
The Entity/Relationship (ER)

Model & DB Design

EECS3421 - Introduction to Database Management Systems

Overview

• The Entity/Relationship (ER) Model

• Designing a database schema

− Restructuring of an E/R model

− Translation of an E/R model into the logical model (DB

Schema)

2

THE ENTITY/RELATIONSHIP (ER) MODEL

3

Conceptualizing the real-world

Modeling is about mapping entities and relationships

of the world into the concepts of a database

4

database
application

(the “real world”)

Queries/Updates

Mapping is Not Deterministic

The Relational Model uses relations to represent

entities, relationships, or combinations thereof

5

application

(the “real world”)

R2

R3

R1

R4

database

The mapping process is not always clear

Framework for E/R

• Design is serious business

− The client wants a database

=> but has no clue what to put in it

• Sketching the key components is an efficient way to

develop a working database

− Sketch out (and debug) schema designs

− Express as many constraints as possible

− Convert to relational DB once the client is happy

6

Entity/Relationship Model

• Visual data model (diagram-based)

− Quickly “chart out” a database design

− Easier to “see” big picture

− Comparable to class diagrams in UML

• Basic concept: entities and their relationships, along with

the attributes describing them

7

title

year

name

address

MoviesActors StarsIn

role

Entity/Relationship vs other models

8

E/R OO RA

“thing” to be modeled Entity Object Tuple

set of similar “things” Entity set Class Relation

relationship Relationship Object? Tuple?

set of similar
relationships

Relationship
Set

Class? Relation?

property of a “thing”
or of a relationship

Attribute Field Attribute

Entity Sets

• An entity set represents a class of objects that

have properties in common and an autonomous

existence (e.g., City, Department, Employee, Sale)

• An entity is an instance of an entity set (e.g.,

Stockholm is a City; Peterson is an Employee)

9

Relationship Sets

• A relationship set is an association between 2+

entity sets (e.g., Residence is a relationship set

between entity sets City and Employee)

• A relationship is an instance of a n-ary relationship

set (e.g., the pair <Johanssen, Stockholm> is a

relationship instance of Residence)

10

Example of Instances for Exam

11

Exam

A student can’t take more than one exam for a particular course

Recursive Relationships

• Recursive relationships

relate an entity to itself

• Note in the second

example that the

relationship is not

symmetric

− In this case, it is necessary to

indicate the two roles that the

entity plays in the relationship

12

Ternary Relationships

13

Attributes

• Describe elementary properties of entities or relationships

(e.g., Surname, Salary and Age are attributes of Employee)

• May be single-valued, or multi-valued

14

Composite Attributes

• composite attributes are grouped attributes of the same

entity or relationship that have closely connected meaning

or uses

15

Example Schema with Attributes

16

Cardinalities

• Each entity set participates in a relationship set with

a minimum (min) and a maximum (max) cardinality

• Cardinalities constrain how entity instances

participate in relationship instances

• Graphical representation in E/R Diagrams: pairs of

(min, max) values for each entity set

17An entity might not participate in any relationship

Cardinalities (cont.)

• In principle, cardinalities are pairs of non-negative

integers (n, N) such that n ≤ N, where n represents

minimum and N represents maximum cardinality

• minimum cardinality n:
− If 0, entity participation in a relationship is optional

− If 1, entity participation in a relationship is mandatory

• maximum cardinality N:
− If 1, each instance of the entity is associated at most with a single

instance of the relationship

− If N, then each instance of the entity is associated with many

instances of the relationship

18

Cardinality Examples

19

Multiplicity of relationships

If entities E1 and E2 participate in relationship R with

cardinalities (n1, N1) and (n2, N2) then the multiplicity of R

is N1-N2 (= N2-N1)

20

1-1 N-1 OR 1-N N-N

Cardinalities of Attributes

• Describe min/max number of values an attribute can have

• When the cardinality of an attribute is (1, 1) it can be

omitted (single-valued attributes)

• The value of an attribute, may also be null, or have

several values (multi-valued attributes)

21

Person
(0,N)

Surname

License Number
CarRegistration#(0,1)

Cardinalities of Attributes (cont.)

