Design Theory for Relational DBs: Functional Dependencies, Schema Decomposition, Normal Forms

EECS3421 - Introduction to Database Management Systems
Database Design Theory

• Guides systematic improvements to database schemas
• General idea:
 – Express constraints on the data
 – Use these to decompose the relations
• Ultimately, get a schema that is in a “normal form”
 – guarantees certain desirable properties
 – “normal” in the sense of conforming to a standard
• The process of converting a schema to a normal form is called *normalization*
Goal #1: remove redundancy

Consider this schema

<table>
<thead>
<tr>
<th>Student Name</th>
<th>Student Email</th>
<th>Course</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xiao</td>
<td>xiao@gmail</td>
<td>EECS3421</td>
<td>Smith</td>
</tr>
<tr>
<td>Xiao</td>
<td>xiao@gmail</td>
<td>EECS2031</td>
<td>Brown</td>
</tr>
<tr>
<td>Jaspreet</td>
<td>jaspreet@gmail</td>
<td>EECS3421</td>
<td>Smith</td>
</tr>
</tbody>
</table>

- What if… Xiao changes email addresses?
 - *update anomaly*: need to update more than one tuples
- What if… Xiao drops EECS2031?
 - *deletion anomaly*: loss of information that course is taught by Brown
- What if… We need to create a new course, EECS4411
 - *insertion anomaly*: how to fill rest of information (name, email, …)

Multiple relations => exponentially worse
Goal #2: expressing constraints

• Consider the following schemata:

Students(yorkid, name, email)

vs.

Students(yorkid, name)
Emails(yorkid, address)

Maybe a student has more than one emails that we would like to register (in the first schema there will be a redundancy)

• Consider also:

House(street, city, value, owner, propertyTax)

vs.

House(street, city, value, owner)
TaxRates(city, value, propertyTax)

TaxRates are defined by city, so there is no need to repeat for each single House (in the first schema there will be a redundancy)

Dependencies, constraints are domain-dependent
Overview

• Part I: Functional Dependencies
• Part II: Schema Decomposition
• Part III: Normal Forms
PART 1:
FUNCTIONAL DEPENDENCIES
Functional dependencies

- Let X, Y be sets of attributes from relation R
- $X \rightarrow Y$ (we say: “X functionally determines Y”)
 - Any tuples in R which agree in all attributes of X must also agree in all attributes of Y
 - Or, “The values of attributes Y are a function of those in X”
 - Not necessarily an easy function to compute, mind you
 => Consider $X \rightarrow h$, where h is the hash of attributes in X

- Notational conventions
 - “a”, “b”, “c” – specific attributes
 - “A”, “B”, “C” – sets of (unnamed) attributes
 - $abc \rightarrow def$ – same as $\{a,b,c\} \rightarrow \{d,e,f\}$

Most common to see **singletons** ($X \rightarrow y$ or $abc \rightarrow d$)
Rules and principles about FDs

• Rules
 – The splitting/combining rule
 – Trivial FDs
 – The transitive rule

• Algorithms related to FDs
 – the closure of a set of attributes of a relation
 – a minimal basis of a relation
The Splitting/Combining rule of FDs

- Attributes on right independent of each other
 - Consider $a, b, c \rightarrow d, e, f$
 - “Attributes a, b, and c functionally determine d, e, and f”
 - No mention of d relating to e or f directly

- Splitting rule (useful to split up right side of FD)
 - $abc \rightarrow def$ becomes $abc \rightarrow d$, $abc \rightarrow e$ and $abc \rightarrow f$

- No safe way to split left side
 - $abc \rightarrow def$ is NOT the same as $ab \rightarrow def$ and $c \rightarrow def$!

- Combining rule (useful to combine right sides):
 - if $abc \rightarrow d$, $abc \rightarrow e$, $abc \rightarrow f$ holds, then $abc \rightarrow def$ holds
Splitting FDs – example

• Consider the relation and FD
 – EmailAddress(user, domain, firstName, lastName)
 – user, domain -> firstName, lastName

• The following hold
 – user, domain -> firstName
 – user, domain -> lastName

• The following do NOT hold!
 – user -> firstName, lastName
 – domain -> firstName, lastName

