
Introduction to SQL

(Structured Query Language)

EECS3421 - Introduction to Database Management Systems

What is SQL?

• Declarative

− Say “what to do” rather than “how to do it”

 Avoid data-manipulation details needed by procedural languages

− Database engine figures out “best” way to execute query

 Called “query optimization”

 Crucial for performance: “best” can be a million times faster than “worst”

• Data independent

− Decoupled from underlying data organization

 Views (= precomputed queries) increase decoupling even further

 Correctness always assured… performance not so much

− SQL is standard and (nearly) identical among vendors

 Differences often shallow, syntactical

2Fairly thin wrapper around relational algebra

What does SQL look like?

• Query syntax

3

SELECT <desired attributes>
FROM <one or more tables>
WHERE<predicate holds for selected tuple>
GROUP BY <key columns, aggregations>
HAVING <predicate holds for selected group>
ORDER BY <columns to sort>

d p r s G t

Example

OID OrderDate OrderPrice Customer

1 2008/11/12 1000 Hansen

2 2008/10/23 1600 Nilsen

3 2008/09/02 700 Hansen

4 2008/09/03 300 Hansen

5 2008/08/30 2000 Jensen

6 2008/10/04 100 Nilsen

4

Orders
Find if the customers "Hansen" or
"Jensen“ have a total order of
more than 1500

Query:

SELECT Customer, SUM(OrderPrice) AS Total
FROM Orders
WHERE Customer = 'Hansen' OR Customer = 'Jensen'
GROUP BY Customer
HAVING SUM(OrderPrice) > 1500
ORDER BY Customer DESC

Customer Total

Jensen 2000

Hansen 2000

Query Result:

What does SQL *really* look like?

5

FROM

WHERE

SELECT

GROUP BY

HAVING

p

s

R S

s

G

t ORDER BY

d
at

a
fl

o
w

That’s not so bad, is it?

Other aspects of SQL

• Data Definition Language (“DDL”)

− Manipulate database schema

− Specify, alter physical data layout

• Data Manipulation Language (“DML”)

− Manipulate data in databases

− Insert, delete, update rows

• “Active” Logic

− Triggers and constraints

− User-defined functions, stored procedures

− Transaction management/ Consistency levels

6We’ll come back to these later in the course

SELECT-FROM-WHERE QUERIES

7

‘SELECT’ clause

• Identifies which attribute(s) query returns
− Comma-separated list

=> Determines schema of query result

• (Optional) extended projection
− Compute arbitrary expressions

− Usually based on selected attributes, but not always

• (Optional) rename attributes
− “Prettify” column names for output

− Disambiguate (E1.name vs. E2.name)

• (Optional) specify groupings
− More on this later

• (Optional) duplicate elimination
− SELECT DISTINCT …

8

‘SELECT’ clause – examples

• SELECT E.name …
=> Explicit attribute

• SELECT name …
=> Implicit attribute (error if R.name and S.name exist)

• SELECT E.name AS ‘Employee name’ …
=> Prettified for output (like table renaming, ‘AS’ usually not required)

• SELECT sum(S.value) …
=> Grouping (compute sum)

• SELECT sum(S.value)*0.13 ‘HST’ …
=> Scalar expression based on aggregate

• SELECT * …
=> Select all attributes (no projection)

• SELECT E.* …
=> Select all attributes from E (no projection)

9

‘FROM’ clause

• Identifies the tables (relations) to query

− Comma-separated list

• Optional: specify joins

− … but often use WHERE clause instead

• Optional: rename table (“tuple variable”)

− Using the same table twice (else they’re ambiguous)

− Nested queries (else they’re unnamed)

10

‘FROM’ clause – examples

• … FROM Employees

=> Explicit relation

• … FROM Employees AS E

=> Table alias (most systems don’t require “AS” keyword)

• … FROM Employees, Sales

=> Cartesian product

• … FROM Employees E JOIN Sales S

=> Cartesian product (no join condition given!)