• Multi-valued attributes often represent situations

that can be modeled with additional entities. E.g.,

the ER schema of the previous slide can be

revised into:

22

Person Owns

Car

CarRegistration#

(0,N)

(1,1)

Surname

License Number

Keys in E/R

• Keys consist of minimal sets of attributes which

identify uniquely instances of an entity set
− socialInsurance# may be a key for Person

− firstName, middleName, lastName, address may be a key for Person

• In most cases, a key is formed by one or more

attributes of the entity itself (internal keys)

• Sometimes, other entities are involved in the

identification (foreign keys, weak entities)

• A key for a relationship consists of keys of entities it

relates

23

Examples of Keys in E/R

24

internal, single-attribute

internal, multi-attribute
foreign, multi-attribute

Weak entity

Schema with Keys

Subclasses in E/R

• Subclass = special case Inheritance

− Fewer instances, more attributes (usually)

− One-one relationship between classes

− Attributes: union of classes involved

27

name

address

People

DirectorsActors

isa isa

Multiple inheritance in E/R

• Allowed, but not usually necessary

− Entity can “be” many classes (union)

• Usually not a good idea

− Naming collisions, semantic clashes

=> What if both have attribute ‘nominated’ ?

− Queries often work just as well

=> SELECT A.*

FROM Actors A, Directors D

WHERE A.SID = D.SID

• Usable classes usually form a tree

28

name

address

People

DirectorsActors

isa isa

Actor-Directors

isa isa

Weak entity sets

• Occasionally, entities of an entity set need “help” to
identify them uniquely

• Entity set E is said to be weak if in order to identify entities
of E uniquely, we need to follow one or more many-one
relationships from E and include the key of the related
entities from the connected entity sets

• Weak entities never exist alone

− Always at least one supporting relationship to identify them

− Other relationships allowed as well

29

Weak entity sets – example

• name is almost a key for football players, but there might

be two with the same name

• number is certainly not a key, since players on two teams

could have the same number

• But number, together with the team name related to the

player by PlaysFor should be unique

30

Players TeamsPlaysFor

name namenumber

(1, 1) (0, N)

Double rectangle for the weak entity set
Double diamond for supporting many-one relationship

“Chained” weak entity sets

31

Domains

Hosts

In
Subdomain

name

name

name

In
Domain

Subdomains

Key: host + subdomain + domain

(0, N)

(1, 1)

(0, N)

(1, 1)

Weak entity sets in practice

• Question: how does a supporting relationship identify an

entity having an incomplete key?

− Example: print servers

=> CS: inkblot, treekiller

=> Math: papershredder, treekiller

• Answer: it doesn’t.

− Option 1: replicate Printers (CSPrinters and MathPrinters)

− Option 2: create/use some artificial key (serial number, etc.)

− Option 3: store full key in weak entity (most common)

• Weak entities: a (sometimes useful) myth

32Recommendation: need a good reason to use

Challenge: modeling the “real world”

• Life is arbitrarily complex

− Directors who are also actors? Actors who play multiple

roles in one movie? Animal actors?

• Design choices: Should a concept be modeled as an

entity, an attribute, or a relationship?

• Constraints on the ER Model: A lot of data semantics can

be captured but some cannot

• Key to successful model: parsimony

− As complex as necessary, but no more

− Choose to represent only “relevant” things

33

EXAMPLE

34

From real world to E/R Model

We wish to create a database for a company that runs training courses. For this, we
must store data about trainees and instructors. For each course participant (about
5,000 in all), identified by a code, we want to store her social security number,
surname, age, sex, place of birth, employer’s name, address and telephone number,
previous employers (and periods employed), the courses attended (there are about
200 courses) and the final assessment for each course. We need also to represent
the seminars that each participant is attending at present and, for each day, the
places and times the classes are held.

