe executes the following steps: 

(del) and (ins)

(del) DELETE FROM Sells

WHERE bar = ‘Joe’’s Bar’;

(ins) INSERT INTO Sells

VALUES(‘Joe’’s Bar’, ‘Heineken’, 3.50);
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Problem: Interleaving of Statements

• Although (max) must come before (min), and (del) must 

come before (ins), there are no other constraints on the 

order of these statements, unless we group Sally’s and/or 

Joe’s statements into transactions
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Example: Strange Interleaving

• Suppose the steps execute in the order 

(max)(del)(ins)(min)

Joe’s Prices:

Statement:

Result:

• Sally sees MAX < MIN!
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{2.50,3.00}

(del) (ins)

{3.50}

(min)

3.50

{2.50,3.00}

(max)

3.00



Fixing the Problem by Using Transactions

• If we group Sally’s statements (max)(min) into one 

transaction, then she cannot see this inconsistency

• Sally sees Joe’s prices at some fixed time

− Either before or after he changes prices, or in the middle, 

but the MAX and MIN are computed from the same prices
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Another Problem: Rollback

• Suppose Joe executes (del)(ins), not as a transaction, but 

after executing these statements, decides to cancel it and 

issues a ROLLBACK statement

• If Sally executes her statements after (ins) but before the 

rollback, she sees a value, 3.50, that never existed in the 

database
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Solution

• If Joe executes (del)(ins) as a transaction, its effect 

cannot be seen by others until the transaction executes 

COMMIT

− If the transaction executes ROLLBACK instead, then its 

effects can never be seen
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Isolation Levels

• SQL defines four isolation levels = choices about what 

interactions are allowed by transactions that execute at 

about the same time

• Only one level (“serializable”) = ACID transactions

• Each DBMS implements transactions in its own way

16



Choosing the Isolation Level

Within a transaction, we can say:

SET TRANSACTION ISOLATION LEVEL X

where X =

1. SERIALIZABLE

2. REPEATABLE READ

3. READ COMMITTED

4. READ UNCOMMITTED
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Serializable Transactions

• If Sally = (max)(min) and Joe = (del)(ins) are each 

transactions, and Sally runs with isolation level 

SERIALIZABLE, then she will see the database either 

before or after Joe runs, but not in the middle
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Isolation Level Is Personal Choice

• Your choice, e.g., run serializable, affects only how you

see the database, not how others see it

• Example: If Joe runs serializable, but Sally doesn’t, then 

Sally might see no prices for Joe’s Bar

− i.e., it looks to Sally as if she ran in the middle of Joe’s 

transaction
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Read-Commited Transactions

• If Sally runs with isolation level READ COMMITTED, then 

she can see only committed data, but not necessarily the 

same data each time

• Example: Under READ COMMITTED, the interleaving 

(max)(del)(ins)(min) is allowed, as long as Joe commits

− Sally sees MAX < MIN
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Repeatable-Read Transactions

• Requirement is like read-committed, plus: if data is read 

again, then everything seen the first time will be seen the 

second time

− But the second and subsequent reads may see more

tuples as well
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Example: Repeatable Read

• Suppose Sally runs under REPEATABLE READ, and the 

order of execution is (max)(del)(ins)(min)

− (max) sees prices 2.50 and 3.00

− (min) can see 3.50, but must also see 2.50 and 3.00, 

because they were seen on the earlier read by (max)
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Read Uncommitted

• A transaction running under READ UNCOMMITTED can 

see data in the database, even if it was written by a 

transaction that has not committed (and may never)

• Example: If Sally runs under READ UNCOMMITTED, she 

could see a price 3.50 even if Joe later aborts
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