Gotcha: “doesn’t hold” = “not all tuples” != “all tuples not”
Trivial FDs

- Not all functional dependencies are useful
 - $A \rightarrow A$ always holds
 - $abc \rightarrow a$ also always holds (right side is subset of left side)
- FD with an attribute on both sides is “trivial”
 - Simplify by removing $L \cap R$ from R
 - $abc \rightarrow ad$ becomes $abc \rightarrow d$
 - Or, in singleton form, delete trivial FDs
 - $abc \rightarrow a$ and $abc \rightarrow d$ becomes just $abc \rightarrow d$
Transitive rule

- The transitive rule holds for FDs
 - Consider the FDs: \(a \rightarrow b \) and \(b \rightarrow c \); then \(a \rightarrow c \) holds
 - Consider the FDs: \(ad \rightarrow b \) and \(b \rightarrow cd \); then \(ad \rightarrow cd \) holds or just \(ad \rightarrow c \) (because of the trivial dependency rule)
Identifying functional dependencies

• FDs are **domain knowledge**
 - Intrinsic features of the data you’re dealing with
 - Something you know (or assume) about the data

• Database engine cannot identify FDs for you
 - Designer must specify them as part of schema
 - DBMS can only enforce FDs when told to

• DBMS cannot safely “optimize” FDs
 - It has only a finite sample of the data
 - An FD constrains the entire domain
Coincidence or FD?

<table>
<thead>
<tr>
<th>ID</th>
<th>Email</th>
<th>City</th>
<th>Country</th>
<th>Surname</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>tom@gmail.com</td>
<td>Toronto</td>
<td>Canada</td>
<td>Fairgrieve</td>
</tr>
<tr>
<td>8624</td>
<td>mar@bell.com</td>
<td>London</td>
<td>Canada</td>
<td>Samways</td>
</tr>
<tr>
<td>9141</td>
<td>scotty@gmail.com</td>
<td>Winnipeg</td>
<td>Canada</td>
<td>Samways</td>
</tr>
<tr>
<td>1204</td>
<td>birds@gmail.com</td>
<td>Aachen</td>
<td>Germany</td>
<td>Lakemeyer</td>
</tr>
</tbody>
</table>

- What if we try to infer FDs from the data?
 - ID -> email, city, country, surname
 - email -> city, country, surname
 - city -> country
 - surname -> country

Domain knowledge required to validate FDs
Keys and FDs

• Consider relation R with attributes A
• Superkey
 - Any $S \subseteq A$ s.t. $S \rightarrow A$
 => Any subset of A which determines all remaining attributes in A
• Candidate key (or key)
 - $C \subseteq A$ s.t. $C \rightarrow A$ and $X \rightarrow A$ does not hold for any $X \subset C$
 => A superkey which contains no other superkeys
 => Remove any attribute from C and you no longer have a key
• Primary key
 - The candidate key we use to identify the relation
 => Always exists, only one allowed, doesn’t matter which C we use
• Prime attribute
 - \exists candidate key C s.t. $x \in C$
 => attribute that participates in at least one key
FD: relaxes the concept of a “key”

- Superkey: $X \rightarrow R$
 - A superkey must include all remaining attributes of the relation on the RHS (Right-Hand-Side)
- Functional dependency: $X \rightarrow Y$
 - An FD can involve just a subset of them
- Example:
 Houses(street, city, value, owner, tax)
 - street, city \rightarrow value, owner, tax (both FD and key)
 - city, value \rightarrow tax (FD only)
Cyclic functional dependencies?

• Attributes on right side of one FD may appear on left side of another!
 – Simple example: assume relation (A, B) & FDs: A→B, B→A
 – What does this say about A and B?
• Example
 – studentID→email email→studentID
Geometric view of FDs

- Let D be the domain of tuples in R
 - Every possible tuple is a point in D
- FD X on R restricts tuples in R to a subset of D
 - Points in D which violate X cannot be in R
- Example: $D(x,y,z)$
 - $xy \rightarrow z$
 - $z \rightarrow xy$
 - $z = \text{abs}(x) + \text{abs}(y)$
 - $x=y=\text{abs}(z)/2$
Inferring functional dependencies

• Problem
 – Given FDs $X_1 \rightarrow a_1$, $X_2 \rightarrow a_2$, etc.
 – Does some FD $Y \rightarrow B$ (not given) also hold?

• Consider the dependencies
 $A \rightarrow B$, $B \rightarrow C$
 Does $A \rightarrow C$ hold?

