
Design Theory for Relational DBs:

Functional Dependencies, Schema

Decomposition, Normal Forms

EECS3421 - Introduction to Database Management Systems

Database Design Theory

• Guides systematic improvements to database schemas

• General idea:
− Express constraints on the data

− Use these to decompose the relations

• Ultimately, get a schema that is in a “normal form”
− guarantees certain desirable properties

− “normal” in the sense of conforming to a standard

• The process of converting a schema to a normal form is

called normalization

2
2

Goal #1: remove redundancy

Consider this schema

• What if… Xiao changes email addresses?

− update anomaly: need to update more than one tuples

• What if… Xiao drops EECS2031?

− deletion anomaly: loss of information that course is taught by Brown

• What if… We need to create a new course, EECS4411

− insertion anomaly: how to fill rest of information (name, email, …)

3

Student Name Student Email Course Instructor

Xiao xiao@gmail EECS3421 Smith

Xiao xiao@gmail EECS2031 Brown

Jaspreet jaspreet@gmail EECS3421 Smith

Multiple relations => exponentially worse

Goal #2: expressing constraints

• Consider the following schemata:

Students(yorkid, name, email)

vs.

Students(yorkid, name)

Emails(yorkid, address)

• Consider also:

House(street, city, value, owner, propertyTax)

vs.

House(street, city, value, owner)

TaxRates(city, value, propertyTax)

4Dependencies, constraints are domain-dependent

Maybe a student has more

than one emails that we would

like to register (in the first

schema there will be a

redundancy)

TaxRates are defined by city,

so there is no need to repeat

for each single House (in the

first schema there will be a

redundancy)

Overview

• Part I: Functional Dependencies

• Part II: Schema Decomposition

• Part III: Normal Forms

PART 1:

FUNCTIONAL DEPENDENCIES

6

Functional dependencies

• Let X, Y be sets of attributes from relation R

• X -> Y (we say: “X functionally determines Y”)
− Any tuples in R which agree in all attributes of X must also agree

in all attributes of Y

− Or, “The values of attributes Y are a function of those in X”

− Not necessarily an easy function to compute, mind you

=> Consider X -> h, where h is the hash of attributes in X

• Notational conventions
− “a”, “b”, “c” – specific attributes

− “A”, “B”, “C” – sets of (unnamed) attributes

− abc -> def – same as {a,b,c} -> {d,e,f}

7Most common to see singletons (X -> y or abc -> d)

Rules and principles about FDs

• Rules

− The splitting/combining rule

− Trivial FDs

− The transitive rule

• Algorithms related to FDs

− the closure of a set of attributes of a relation

− a minimal basis of a relation

8

The Splitting/Combining rule of FDs

• Attributes on right independent of each other

− Consider a,b,c -> d,e,f

− “Attributes a, b, and c functionally determine d, e, and f”

=> No mention of d relating to e or f directly

• Splitting rule (useful to split up right side of FD)

− abc -> def becomes abc -> d, abc -> e and abc -> f

• No safe way to split left side

− abc -> def is NOT the same as ab -> def and c -> def!

• Combining rule (useful to combine right sides):

− if abc -> d, abc -> e, abc -> f holds, then abc -> def holds

9

Splitting FDs – example

• Consider the relation and FD

− EmailAddress(user, domain, firstName, lastName)

− user, domain -> firstName, lastName

• The following hold

− user, domain -> firstName

− user, domain -> lastName

• The following do NOT hold!

