
Non-interactive SQL

EECS3421 - Introduction to Database Management Systems

Using a Database

• Interactive SQL: Statements typed in from terminal;

DBMS outputs to screen. Interactive SQL is inadequate in

many situations:

− It may be necessary to process the data before output

− Amount of data returned not known in advance

• Non-interactive SQL: Statements included in an

application program written in a host language — such as

C, Java, PHP, Python, …

2

Non-interactive SQL

• Traditional applications often need to “embed”
SQL statements inside the instructions of a
program written in a procedural programming
language (C, JAVA, etc.)

• There is a severe problem (impedance mismatch)
between the computational model of a
programming language (PL) and that of a DBMS:
− The variables of a PL take as values single records, those of SQL

whole tables

− PL computations are generally on a main memory data structure,
SQL ones on bulk data

3

The best of both worlds

• Host language

− A conventional programming language (e.g., C, Java) that

supplies control structures, computational capabilities,

interaction with physical devices, …

• SQL

− supplies ability to interact with database

• Non-interactive SQL

− the application program can act as an intermediary between

the user at a terminal and the DBMS

4

Elements of Non-interactive SQL

• Non-interactive SQL may use a pre-compiler to manage

SQL statements

• Program variables may be used as parameters in the SQL

statements (variable interchange)

• Results may be

− a single row (easy to handle)

− sets of rows (tricky to handle)

• Execution status

− predefined variable sqlstate (="00000" if executed

successfully).

5

SQL Statement Preparation

• Before any SQL statement is executed, it must be

prepared by the DBMS:

− What indices can be used?

− In what order should tables be accessed?

− What constraints should be checked?

• Decisions are based on schema, table size, etc.

− Result is a query execution plan

6

Non-interactive SQL Approaches

• In the DBMS

− Persistent Stored Modules (PSM):

Code in a specialized language is stored in the database

itself (e.g., PSM, PL/SQL, PL/pgSQL)

• Out of the DBMS

− Statement-level Interface (SLI):

SQL statements are embedded in a host language (e.g., C)

− Call-level Interface (CLI):

Connection tools are used to allow a conventional

language to access a database (e.g., CLI, JDBC, PHP/DB)

7

PERSISTENT STORED PROCEDURES

Persistent Stored Procedures

• Allow to store procedures as database schema

• A mixture of conventional statements (if, while, etc.) and

SQL

• Allow do things we cannot do in SQL alone

• Most DBMSs offer SQL extensions that support persistent

stored procedures:

− PostgreSQL: PL/pgSQL

− Oracle: PL/SQL

− …

9

Basic PSM Form

CREATE PROCEDURE <name> (

<parameter list>

)

<optional local declarations>

<body>;

Function alternative:

CREATE FUNCTION <name> (

<parameter list>

)

RETURNS <type>

10

Parameters in PSM

• Unlike the usual name-type pairs in languages like C,

PSM uses mode-name-type triples, where the mode can

be:

− IN = procedure uses value, does not change value

− OUT = procedure changes value, does not use value

− INOUT = both

11

Example

• Write a procedure that takes two arguments b and p, and

adds a tuple to Sells(bar, beer, price) that has bar = ‘Joe’’s

Bar’, beer = b, and price = p

− Used by Joe to add to his menu more easily.

CREATE PROCEDURE JoeMenu (

IN b CHAR(20),

IN p REAL

)

INSERT INTO Sells

VALUES (’Joe’’s Bar’, b, p);

12

Parameters are both
read-only, not changed

The body is a
single insertion

Invoking Procedures

• Use SQL/PSM statement CALL, with the name of the

desired procedure and arguments.