Each course has a code and a title and any course can be given any number of
times. Each time a particular course is given, we will call it an ‘edition’ of the course.
For each edition, we represent the start date, the end date, and the number of
participants. If a trainee is self-employed, we need to know her area of expertise,
and, if appropriate, her title. For somebody who works for a company, we store the
level and position held. For each instructor (about 300), we will show the surname,
age, place of birth, the edition of the course taught, those taught in the past and the
courses that the tutor is qualified to teach. All the instructors’ telephone numbers are
also stored. An instructor can be permanently employed by the training company or
freelance.

35

From real world to E/R Model

We wish to create a database for a company that runs training courses. For this, we
must store data about the trainees and the instructors. For each course participant
(about 5,000), identified by a code, we want to store her social security number,
surname, age, sex, place of birth, employer’s name, address and telephone number,
previous employers (and periods employed), the courses attended (there are about
200 courses) and the final assessment for each course. We need also to represent
the seminars that each participant is attending at present and, for each day, the
places and times the classes are held.

Each course has a code and a title and any course can be given any number of
times. Each time a particular course is given, we will call it an ‘edition’ of the course.
For each edition, we represent the start date, the end date, and the number of
participants. If a trainee is self-employed, we need to know her area of expertise,
and, if appropriate, her title. For somebody who works for a company, we store the
level and position held. For each instructor (about 300), we will show the surname,
age, place of birth, the edition of the course taught, those taught in the past and the
courses that the tutor is qualified to teach. All the instructors’ telephone numbers are
also stored. An instructor can be permanently employed by the training company or
freelance.

36

Glossary

37

Term Description Synonym Links

Trainee Participant in a course. Can
be an employee or self-
employed.

Participant Course,
Company

Instructor Course tutor. Can be
freelance.

Tutor Course

Course Course offered. Can have
various editions.

Seminar Instructor,
Trainee

Company Company by which a trainee
is employed or has been
employed.

Trainee

More Annotations

We wish to create a database for a company that runs training courses. For this, we
must store data about trainees and instructors. For each course participant (about
5,000), identified by a code, we want to store her social security number, surname,
age, sex, place of birth, employer’s name, address and telephone number, previous
employers (and periods employed), courses attended (there are about 200 courses)
and the final assessment for each course. We need also to represent seminars that
each participant is attending at present and, for each day, the places and times the
classes are held.

Each course has a code and a title and any course can be given any number of
times. Each time a particular course is given, we will call it an ‘edition’ of the course.
For each edition, we represent the start date, the end date, and the number of
participants. If a trainee is self-employed, we need to know her area of expertise,
and, if appropriate, her title. For somebody who works for a company, we store the
level and position held. For each instructor (about 300), we will show the surname,
age, place of birth, the edition of the course taught, those taught in the past and the
courses that the tutor is qualified to teach. All the instructors’ telephone numbers are
also stored. An instructor can be permanently employed by the training company or
freelance.

38

… the E/R model result

39

isA isA

DESIGNING A DATABASE SCHEMA

40

Designing a Database Schema

41

The “real world”

Supplier

Part

supplies

Customerorders
(1,N)(1,N)

Date

(1,N)

(1,1)

Part (Name,Description,Part#)
Supplier (Name, Addr)
Customer (Name, Addr)
Supplies (Name,Part#, Date)
Orders (Name,Part#)

The Relational Schema

The E/R Model (Conceptual Model)

(Relational) Database Design

• Given a conceptual schema (ER, but could also be UML),

generate a logical (relational) schema

• This is not just a simple translation from one model to

another for two main reasons:
− not all the constructs of the ER model can be translated

naturally into the relational model

− the schema must be restructured in such a way as to make

the execution of the projected operations as efficient as

possible

42

Logical Design Steps

It is helpful to divide the design into two steps:

• Restructuring of the Entity-Relationship schema, based

on criteria for the optimization of the schema

• Translation into the logical model, based on the features

of the logical model (in our case, the relational model)

43

RESTRUCTURING OF AN E/R MODEL

44

Restructuring Overview

Input: E/R Schema

Output: Restructured E/R Schema

Restructuring parts:

• Analysis of Redundancies

• Removing Generalizations (Subclasses)

• Partitioning/Merging of Entities and Relations

• Limit the Use of Weak Entity Sets

• Selection of Primary Identifiers (Keys)

45

Analysis of Redundancies

Redundancy = saying the same thing in two (or more)

different ways

• Wastes space and (more importantly) encourages

inconsistency

− Two representations of the same fact become inconsistent if

we change one and forget to change the other

• Usually indicates a design flaw as well

− Example: storing actor’s address with movies

=> Address at time of filming? Now? Hotel near studio?