 Intuitively, $A \rightarrow C$ also holds
 The given FDs entail (imply) it (transitivity rule)

How to prove it in the general case?
Closure test for FDs

• Consider relation R
• Given attribute set $A \subseteq R$ and FD set F
 – Denote A_F^+ as the closure of A relative to F
 => $A_F^+ = \text{set of all FDs given or implied by } A$
• Computing the [transitive] closure of A
 – Start: $A_F^+ = A$, $F' = F$
 – While $\exists X \in F'$ s.t. LHS(X) $\subseteq A_F^+$:
 $A_F^+ = A_F^+ \cup \text{RHS}(X)$
 $F' = F' - X$
 – At end: $A \rightarrow B \ \forall B \in A_F^+$
Closure test – example

- Consider $R(a,b,c,d,e,f)$ with FDs set $F = \{ab \rightarrow c, ac \rightarrow d, c \rightarrow e, ade \rightarrow f\}$
- Find A_F^+ if $A = ab$ or find $\{a,b\}^+$

$$\{a,b\}^+ = \{a,b,c,d,e,f\} \text{ or } ab \rightarrow cdef -- ab \text{ is a candidate key!}$$
Example: Closure Test

\[R(A, B, C, D, E) \]

\[F: AB \rightarrow C \]
\[A \rightarrow D \]
\[D \rightarrow E \]
\[AC \rightarrow B \]

<table>
<thead>
<tr>
<th>(X)</th>
<th>(X_F^\dagger)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>{A, D, E}</td>
</tr>
<tr>
<td>AB</td>
<td>{A, B, C, D, E}</td>
</tr>
<tr>
<td>AC</td>
<td>{A, C, B, D, E}</td>
</tr>
<tr>
<td>B</td>
<td>{B}</td>
</tr>
<tr>
<td>D</td>
<td>{D, E}</td>
</tr>
</tbody>
</table>

Is \(AB \rightarrow E \) entailed by \(F \)? \(\text{Yes} \)
Is \(D \rightarrow C \) entailed by \(F \)? \(\text{No} \)

Result: \(X_F^\dagger \) allows us to determine all FDs of the form \(X \rightarrow Y \) entailed by \(F \)
Discarding redundant FDs

- **Minimal basis**: opposite extreme from closure
- Given a set of FDs F, want to find **minimal basis F'** s.t.
 - $F' \subseteq F$
 - F' entails $X \forall X \in F$
- **Properties of a minimal basis F'**
 - RHS is always singleton
 - If any FD is removed from F', F' is no longer a minimal basis
 - If for any FD in F' we remove one or more attributes from the LHS of $X \in F'$, the result is no longer a minimal basis
Constructing a minimal basis

Straightforward but time-consuming

1. Split all RHS into singletons
2. \(\forall X \in F', \) test whether \(J = (F' - X)^+ \) is still equivalent to \(F^+ \)

\[\Rightarrow \text{ Might make } F' \text{ too small} \]

3. \(\forall i \in \text{LHS}(X) \ \forall X \in F', \) let \(\text{LHS}(X') = \text{LHS}(X) - i \)
 Test whether \((F' - X + X')^+ \) is still equivalent to \(F^+ \)

\[\Rightarrow \text{ Might make } F' \text{ too big} \]

4. Repeat (2) and (3) until neither makes progress
Minimal Basis: Example

- Relation R: R(A, B, C, D)
- Defined FDs:
 - F = {A->AC, B->ABC, D->ABC}

Find the minimal Basis M of F
Minimal Basis: Example (cont.)

1st Step
- \(H = \{A\rightarrow A, A\rightarrow C, B\rightarrow A, B\rightarrow B, B\rightarrow C, D\rightarrow A, D\rightarrow B, D\rightarrow C\}\)

2nd Step
- \(A\rightarrow A, B\rightarrow B\): can be removed as trivial
- \(A\rightarrow C\): can’t be removed, as there is no other LHS with A
- \(B\rightarrow A\): can’t be removed, because for \(J=H-\{B\rightarrow A\}\) is \(B^+=BC\)
- \(B\rightarrow C\): can be removed, because for \(J=H-\{B\rightarrow C\}\) is \(B^+=ABC\)
- \(D\rightarrow A\): can be removed, because for \(J=H-\{D\rightarrow A\}\) is \(D^+=DBA\)
- \(D\rightarrow B\): can’t be removed, because for \(J=H-\{D\rightarrow B\}\) is \(D^+=DC\)
- \(D\rightarrow C\): can be removed, because for \(J=H-\{D\rightarrow C\}\) is \(D^+=DBAC\)

Step outcome => \(H = \{A\rightarrow C, B\rightarrow A, D\rightarrow B\}\)
Minimal Basis: Example (cont.)