CALL JoeMenu('Moosedrool', 5.00);

13

Advantages of Stored Procedures

• Intermediate data need not be communicated to

application (time and cost savings)

• Procedure’s SQL statements prepared in advance

• Authorization can be done at procedure level

• Added security since procedure resides in server

• Applications that call the procedure need not know the

details of database schema

14

Statement-level Interface (SLI)

15

Statement Level Interface

• SQL statements and directives in the application have a

special syntax that sets them off from host language

constructs

e.g., EXEC SQL SQL_statement

• Pre-compiler scans program and translates SQL

statements into calls to host language library procedures

that communicate with DBMS

• Host language compiler then compiles program

16

Static vs Dynamic Embedding

• SQL constructs in an application take two forms:

− Standard SQL statements (static SQL): Useful when SQL

portion of program is known at compile time

− Directives (dynamic SQL): Useful when SQL portion of

program not known at compile time; Application constructs

SQL statements at run time as values of host language

variables that are manipulated by directives

• Pre-compiler translates statements and directives into

arguments of calls to library procedures

17

Example of Static SQL

• Variables shared by host and SQL (num_enrolled, crs_code)

− “:” used to set off host variables

− Names of (host language) variables are contained in SQL statement
and available to pre-compiler

• Routines for fetching and storing argument values can be
generated

• Complete statement (with parameter values) sent to DBMS
when statement is executed

18

EXEC SQL SELECT C.NumEnrolled

INTO :num_enrolled

FROM Course C

WHERE C.CrsCode = :crs_code;

Example of Dynamic SQL

• st is an SQL variable; names the SQL statement

• tmp, crs_code, num_enrolled are host language
variables (note colon notation)

• crs_code is an IN parameter; supplies value for
placeholder (?)

• num_enrolled is an OUT parameter; receives value from
C.NumEnrolled

19

strcpy (tmp, “SELECT C.NumEnrolled FROM Course C

WHERE C.CrsCode = ?”) ;

EXEC SQL PREPARE st FROM :tmp;

EXEC SQL EXECUTE st INTO :num_enrolled USING :crs_code;

Call-level Interface (CLI)

20

Call Level Interface

• Application program written entirely in host language (no

precompiler) using library calls

− Java + JDBC

− PHP + PEAR/DB

• SQL statements are values of string variables constructed

at run time using host language

− similar to dynamic SQL

• Application uses string variables as arguments of library

routines that communicate with DBMS

e.g. executeQuery(“SQL query statement”)

21

Cursors

• Fundamental problem with database technology:

impedance mismatch

− traditional programming languages process records one-at-

a-time (tuple-oriented)

− SQL processes tuple sets (set-oriented).

• Cursors solve this problem: A cursor returns tuples from a

result set, to be processed one-by-one

22

How Cursors Work?

23

SELECTcursor

Base table

Result set

(or pointers to it)
application

Operations on Cursors

• Result Set: rows returned by a SELECT statement

• To execute the query associated with a cursor:
open CursorName

• To extract one tuple from the query result:
fetch [Position from] CursorName into FetchList

• To free the cursor, discarding the query result:
close CursorName

• To access the current tuple (when a cursor reads a relation, in
order to update it):

current of CursorName (in a where clause)

24

Cursor Types

• Insensitive cursors: Result set computed and stored in

separate table at OPEN time

− Changes made to base table subsequent to OPEN (by any

transaction) do not affect result set

− Cursor is read-only

• Sensitive cursors: Specification not part of SQL standard

− Changes made to base table subsequent to OPEN (by any

transaction) can affect result set

− Cursor is updatable

25

Insensitive Cursor

26

key1 t t t t t t t t key1 t t t t q q t t t t

key3 yyyyyyyy key2 xxxxxxxxx

key4 zzzzzzzzz key3 yyyrryyyy

key4 zzzzzzzzzz

key5 uuuuuuuuu

key6 vvvvvvvvv

Base Table

cursor

Result Set

Tuples added after

opening the cursor

Changes made after opening cursor

not seen by the cursor

Cursor Scrolling

• If SCROLL option is not specified in cursor declaration,

FETCH always moves cursor forward one position

• If SCROLL option is included in cursor declaration, cursor

can be moved in arbitrary ways around result set (e.g.,

FIRST, LAST, ABSOLUTE n, RELATIVE n)

27

Java: JDBC

28

JDBC

• Call-level interface (CLI) for executing SQL from a Java

program

• SQL statement is constructed at run time as the value of a

Java variable (as in dynamic SQL)