• … FROM Employees E JOIN Sales S ON

E.EID=S.EID

=> Equi-join

11

‘FROM’ clause – examples (cont)

• … FROM Employees NATURAL JOIN Sales

=> Natural join (bug-prone, use equijoin instead)

• … FROM Employees E

LEFT JOIN Sales S ON E.EID=S.EID

=> Left join

• … FROM Employees E1

JOIN Employees E2 ON E1.EID < E2.EID

=> Theta self-join (what does it return?)

12

Gotcha: natural join in practice

• Uses *all* same-named attributes

− May be too many or too few

• Implicit nature reduces readability

− Better to list explicitly all join conditions

• Fragile under schema changes

− Nasty interaction of above two cases..

13Moral of the story: Avoid using Natural Join

Gotcha: join selectivity

• Consider tables R, S, T with T=Ø and this query:

SELECT R.x

FROM R,S,T

WHERE R.x=S.x OR R.x=T.x

• Result contains no rows!

− Selection (WHERE) operates on pre-joined tuples

− R S T = R S Ø = Ø

=> No tuples for WHERE clause to work with!

• Workaround?

− Two coming up later

14Moral of the story: WHERE cannot create tuples

(what does it return?)

Explicit join ordering

• Use parentheses to group joins

− e.g. (A join B) join (C join D)

• Special-purpose feature

− Helps some (inferior) systems optimize better

− Helps align schemas for natural join

• Recommendation: avoid

− People are notoriously bad at optimizing things

− Optimizer usually does what it wants anyway

… but sometimes treats explicit ordering as a constraint

15

‘WHERE’ clause

• Conditions which all returned tuples must meet

− Arbitrary boolean expression

− Combine multiple expressions with AND/OR/NOT

• Attention to data of interest

− Specific people, dates, places, quantities

− Things which do (or do not) correlate with other data

• Often used instead of JOIN

− FROM tables (Cartesian product, e.g. A, B)

− Specify join condition in WHERE clause (e.g. A.ID=B.ID)

− Optimizers (usually) understand and do the right thing

16

Scalar expressions in SQL

• Literals, attributes, single-valued relations

• Boolean expressions
− Boolean T/F coerce to 1/0 in arithmetic expressions

− Zero/non-zero coerce to F/T in boolean expressions

• Logical connectors: AND, OR, NOT

• Conditionals
= != < > <= >= <>

BETWEEN, [NOT] LIKE, IS [NOT] NULL, …

• Operators: + - * / % & | ^

• Functions: math, string, date/time, etc. (more later)

17Similar to expressions in C, python, etc.

‘WHERE’ clause – examples

• … WHERE S.date > ‘01-Jan-2010’

=> Simple tuple-literal condition

• … WHERE E.EID = S.EID

=> Simple tuple-tuple condition (equi-join)

• … WHERE E.EID = S.EID AND S.PID = P.PID

=> Conjunctive tuple-tuple condition (three-way equijoin)

• … WHERE S.value < 10 OR S.value > 10000

=> Disjunctive tuple-literal condition

18

Pattern matching

• Compare a string to a pattern

− <attribute> LIKE <pattern>

− <attribute> NOT LIKE <pattern>

• Pattern is a quoted string

% => “any string”

_ => “any character”

• To escape ‘%’ or ‘_’:

− LIKE ‘%x_%’ ESCAPE ‘x’ (replace ‘x’ with character of

choice)

matches strings containing ‘_’ (the underscore character)

19DBMS increasingly allow regular expressions

Pattern matching – examples

• … WHERE phone LIKE ‘%268-_ _ _ _’

− phone numbers with exchange 268

− WARNING: spaces are wrong, only shown for clarity

• … WHERE last_name LIKE ‘Jo%’

− Jobs, Jones, Johnson, Jorgensen, etc.

• … WHERE Dictionary.entry NOT LIKE ‘%est’

− Ignore ‘biggest’, ‘tallest’, ‘fastest’, ‘rest’, …

• … WHERE sales LIKE '%30!%%' ESCAPE ‘!’