− user -> firstName, lastName

− domain -> firstName, lastName

10Gotcha: “doesn’t hold” = “not all tuples” != “all tuples not”

Trivial FDs

• Not all functional dependencies are useful

− A -> A always holds

− abc -> a also always holds (right side is subset of left side)

• FD with an attribute on both sides is “trivial”

− Simplify by removing L ∩ R from R

abc -> ad becomes abc -> d

− Or, in singleton form, delete trivial FDs

abc -> a and abc -> d becomes just abc -> d

11

Transitive rule

• The transitive rule holds for FDs

− Consider the FDs: a -> b and b -> c; then a->c holds

− Consider the FDs: ad -> b and b -> cd; then ad->cd holds or

just ad->c (because of the trivial dependency rule)

12

Identifying functional dependencies

• FDs are domain knowledge

− Intrinsic features of the data you’re dealing with

− Something you know (or assume) about the data

• Database engine cannot identify FDs for you

− Designer must specify them as part of schema

− DBMS can only enforce FDs when told to

• DBMS cannot safely “optimize” FDs

− It has only a finite sample of the data

− An FD constrains the entire domain

13

Coincidence or FD?

• What if we try to infer FDs from the data?

− ID -> email, city, country, surname

− email -> city, country, surname

− city -> country

− surname -> country

14

ID Email City Country Surname

1983 tom@gmail.com Toronto Canada Fairgrieve

8624 mar@bell.com London Canada Samways

9141 scotty@gmail.com Winnipeg Canada Samways

1204 birds@gmail.com Aachen Germany Lakemeyer

Domain knowledge required to validate FDs

mailto:tom@gmail.com
mailto:mar@bell.com
mailto:scotty@gmail.com
mailto:birds@gmail.com

Keys and FDs

• Consider relation R with attributes A

• Superkey
− Any S  A s.t. S -> A

=> Any subset of A which determines all remaining attributes in A

• Candidate key (or key)
− C  A s.t. C -> A and X -> A does not hold for any X C

=> A superkey which contains no other superkeys

=> Remove any attribute from C and you no longer have a key

• Primary key
− The candidate key we use to identify the relation

=> Always exists, only one allowed, doesn’t matter which C we use

• Prime attribute
−  candidate key C s.t. xC

=> attribute that participates in at least one key
15

FD: relaxes the concept of a “key”

• Superkey: X -> R

− A superkey must include all remaining attributes of the

relation on the RHS (Right-Hand-Side)

• Functional dependency: X -> Y

− An FD can involve just a subset of them

• Example:

Houses(street, city, value, owner, tax)

− street,city -> value,owner,tax (both FD and key)

− city,value -> tax (FD only)

17

Cyclic functional dependencies?

• Attributes on right side of one FD may appear on left side

of another!

− Simple example: assume relation (A, B) & FDs: A->B, B->A

− What does this say about A and B?

• Example

− studentID->email email->studentID

18

Geometric view of FDs

• Let D be the domain of tuples in R

− Every possible tuple is a point in D

• FD X on R restricts tuples in R to a subset of D

− Points in D which violate X cannot be in R

• Example: D(x,y,z)

− xy -> z

=> z = abs(x) + abs(y)

− z -> xy

=> x=y=abs(z)/2

19

(-1, -1, 2)

(1, 1, 2)

(1, 2, 3)

(1, 1, -2) (2, 2, -4)(0, 0, 0)

(1,-1,-2)

(1,1,0)

(2, 2, 4)

(3,2,1)

(0,0,1)

Inferring functional dependencies

• Problem

− Given FDs X1 -> a1, X2 -> a2, etc.

− Does some FD Y -> B (not given) also hold?

• Consider the dependencies

A -> B, B -> C

Does A -> C hold?

Intuitively, A -> C also holds

The given FDs entail (imply) it (transitivity rule)

20How to prove it in the general case?

Closure test for FDs

• Consider relation R

• Given attribute set A  R and FD set F

− Denote AF
+ as the closure of A relative to F

=> AF
+ = set of all FDs given or implied by A

• Computing the [transitive] closure of A

− Start: AF
+ = A, F’ = F

− While X  F’ s.t. LHS(X)  AF
+ :

AF
+ = AF

+ U RHS(X)

F’ = F’ - X

− At end: A -> B B  AF
+

21

Closure test – example

• Consider R(a,b,c,d,e,f)

with FDs set F = {ab -> c, ac -> d, c -> e, ade -> f }

• Find AF
+ if A = ab or find {a,b}+

22

a b c d e f a b c d e f

a b c d e f a b c d e f

{a,b}+={a,b,c,d,e,f} or ab -> cdef -- ab is a candidate key!