3rd Step
- H doesn’t change as all LHS in H are single attributes

4th Step
- H doesn’t change

Minimal Basis: $M = H = \{A \rightarrow C, B \rightarrow A, D \rightarrow B\}$

Caveat: Different minimal bases are possible
PART II: SCHEMA DECOMPOSITION
FDs and redundancy

- Given relation R and FDs F
 - R often exhibits anomalies due to redundancy
 - F identifies many (not all) of the underlying problems
- Idea
 - Use F to identify “good” ways to split relations
 - Split R into 2+ smaller relations having less redundancy
 - Split up F into subsets which apply to the new relations (compute the projection of functional dependencies)
Schema decomposition

• Given relation R and FDs F
 - Split R into R_i s.t. $\forall i \ R_i \subset R$ (no new attributes)
 - Split F into F_i s.t. $\forall i \ F$ entails F_i (no new FDs)
 - **Note:** F_i involves only attributes in R_i

• Caveat: entirely possible to lose information
 - F^+ may entail FD X which is not in $(U_i F_i)^+$
 => Decomposition lost some FDs (*dependency not preserved*)
 - Possible to have $R \subset \Join_i R_i$
 => Decomposition lost some relationship (*lossy decomposition*)

• Goal: minimize anomalies without losing info

We’ll revisit information loss later
Desired Properties of Decomposition

- Lossless-join
- Dependency-preserving
- Anomaly-free (no redundancies)

This may be achieved through the use of Normal Forms
Splitting relations – example

• Consider the following relation R:

<table>
<thead>
<tr>
<th>Student Name</th>
<th>Student Email</th>
<th>Course</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xiao</td>
<td>xiao@gmail</td>
<td>eecs3421</td>
<td>Smith</td>
</tr>
<tr>
<td>Xiao</td>
<td>xiao@gmail</td>
<td>eecs4411</td>
<td>Brown</td>
</tr>
<tr>
<td>Jaspreet</td>
<td>jaspreet@gmail</td>
<td>eecs3421</td>
<td>Smith</td>
</tr>
</tbody>
</table>

• One possible decomposition of R

 Students(name, email)
 Taking(email, course)
 Courses(course, instructor)

• Students \bowtie Taking \bowtie Courses reconstructs the right tuples!
Gotcha: lossy join decomposition

- Consider a relation R with one more tuple

<table>
<thead>
<tr>
<th>Student Name</th>
<th>Student Email</th>
<th>Course</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xiao</td>
<td>xiao@gmail</td>
<td>eecs3421</td>
<td>Smith</td>
</tr>
<tr>
<td>Xiao</td>
<td>xiao@gmail</td>
<td>eecs4411</td>
<td>Brown</td>
</tr>
<tr>
<td>Jaspreet</td>
<td>jaspreet@gmail</td>
<td>eecs3421</td>
<td>Smith</td>
</tr>
<tr>
<td>Mary</td>
<td>mary@gmail</td>
<td>eecs4411</td>
<td>Rosenberg</td>
</tr>
</tbody>
</table>

- **Students Taking Courses** has bogus tuples!
 - Mary is not taking Brown’s section of eecs4411
 - Xiao is not taking Rosenberg’s section of eecs4411

Why did this happen? How to prevent it?
Information loss with decomposition

- Decompose R into S and T
 - Consider FD $a \rightarrow b$, with a only in S and b only in T
- FD loss
 - Attributes a and b no longer in same relation
 \Rightarrow Must join T and S to enforce $a \rightarrow b$ (expensive)
- Join loss
 - LHS and RHS no longer in same relation, no other connection
 - Neither $(S \cap T) \rightarrow S$ nor $(S \cap T) \rightarrow T$ in F^+
 \Rightarrow Joining T and S produces bogus tuples (irreparable)
- In our example:
 - $\{\text{email, course}\} \cap \{\text{course, instructor}\} = \{\text{course}\}$
 - course -/- course, instructor and course -/- email, course
Projecting FDs

• Once we’ve split a relation we have to refactor our FDs to match
 – Each FDs must only mention attributes from one relation

• Similar to geometric projection
 – Many possible projections (depends on how we slice it)
 – Keep only the ones we need (minimal basis)
FD projection algorithm