• JDBC passes SQL statements to the underlying DBMS

− Can be interfaced to any DBMS that has a JDBC driver

• Part of SQL:2003 Standard

29

JDBC Run-Time Architecture

30

DBMS

Application
Driver

manager

DB/2

driver

SQLServer

driver

Oracle

driver

DB/2

database

SQLServer

database

Oracle

database

Making a Connection

// Importing JDBC

import java.sql.*

//load the driver for PostgreSQL

Class.forName("org.postgresql.Driver");

//connect to the db

Connection conn =

DriverManager.getConnection(url, user, passwd);

//disconnect

conn.close();

31

Processing a Simple Query in JDBC

// Create a Statement

Statement st = conn.createStatement();

//Execute Statement and obtain ResultSet

ResultSet rs = st.executeQuery("SELECT * FROM mytable WHERE

columnfoo = 500");

// Process the Results

while (rs.next()) {

System.out.println(rs.getString(1));

}

// Close ResultSet and Statement

rs.close(); st.close(); 32

Same, but using PreparedStatement

int foovalue = 500;

// Prepare Statement

PreparedStatement ps = conn.prepareStatement("SELECT * FROM mytable WHERE
columnfoo = ?");

// Set value of in-parameter

ps.setInt(1, foovalue);

// Execute Statement and obtain ResultSet

ResultSet rs = ps.executeQuery();

// Process the Results

while (rs.next()) {System.out.println(rs.getString(1));}

// Close ResultSet and PreparedStatement

rs.close();ps.close();

33

placeholder

Advantages of PreparedStatements

• Performance:

The overhead of compiling and optimizing the statement is

incurred only once, although the statement is executed

multiple times

• Security:

Resilient against SQL injection (see next)

34

Result Sets and Cursors

• Three types of result sets in JDBC:

− Forward-only: not scrollable

− Scroll-insensitive: scrollable; changes made to

underlying tables after the creation of the result

set are not visible through that result set

− Scroll-sensitive: scrollable; updates and

deletes made to tuples in the underlying tables

after the creation of the result set are visible

through the result set

35

Result Set

• Concurrency mode of ResultSet (read-only/updatable
cursor):

− CONCUR_READ_ONLY

− CONCUR_UPDATABLE

• Type of ResultSet (cursor operations allowed):

− TYPE_FORWARD_ONLY

− TYPE_SCROLL_INSENSITIVE

− TYPE_SCROLL_SENSITIVE

36

Statement stat = con.createStatement (
ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE

);

Handling Exceptions

• try/catch is the basic structure within which an SQL

statement should be embedded

• If an exception is thrown, an exception object, ex, is

created and the catch clause is executed

• The exception object has methods to print an error

message, return SQLSTATE, etc.

37

try {
...Java/JDBC code...

} catch (SQLException ex) {
…exception handling code... }

Transactions in JDBC

• Default for a connection is autocommit

− each SQL statement is a transaction

• Group several statements into a Transaction:

− Set autocommit to false: conn.setAutoCommit (false);

− Several SQL statements: …UPDATE, UPDATE, INSERT,

etc.

− Commit statements: conn.commit();

− Set autocommit back to true: conn.setAutoCommit(true);

38

PHP: PEAR DB

39

PHP

• A language to be used for actions within HTML

− Indicated by <? PHP code ?>

• Basic programming elements:

− Variables: must begin with $

− Two kinds of Arrays: numeric and associative

• DB library exists within PEAR (PHP Extension and

Application Repository)

− include with include(DB.php)

40

Making a Connection

• With the DB library imported and the array $myEnv

available:

$conn = DB::connect($myEnv);

41

Function connect
in the DB library

$conn is a Connection
returned by DB::connect()

Executing SQL Statements

• Method query() applies to a Connection object

• It takes a string argument and returns a result

− Could be an error code or the relation returned by a query

42

Ex. Query: “Find all the bars that sell a beer

given by the variable $beer.”

$beer = ’Bud’;

$result = $conn->query(”SELECT bar FROM Sells WHERE beer = $beer ;”);

Cursors in PHP

• The result of a query is the tuples returned

• Method fetchRow() applies to the result and returns the

next tuple, or FALSE if there is none

while ($bar =$result->fetchRow()) {

// do something with $bar

}

43