Example : Closure Test

23

R(A, B, C, D, E)

F: AB -> C
A -> D
D -> E
AC -> B

X XF
+

A {A, D, E}
AB {A, B, C, D, E}
AC {A, C, B, D, E}

B {B}

D {D, E}

Is AB -> E entailed by F?
Is D -> C entailed by F?

Yes
No

Result: XF
+ allows us to determine all FDs of the form

X -> Y entailed by F

Discarding redundant FDs

• Minimal basis: opposite extreme from closure

• Given a set of FDs F, want to find minimal basis F’ s.t.

− F’  F

− F’ entails X XF

• Properties of a minimal basis F’

− RHS is always singleton

− If any FD is removed from F’, F’ is no longer a minimal basis

− If for any FD in F’ we remove one or more attributes from

the LHS of X  F’, the result is no longer a minimal basis

24

Constructing a minimal basis

Straightforward but time-consuming

1. Split all RHS into singletons

2. X  F’, test whether J = (F’-X)+ is still equivalent to F+

=> Might make F’ too small

3. i  LHS(X) X  F’, let LHS(X’)=LHS(X)-i

Test whether (F’-X+X’)+ is still equivalent to F+

=> Might make F’ too big

4. Repeat (2) and (3) until neither makes progress

25

Minimal Basis: Example

• Relation R: R(A, B, C, D)

• Defined FDs:

− F = {A->AC, B->ABC, D->ABC}

Find the minimal Basis M of F

26

Minimal Basis: Example (cont.)

1st Step

− H = {A->A, A->C, B->A, B->B, B->C, D->A, D->B, D->C}

2nd Step

− A->A, B->B: can be removed as trivial

− A->C: can’t be removed, as there is no other LHS with A

− B->A: can’t be removed, because for J=H-{B->A} is B+=BC

− B->C: can be removed, because for J=H-{B->C} is B+=ABC

− D->A: can be removed, because for J=H-{D->A} is D+=DBA

− D->B: can’t be removed, because for J=H-{D->B} is D+=DC

− D->C: can be removed, because for J=H-{D->C} is D+=DBAC

Step outcome => H = {A->C, B->A, D->B}

27

Minimal Basis: Example (cont.)

3rd Step

− H doesn’t change as all LHS in H are single attributes

4th Step

− H doesn’t change

Minimal Basis: M = H = {A->C, B->A, D->B}

28Caveat: Different minimal bases are possible

PART II:

SCHEMA DECOMPOSITION

34

FDs and redundancy

• Given relation R and FDs F

− R often exhibits anomalies due to redundancy

− F identifies many (not all) of the underlying problems

• Idea

− Use F to identify “good” ways to split relations

− Split R into 2+ smaller relations having less redundancy

− Split up F into subsets which apply to the new relations

(compute the projection of functional dependencies)

35

Schema decomposition

• Given relation R and FDs F

− Split R into Ri s.t. i Ri  R (no new attributes)

− Split F into Fi s.t. i F entails Fi (no new FDs)

− Note: Fi involves only attributes in Ri

• Caveat: entirely possible to lose information

− F+ may entail FD X which is not in (Ui Fi)
+

=> Decomposition lost some FDs (dependency not preserved)

− Possible to have R  i Ri

=> Decomposition lost some relationship (lossy
decomposition)

• Goal: minimize anomalies without losing info

36We’ll revisit information loss later

Desired Properties of Decomposition

• Lossless-join

• Dependency-preserving

• Anomaly-free (no redundancies)

37This may be achieved through the use of Normal Forms

Splitting relations – example

• Consider the following relation R:

• One possible decomposition of R

Students(name, email)
Taking(email, course)

Courses(course, instructor)

• Students Taking Courses reconstructs the right tuples!