• Start with $F_i = \emptyset$
• For each subset X of R_i
 – Compute X^+
 – For each attribute a in X^+
 ▪ If a is in R_i
 □ add $X \rightarrow a$ to F_i
• Compute the minimal basis of F_i
• Projection is expensive
 – Suppose R_i has n attributes
 – How many subsets of R_i are there?
Making projection more efficient

• Ignore trivial dependencies
 – No need to add $X \rightarrow A$ if A is in X itself

• Ignore trivial subsets
 – The empty set or the set of all attributes (both subsets of X)

• Ignore supersets of X if $X^+ = R$
 – They can only give us “weaker” FDs (with more on the LHS)
Example: Projecting FD’s

- ABC with FD’s $A \rightarrow B$ and $B \rightarrow C$
 - $A^+ = ABC$; yields $A \rightarrow B$, $A \rightarrow C$
 - We ignore $A \rightarrow A$ as trivial
 - We ignore the supersets of A, AB^+ and AC^+, because they can only give us “weaker” FDs (with more on the LHS)
 - $B^+ = BC$; yields $B \rightarrow C$
 - $C^+ = C$; yields nothing.
 - $BC^+ = BC$; yields nothing.
Example -- Continued

- Resulting FD’s: $A \rightarrow B$, $A \rightarrow C$, and $B \rightarrow C$
- Projection onto AC: $A \rightarrow C$
 - Only FD that involves a subset of \{A, C\}
- Projection on BC: $B \rightarrow C$
 - Only FD that involves subset of \{B, C\}
PART III: NORMAL FORMS
Motivation for normal forms

• Identify a “good” schema
 – For some definition of “good”
 – Avoid anomalies, redundancy, etc.

• Many normal forms
 – 1st
 – 2nd
 – 3rd
 – Boyce-Codd
 – ... and several more we won’t discuss...

\[BCNF \subset 3NF \subset 2NF \subset 1NF \text{ (focus on 3NF/BCNF)} \]
1st normal form (1NF)

- No multi-valued attributes allowed
 - Imagine storing a list/set of things in an attribute
 => Not really even expressible in RA
- Counterexample
 - Course(name, instructor, [student,email]*)
 - Redundancy in non-list attributes

<table>
<thead>
<tr>
<th>Name</th>
<th>Instructor</th>
<th>Student Name</th>
<th>Student Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>eecs3421</td>
<td>Johnson</td>
<td>Xiao</td>
<td>xiao@gmail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jaspreet</td>
<td>jaspreet@utsc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mary</td>
<td>mary@utsc</td>
</tr>
<tr>
<td>eecs4411</td>
<td>Rosenberg</td>
<td>Jaspreet</td>
<td>jaspreet@utsc</td>
</tr>
</tbody>
</table>
2nd normal form (2NF)

- Non-prime attributes depend on candidate keys
 - Consider non-prime (ie. not part of a key) attribute ‘a’
 - Then \(\exists \)FD \(X \) s.t. \(X \rightarrow a \) and \(X \) is a candidate key

- Counterexample
 - Movies(\textit{title, year, star, studio, studioAddress, salary})
 - FD: title, year \(\rightarrow \) studio; studio \(\rightarrow \) studioAddress; star \(\rightarrow \) salary

<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
<th>Star</th>
<th>Studio</th>
<th>StudioAddr</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star Wars</td>
<td>1977</td>
<td>Hamill</td>
<td>Lucasfilm</td>
<td>1 Lucas Way</td>
<td>$100,000</td>
</tr>
<tr>
<td>Star Wars</td>
<td>1977</td>
<td>Ford</td>
<td>Lucasfilm</td>
<td>1 Lucas Way</td>
<td>$100,000</td>
</tr>
<tr>
<td>Star Wars</td>
<td>1977</td>
<td>Fisher</td>
<td>Lucasfilm</td>
<td>1 Lucas Way</td>
<td>$100,000</td>
</tr>
<tr>
<td>Patriot Games</td>
<td>1992</td>
<td>Ford</td>
<td>Paramount</td>
<td>Cloud 9</td>
<td>$2,000,000</td>
</tr>
<tr>
<td>Last Crusade</td>
<td>1989</td>
<td>Ford</td>
<td>Lucasfilm</td>
<td>1 Lucas Way</td>
<td>$1,000,000</td>
</tr>
</tbody>
</table>
3rd normal form (3NF)

- Non-prime attr. depend \textit{only} on candidate keys
 - Consider FD X -> a
 - Either a \(\in\) X OR X is a superkey OR a is prime (part of a key)
 => No transitive dependencies allowed
- Counterexample:
 - studio -> studioAddr
 \((\text{studioAddr} \text{ depends on studio which is not a candidate key})\)