− Sales of 30%

20

MORE COMPLEX QUERIES

(GROUP BY-HAVING-ORDER BY)

21

‘GROUP BY’ clause

• Specifies grouping key of relational operator G

− Comma-separated list of attributes (names or positions)

which identify groups

− Tuples agreeing in their grouping key are in same “group”

− SELECT gives attributes to aggregate (and functions to use)

• SQL specifies several aggregation functions

− COUNT, MIN, MAX, SUM, AVG, STD (standard deviation)

− Some systems allow user-defined aggregates

22

‘GROUP BY’ clause – gotchas

• WHERE clause cannot reference aggregated values (sum,
count, etc.)

− Aggregates don’t “exist yet” when WHERE runs

=> Use HAVING clause instead (coming next)

• GROUP BY must list all non-aggregate attributes used in
SELECT clause

− Think projection

=> Some systems do this implicitly, others throw error

• Grouping often (but not always!) sorts on grouping key

− Depends on system and/or optimizer decisions

=> Use ORDER BY to be sure (coming next)

23

‘GROUP BY’ clause – examples

• SELECT EID, SUM(value)

FROM Sales GROUP BY EID

− Show total sales for each employee ID

• SELECT EID, SUM(value), MAX(value)

FROM Sales GROUP BY 1

− Show total sales and largest sale for each employee ID

• SELECT EID, COUNT(EID)

FROM Complaints GROUP BY EID

− Show how many complaints each salesperson triggered

24

‘GROUP BY’ clause – examples (cont)

• SELECT EID, SUM(value) FROM Sales

− Error: non-aggregate attribute (EID) missing from GROUP
BY

• SELECT EID, value FROM Sales GROUP BY 1,2

− Not an error – eliminates duplicates

• SELECT SUM(value) FROM Sales GROUP BY EID

− Not an error, but rather useless: report per-employee sales
anonymously

• SELECT SUM(value) FROM Sales

− No GROUP BY => no grouping key => all tuples in same
group

25

Eliminating duplicates in aggregation

• Use DISTINCT inside an aggregation

SELECT EmpID, COUNT(DISTINCT CustID)

FROM CustomerComplaints

GROUP BY 1

=> Number of customers who complained about the employee

=> What if COUNT(CustID) >> COUNT(DISTINCT CustID)?

26

‘HAVING’ clause

• Allows predicates on
aggregate values
− Groups which do not match

the predicate are eliminated

=> HAVING is to groups what
WHERE is to tuples

• Order of execution
− WHERE is before GROUP

BY

=> Aggregates not yet available
when WHERE clause runs

− GROUP BY is before
HAVING

=> Scalar attributes still
available

In tree form:

27

FROM

WHERE

SELECT

GROUP BY

HAVING

p

s

R S

s

G

t ORDER BY

d
at

a
fl

o
w

‘HAVING’ clause – examples

• SELECT EID, SUM(value)
FROM Sales GROUP BY EID
HAVING SUM(Sales.value) > 10000

− Highlight employees with “impressive” sales

• SELECT EID, SUM(value)
FROM Sales GROUP BY EID
HAVING AVG(value) < (

SELECT AVG(GroupAVG)
FROM (SELECT EID, AVG(value) AS GroupAVG

FROM Sales

GROUP BY EID) AS B);

− Highlight employees with below-average sales

− Subquery to find the avg value of average employee sales

28

‘ORDER BY’ clause

• Each query can sort by one or more attributes
− Refer to attributes by name or position in SELECT

− Ascending (default) or descending (reverse) order

− Equivalent to relational operator t

• Definition of ‘sorted’ depends on data type
− Numbers use natural ordering

− Date/time uses earlier-first ordering

− NULL values are not comparable, cluster at end or beginning

• Strings are more complicated
− Intuitively, sort in “alphabetical order”

− Problem: which alphabet? case sensitive?

− Answer: user-specified “collation order”

− Default collation: case-sensitive latin (ASCII) alphabet

29String collation not covered in this class

‘ORDER BY’ clause – examples

• … ORDER BY E.name

=> Defaults to ascending order

• … ORDER BY E.name ASC

=> Explicitly ascending order

• … ORDER BY E.name DESC

=> Explicitly descending order

• … ORDER BY CarCount DESC, CarName ASC

=> Matches our car example from previous lecture

• SELECT E.name … ORDER BY 1

=> Specify attribute’s position instead of its name

30

What’s next?

