N8y

) AN

UNIVERSITE
UNIVERSITY

Transactions
Controlling Concurrent Behavior

Why Transactions?

« Database systems are normally being accessed by many
users or processes at the same time

— Both queries and modifications
« Unlike operating systems, which support interaction of

processes, a DMBS needs to keep processes from
troublesome interactions

Example: Troublesome Interaction

« Example: Two people withdraw $100 from the same
account using different ATM’s at about the same time

- The DBMS better make sure one account deduction doesn’t
get lost

« Compare with OS processes: An OS allows two people to
edit a document at the same time; If both write, one’s
changes get lost

Transactions

« Transaction = process involving database queries and/or
modification

* Normally with some strong properties regarding
concurrency

 Formed in SQL from single statements or embedded in
code

ACID Transactions

« ACID transactions are:
- Atomic: Whole transaction or none is done
— Consistent: Database constraints preserved

— Isolated: It appears to the user as if only one process
executes at a time

— Durable: Effects of a transaction survive a crash

« Optional: weaker forms of transactions are often
supported as well

COMMIT

 The SQL statement COMMIT causes a transaction to
complete

— Its database modifications are now permanent in the
database

ROLLBACK

 The SQL statement ROLLBACK also causes the
transaction to end, but by aborting

— No effects on the database
 Failures like division by 0 or a constraint violation can also

cause rollback, even if the programmer does not request
it

Example: Interacting Processes

« Assume the usual Sells(bar,beer,price) relation, and

suppose that Joe’s Bar sells only Bud for $2.50 and Miller
for $3.00

« Sally is querying Sells for the highest and lowest price Joe
charges

« Joe decides to stop selling Bud and Miller, but to sell only
Heineken at $3.50

Sally’s Program

Sally executes the following two SQL statements called
(min) and (max) to help us remember what they do

(max) SELECT MAX(price) FROM Sells
WHERE bar = ‘Joe”s Bar’:

(min) SELECT MIN(price) FROM Sells
WHERE bar = ‘Joe’s Bar’;

Joe’s Program

At about the same time, Joe executes the following steps:
(del) and (ins)

(del) DELETE FROM Sells
WHERE bar = ‘Joe”s Bar’;

(ins) INSERT INTO Sells
VALUES('Joe’s Bar’, ‘Heineken’, 3.50);

10

Problem: Interleaving of Statements

« Although (max) must come before (min), and (del) must
come before (ins), there are no other constraints on the
order of these statements, unless we group Sally’s and/or
Joe’s statements into transactions

11

Example: Strange Interleaving

« Suppose the steps execute in the order
(max)(del)(ins)(min)

Joe’s Prices: {2.50,3.00} {2.50,3.00}
Statement:; (max) (del)
Result:

3.00

« Sally sees MAX < MIN!

(ins)

{3.50}

(min)

3.50

12

Fixing the Problem by Using Transactions

« If we group Sally’s statements (max)(min) into one
transaction, then she cannot see this inconsistency

« Sally sees Joe’s prices at some fixed time

— Either before or after he changes prices, or in the middle,
but the MAX and MIN are computed from the same prices

13

Another Problem: Rollback

« Suppose Joe executes (del)(ins), not as a transaction, but
after executing these statements, decides to cancel it and
Issues a ROLLBACK statement

 If Sally executes her statements after (ins) but before the
rollback, she sees a value, 3.50, that never existed in the
database

14

Solution

« If Joe executes (del)(ins) as a transaction, its effect
cannot be seen by others until the transaction executes
COMMIT

— If the transaction executes ROLLBACK instead, then its
effects can never be seen

15

|solation Levels

« SQL defines four isolation levels = choices about what
Interactions are allowed by transactions that execute at
about the same time

* Only one level (“serializable”) = ACID transactions
« Each DBMS implements transactions in its own way

16

Choosing the Isolation Level

With

SET

> W

In a transaction, we can say:

TRANSACTION ISOLATION LEVEL X

where X =
SERIALIZABLE
REPEATABLE READ
READ COMMITTED
READ UNCOMMITTED

17

Serializable Transactions

« If Sally = (max)(min) and Joe = (del)(ins) are each
transactions, and Sally runs with isolation level
SERIALIZABLE, then she will see the database either
before or after Joe runs, but not in the middle

18

|Isolation Level Is Personal Choice

* Your choice, e.g., run serializable, affects only how you
see the database, not how others see it

. If Joe runs serializable, but Sally doesn’t, then
Sally might see no prices for Joe’s Bar

- 1.e., it looks to Sally as if she ran in the middle of Joe's
transaction

19

Read-Commited Transactions

 If Sally runs with isolation level READ COMMITTED, then
she can see only committed data, but not necessarily the
same data each time

« Example: Under READ COMMITTED, the interleaving
(max)(del)(ins)(min) is allowed, as long as Joe commits

— Sally sees MAX < MIN

20

Repeatable-Read Transactions

* Requirement is like read-committed, plus: if data is read
again, then everything seen the first time will be seen the
second time

— But the second and subsequent reads may see more
tuples as well

21

Example: Repeatable Read

« Suppose Sally runs under REPEATABLE READ, and the
order of execution is (max)(del)(ins)(min)

— (max) sees prices 2.50 and 3.00

— (min) can see 3.50, but must also see 2.50 and 3.00,
because they were seen on the earlier read by (max)

22

Read Uncommitted

« Atransaction running under READ UNCOMMITTED can
see data in the database, even If it was written by a
transaction that has not committed (and may never)

. If Sally runs under READ UNCOMMITTED, she
could see a price 3.50 even if Joe later aborts

23