<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
<th>Studio</th>
<th>StudioAddr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star Wars</td>
<td>1977</td>
<td>Lucasfilm</td>
<td>1 Lucas Way</td>
</tr>
<tr>
<td>Patriot Games</td>
<td>1992</td>
<td>Paramount</td>
<td>Cloud 9</td>
</tr>
<tr>
<td>Last Crusade</td>
<td>1989</td>
<td>Lucasfilm</td>
<td>1 Lucas Way</td>
</tr>
</tbody>
</table>
3NF, dependencies, and join loss

- **Theorem**: always possible to convert a schema to lossless-join, dependency-preserving 3NF
- **Caveat**: always possible to create schemas in 3NF for which these properties do not hold
- FD loss example:
 - MovieInfo(title, year, studioName)
 - StudioAddress(title, year, studioAddress)
 \Rightarrow Cannot enforce studioName \Rightarrow studioAddress

- Join loss example:
 - Movies(title, year, star)
 - StarSalary(star, salary)
 \Rightarrow Cannot enforce Movies \bowtie StarSalary yields bogus tuples (irreparable)
3NF Synthesis Algorithm

Objective: Obtain a lossless and dependency-preserving decomposition of \(R \)

1. Find a minimal cover \(F_{\text{min}} \) of \(F \)
2. For each LHS(\(X \)): \(\forall X \in F_{\text{min}} \), do:
 - Create a *relation schema* using \(X_{F_{\text{min}}}^+ \)
3. Place any remaining attributes that have not been placed in any relations in step 2 in a single relation schema
4. If a key of \(R \) is not found in any relation, then add a trivial relation that consists of the key of \(R \) (if this trivial relation is useless, omit it)
3NF Synthesis Algorithm: Example

Question

Given:

• A Relation: \(R = (A, B, C, D, E, F, G, H) \)
• A Set of FDs \(F \) in \(R \): \(F = \{A \rightarrow CD, ACF \rightarrow G, AD \rightarrow BEF, BCG \rightarrow D, CF \rightarrow AH, CH \rightarrow G, D \rightarrow B, H \rightarrow DEG\} \)

Decompose \(R \) into a collection of relations \(R_i \) using the 3NF synthesis algorithm (which obtains a lossless and dependency-preserving decomposition of \(R \))
3NF Synthesis Algorithm: Example

Answer

1. Find minimal basis of F:
 $$F_{\text{min}} = \{A \rightarrow C, A \rightarrow F, BCG \rightarrow D, CF \rightarrow A, CF \rightarrow H, D \rightarrow B, H \rightarrow D, H \rightarrow E, H \rightarrow G\}$$

2. Create relation schemas based on $X_{F_{\text{min}}}^+$:
 - Closures: $A_{F_{\text{min}}}^+ \rightarrow ACFH, BCG_{F_{\text{min}}}^+ \rightarrow BCGD, H_{F_{\text{min}}}^+ \rightarrow HDEG$
 - Relations: $R_1(A, C, F, H), R_2(B, C, G, D), R_3(H, D, E, G)$

3. No remaining attributes (of R), thus no need to place attributes in any of the available relations

4. A key of R was A which is already in relation R_1, so no need to add a trivial relation that consists of the key of R
Boyce-Codd normal form (BCNF)

- One additional restriction over 3NF
 - All non-trivial FD have superkey LHS
- Counterexample
 - CanadianAddress(street, city, province, postalCode)
 - Candidate keys: {street, postalCode}, {street, city, province}
 - FD: postalCode -> city, province

 - Satisfies 3NF: city, province both non-prime
 - Violates BCNF: postalCode is not a superkey
 => Possible anomalies involving postalCode

Do we care? How often do postal codes change?
Limits of decomposition

• Pick two…
 – Lossless-join
 – Dependency-preservation
 – Anomaly-free

• 3NF
 – Always allows join lossless and dependency preserving
 – May allow some anomalies

• BCNF
 – Always excludes anomalies
 – May give up one of lossless-join or dependency-preserving

Use domain knowledge to choose 3NF vs. BCNF
What is Next?

- Read Ullman & Widom’s textbook (Chapter 3)
- Check detailed examples on Course’s website
 - Sample 3NF Problem
 - Sample BCNF Problem
- Practice using online resources and examples