46

Two types of redundancy

• Repeated information • Repeated designs (same

or similar attributes)

47

MustafaVilla, CAJames Jones

GreerVilla, CAJames Jones

VaderVilla, CAJames Jones

VaderVilla, CAJames Jones

VaderVilla, CAJames Jones

roleaddressname

MustafaVilla, CAJames Jones

GreerVilla, CAJames Jones

VaderVilla, CAJames Jones

VaderVilla, CAJames Jones

VaderVilla, CAJames Jones

roleaddressname

name

address

Actors

name

addressDirectors

E.S. vs. attributes: bad examples

48

movieTitle

year

Movies

Actors

StarsIn role

Many movies, one role?

Many roles, one movie?

nameActors

LivesAt

addressAddress

Redundant Entity Set

and Relationship Set

Entity Sets Versus Attributes

• An entity set should satisfy at least one of the following

conditions:

− It is more than the name of something; it has at least one

nonkey attribute.

or

− It is the “many” in a many-one or many-many relationship.

• Rules of thumb

− A “thing” in its own right => Entity Set

− A “detail” about some other “thing” => Attribute

− A “detail” correlated among many “things” => Entity Set

49Really this is just about avoiding redundancy

Deciding about Redundancy

The presence of a redundancy in a database may be

• an advantage: a reduction in the number of accesses
necessary to obtain derived information

• a disadvantage: because of larger storage requirements, (but,
usually at negligible cost) and the necessity to carry out
additional operations in order to keep the derived data
consistent

Interesting Tradeoff: The decision to maintain or eliminate a
redundancy is made by comparing the cost of operations that
involve the redundant information and the storage needed, in
the case of presence or absence of redundancy.

50
Performance analysis is required to decide about redundancy

Removing Generalizations

• The relational model does not allow direct

representation of generalizations that may be

present in an ER diagram. For example, here is

an ER schema with generalizations:

51

isA

Possible Restructurings

52

Option 1

Option 2

Possible Restructurings

53

Option 3

Option 4

Partitioning and Merging of E/R

• Entities and relationships of an E-R schema can be

partitioned or merged to improve the efficiency of

operations

• Accesses are reduced by:

− separating attributes of the same concept that are accessed

by different operations and

− merging attributes of different concepts that are accessed

by the same operations

54

Example of Partitioning

Elimination of Multi-valued Attrib.

56

Merging Entities

57

Partitioning of a Relationship

Suppose that composition represents current and past

compositions of a team

58

When to use weak entity sets?

• The usual reason is that there is no global authority

capable of creating unique ID’s

• Example: it is unlikely that there could be an agreement to

assign unique player numbers across all football teams in

the world

59

Don’t Overuse Weak Entity Sets

• Beginning database designers often doubt that anything

could be a key by itself

− They make all entity sets weak, supported by all other entity

sets to which they are linked

• In reality, each entity gets a unique ID anyway

− Social insurance number, automobile VIN, etc.

− Useful for many reasons (next slide)

60

Selecting a Primary Key

• Every relation must have a unique primary key

• The criteria for this decision are as follows:

− Attributes with null values cannot form primary keys

− One/few attributes is preferable to many attributes

− Internal keys preferable to external ones (weak entities

depend for their existence on other entities)

− A key that is used by many operations to access instances

of an entity is preferable to others

61

Keeping keys simple

Multi-attribute and/or string keys…

• … are redundant
− e.g. Movies(title, year, …): 2 attributes, ~16 bytes

− Number of movies ever made << 232 (4 bytes)

=> Integer movieID key saves 75% space and a lot of typing

• … break encapsulation
− e.g. Patient(firstName, lastName, phone, …)

− Security/privacy hole

=> Integer patientID prevents information leaks

• … are brittle (nasty interaction of above two points)
− Name or phone number change? Parent and child with same name?