38

Student Name Student Email Course Instructor

Xiao xiao@gmail eecs3421 Smith

Xiao xiao@gmail eecs4411 Brown

Jaspreet jaspreet@gmail eecs3421 Smith

Gotcha: lossy join decomposition

• Consider a relation R with one more tuple

• Students Taking Courses has bogus tuples!

− Mary is not taking Brown’s section of eecs4411

− Xiao is not taking Rosenburg’s section of eecs4411
39

Student Name Student Email Course Instructor

Xiao xiao@gmail eecs3421 Smith

Xiao xiao@gmail eecs4411 Brown

Jaspreet jaspreet@gmail eecs3421 Smith

Mary mary@gmail eecs4411 Rosenburg

Why did this happen? How to prevent it?

Information loss with decomposition

• Decompose R into S and T
− Consider FD ab, with a only in S and b only in T

• FD loss
− Attributes a and b no longer in same relation
=> Must join T and S to enforce ab (expensive)

• Join loss
− LHS and RHS no longer in same relation, no other

connection
− Neither (S ∩ T)  S nor (S ∩ T)  T in F+

=> Joining T and S produces bogus tuples (irreparable)
• In our example:

− ({email,course} ∩ {course,instructor}) = {course}
− course -/-> course, instructor and course -/-> email, course

40

Projecting FDs

• Once we’ve split a relation we have to refactor our FDs to

match

− Each FDs must only mention attributes from one relation

• Similar to geometric projection

− Many possible projections (depends on how we slice it)

− Keep only the ones we need (minimal basis)

43

FD projection algorithm

• Start with Fi = Ø

• For each subset X of Ri

− Compute X+

− For each attribute a in X+

 If a is in Ri

o add X  a to Fi

• Compute the minimal basis of Fi

• Projection is expensive

− Suppose R1 has n attributes

− How many subsets of R1 are there?

44

Making projection more efficient

• Ignore trivial dependencies

− No need to add X A if A is in X itself

• Ignore trivial subsets

− The empty set or the set of all attributes (both subsets of X)

• Ignore supersets of X if X + = R

− They can only give us “weaker” FDs (with more on the LHS)

45
45

Example: Projecting FD’s

• ABC with FD’s A->B and B->C

− A +=ABC ; yields A->B, A->C

 We ignore A->A as trivial

 We ignore the supersets of A, AB + and AC +, because they can only

give us “weaker” FDs (with more on the LHS)

− B +=BC ; yields B->C

− C +=C ; yields nothing.

− BC +=BC ; yields nothing.

46
46

Example -- Continued

• Resulting FD’s: A->B, A->C, and B->C

• Projection onto AC : A->C

− Only FD that involves a subset of {A,C}

• Projection on BC: B->C

− Only FD that involves subset of {B, C}

47
47

PART III:

NORMAL FORMS

48

Motivation for normal forms

• Identify a “good” schema

− For some definition of “good”

− Avoid anomalies, redundancy, etc.

• Many normal forms

− 1st

− 2nd

− 3rd

− Boyce-Codd

− ... and several more we won’t discuss…

49BCNF  3NF  2NF  1NF (focus on 3NF/BCNF)

1st normal form (1NF)

• No multi-valued attributes allowed

− Imagine storing a list/set of things in an attribute

=> Not really even expressible in RA

• Counterexample

− Course(name, instructor, [student,email]*)

− Redundancy in non-list attributes

50

Name Instructor Student Name Student Email

eecs3421 Johnson Xiao xiao@gmail

Jaspreet jaspreet@utsc

Mary mary@utsc

eecs4411 Rosenburg Jaspreet jaspreet@utsc

2nd normal form (2NF)

• Non-prime attributes depend on candidate keys

− Consider non-prime (ie. not part of a key) attribute ‘a’

− Then FD X s.t. X -> a and X is a candidate key

• Counterexample

− Movies(title, year, star, studio, studioAddress, salary)