− Patient with no phone? Two movies with same title and year?

=> Internal ID always exists, immutable, unique

62Also: computers are really good at integers…

TRANSLATION OF AN E/R MODEL INTO

THE LOGICAL MODEL (DB SCHEMA)

63

Translation into a Logical Schema

Input: E/R Schema

Output: Relational Schema

• Starting from an E-R schema, an equivalent relational

schema is constructed

− “equivalent”: a schema capable of representing the same

information

• We will deal with the translation problem systematically

64

Many-to-Many Relationships

Employee(Number, Surname, Salary)

Project(Code, Name, Budget)

Participation(Number, Code, StartDate)

Red Bold: Foreign Key

Many-to-Many Recursive Relationsh.

66

Product(Code, Name, Cost)

Composition(Part, SubPart, Quantity)

Ternary Relationships

67

Supplier(SupplierID, SupplierName)

Product(Code, Type)

Department(Name, Telephone)

Supply(SupplierID, Code, Name, Quantity)

One-to-Many Relationships

Player(Surname,DateOfBirth, Position)

Team(Name, Town, TeamColours)

Contract(PlayerSurname, PlayerDateOfBirth, Salary, Name)

OR (preferred)

Player(Surname,DateOfBirth, Position, Salary, Name)

Team(Name, Town, TeamColours)

Weak Entities

University(Name, Town, Address)

Student(RegistrationNumber, Name, Surname, EnrolmentYear)

One-to-One Relationships

Head(Number, Name, Salary, StartDate, DepartmentName)

Department(Name, Telephone, Branch)

Or

Head(Number, Name, Salary)

Department(Name, Telephone, Branch, StartDate, HeadNumber)

Optional One-to-One Relationships

Employee(Number, Name, Salary)
Department(Name, Telephone, Branch, StartDate, Head)

Or, if both entities are optional

Employee(Number, Name, Salary)
Department(Name, Telephone, Branch)
Management(Head, Department, StartDate)

A Sample ER Schema

72

Entities with Internal Identifiers

73

E3(A31, A32)

E4(A41, A42)

E5(A51, A52)

E6(A61, A62, A63)E3

E4

E5 E6

1-N, 1-1 and Opt. 1-1 Relationships

74

E5(A51, A52, A61R3,

A62R3, AR3, A61R4,

A62R4, A61R5, A62R5,

AR5)

Due to R3: A61R3, A62R3, AR3

Due to R4: A61R4, A62R4

Due to R5: A61R5, A62R5, AR5

E5 E6

E3

E4

R3

R4

R5

E5 E6

E3

E4

R3

R4

R5

R1

R6

E1

E2

Weak Entities

E1(A11, A51, A12)

E2(A21, A11, A51, A22)

Many-to-Many Relationships

76

R2(A21, A11, A51,

A31, A41, AR21, AR22)

E5E1

E2

E3

E4

E6

R3

R4

R5

R1

R6

R2

Result of the Translation

E1(A11, A51, A12)

E2(A21, A11, A51, A22)

E3(A31, A32)

E4(A41,A42)

E5(A51, A52, A61R3, A62R3, AR3, A61R4, A62R4, A61R5,

A62R5, AR5)

E6(A61, A62, A63)

R2(A21, A11, A51, A31, A41, AR21, AR22)

77

We have a Database Schema!

Ready to create our tables in the DBMS!

Summary of Transformation Rules

78

...More Rules...

_ : Primary keys
…: Alternative primary keys
*: NULL values are allowed

…Even More Rules...

_ : Primary keys
…: Alternative primary keys
*: NULL values are allowed

…and the Last One...

_ : Primary keys
…: Alternative primary keys
*: NULL values are allowed