− FD: title, year -> studio; studio -> studioAddress; star->salary

52

Title Year Star Studio StudioAddr Salary

Star Wars 1977 Hamill Lucasfilm 1 Lucas Way $100,000

Star Wars 1977 Ford Lucasfilm 1 Lucas Way $100,000

Star Wars 1977 Fisher Lucasfilm 1 Lucas Way $100,000

Patriot Games 1992 Ford Paramount Cloud 9 $2,000,000

Last Crusade 1989 Ford Lucasfilm 1 Lucas Way $1,000,000

3rd normal form (3NF)

• Non-prime attr. depend only on candidate keys

− Consider FD X -> a

− Either a  X OR X is a superkey OR a is prime (part of a key)

=> No transitive dependencies allowed

• Counterexample:

− studio -> studioAddr

(studioAddr depends on studio which is not a candidate key)

54

Title Year Studio StudioAddr

Star Wars 1977 Lucasfilm 1 Lucas Way

Patriot Games 1992 Paramount Cloud 9

Last Crusade 1989 Lucasfilm 1 Lucas Way

3NF, dependencies, and join loss

• Theorem: always possible to convert a schema to
lossless-join, dependency-preserving 3NF

• Caveat: always possible to create schemas in 3NF
for which these properties do not hold

• FD loss example:
− MovieInfo(title, year, studioName)

− StudioAddress(title, year, studioAddress)

=> Cannot enforce studioName -> studioAddress

• Join loss example:
− Movies(title, year, star)

− StarSalary(star, salary)

=> Cannot enforce Movies StarSalary yields bogus tuples
(irreparable)

56

3NF Synthesis Algorithm

Objective: Obtain a lossless and dependency-preserving

decomposition of R

1.Find a minimal cover Fmin of F

2.For each LHS(X): X  Fmin, do:

− Create a relation schema using XFmin

+

3.Place any remaining attributes that have not been placed in any

relations in step 2 in a single relation schema

4.If a key of R is not found in any relation , then add a trivial relation that

consists of the key of R (if this trivial relation is useless, omit it)

58

3NF Synthesis Algorithm: Example

Question

Given:

• A Relation: R=(A, B, C, D, E, F, G, H)

• A Set of FDs F in R: F={ACD, ACFG, ADBEF,

BCGD, CFAH, CHG, DB, HDEG}

Decompose R into a collection of relations Ri using the

3NF synthesis algorithm (which obtains a lossless and

dependency-preserving decomposition of R)

59

3NF Synthesis Algorithm: Example

Answer

1. Find minimal basis of F:

Fmin = {AC, AF, BCGD, CFA, CFH, DB, HD, HE, HG}

2. Create relation schemas based on XFmin

+ :

Closures: {AFmin

+
ACFH, BCGFmin

+
 BCGD, HFmin

+
 HDEG}

Relations: R1(A, C, F, H), R2(B, C, G, D), R3(H, D, E, G)

3. No remaining attributes (of R), thus no need to place

attributes in any of the available relations

4. A key of R was A which is already in relation R1, so no need

to add a trivial relation that consists of the key of R

60Follow the detailed example online

Boyce-Codd normal form (BCNF)

• One additional restriction over 3NF

− All non-trivial FD have superkey LHS

• Counterexample

− CanadianAddress(street, city, province, postalCode)

− Candidate keys: {street, postalCode}, {street, city, province}

− FD: postalCode -> city, province

− Satisfies 3NF: city, province both non-prime

− Violates BCNF: postalCode is not a superkey

=> Possible anomalies involving postalCode

61Do we care? How often do postal codes change?

Limits of decomposition

• Pick two…

− Lossless-join

− Dependency-preservation

− Anomaly-free

• 3NF

− Always allows join lossless and dependency preserving

− May allow some anomalies

• BCNF

− Always excludes anomalies

− May give up one of lossless-join or dependency-preserving

65Use domain knowledge to choose 3NF vs. BCNF

What is Next?

• Read Ullman & Widom’s textbook (Chapter 3)

• Check detailed examples on Course’s website

− Sample 3NF Problem

− Sample BCNF Problem

• Practice using online resources and examples

66