• Examples

31

WORKING EXAMPLES

32

Example Database

33

EMPLOYEE FirstName Surname Dept Office Salary City

Mary Brown Administration 10 45 London

Charles White Production 20 36 Toulouse

Gus Green Administration 20 40 Oxford

Jackson Neri Distribution 16 45 Dover

Charles Brown Planning 14 80 London

Laurence Chen Planning 7 73 Worthing

Pauline Bradshaw Administration 75 40 Brighton

Alice Jackson Production 20 46 Toulouse

DEPARTMENT DeptName Address City

Administration Bond Street London

Production Rue Victor Hugo Toulouse

Distribution Pond Road Brighton

Planning Bond Street London

Research Sunset Street San José

Home city

City of work

Employee(FirstName,Surname,Dept,Office,Salary,City)
Department(DeptName,Address,City)

Example: Simple SQL Query

"Find the salaries of employees named Brown"

SELECT Salary AS Remuneration

FROM Employee

WHERE Surname = ‘Brown’

Result: Remuneration

45

80

Employee(FirstName, Surname, Dept, Office, Salary, City)
Department(DeptName, Address, City)

Example: * in the Target List

"Find all the information relating to employees

named Brown" :

SELECT *

FROM Employee

WHERE Surname = ‘Brown’

Result:

Employee(FirstName, Surname, Dept, Office, Salary, City)
Department(DeptName, Address, City)

FirstName Surname Dept Office Salary City

Mary Brown Administration 10 45 London

Charles Brown Planning 14 80 London

Example: Attribute Expressions

"Find the monthly salary of employees named

White" :

SELECT Salary / 12 AS MonthlySalary

FROM Employee

WHERE Surname = ‘White’

Result:

Employee(FirstName, Surname, Dept, Office, Salary, City)
Department(DeptName, Address, City)

MonthlySalary

3.00

Example: Simple (Equi-)Join Query

"Find the names of employees and their cities of

work“

SELECT Employee.FirstName, Employee.Surname, Department.City

FROM Employee, Department

WHERE Employee.Dept = Department.DeptName

Result:

Employee(FirstName, Surname, Dept, Office, Salary, City)
Department(DeptName, Address, City)

FirstName Surname City

Mary Brown London

Charles White Toulouse

Gus Green London

Jackson Neri Brighton

Charles Brown London

Laurence Chen London

Pauline Bradshaw London

Alice Jackson Toulouse

Alternative (and more correct):
SELECT Employee.FirstName, Employee.Surname, Department.City
FROM Employee E JOIN Department D ON E.Dept = D.DeptName

(alternative?)

Example: Table Aliases

"Find the names of employees and their cities of

work" (using an alias):

SELECT FirstName, Surname, D.City

FROM Employee, Department D

WHERE Dept = DeptName

Result:

Employee(FirstName, Surname, Dept, Office, Salary, City)
Department(DeptName, Address, City)

FirstName Surname City

Mary Brown London

Charles White Toulouse

Gus Green London

Jackson Neri Brighton

Charles Brown London

Laurence Chen London

Pauline Bradshaw London

Alice Jackson Toulouse

Example: Predicate Conjunction

"Find the first names and surnames of employees

who work in office number 20 of the

Administration department":

SELECT FirstName, Surname

FROM Employee

WHERE Office = ‘20’ AND Dept = ‘Administration’

Result:

Employee(FirstName, Surname, Dept, Office, Salary, City)
Department(DeptName, Address, City)

FirstName Surname

Gus Green

Example: Predicate Disjunction

"Find the first names and surnames of employees

who work in either the Administration or the

Production department":

SELECT FirstName, Surname

FROM Employee

WHERE Dept = ‘Administration’ OR Dept = ‘Production’

Result:

Employee(FirstName, Surname, Dept, Office, Salary, City)
Department(DeptName, Address, City)

FirstName Surname

Mary Brown

Charles White

Gus Green

Pauline Bradshaw

Alice Jackson

Example: Complex Logical Expressions

"Find the first names of employees named Brown

who work in the Administration department or the

Production department”:

SELECT FirstName

FROM Employee

WHERE Surname = ‘Brown’ AND (Dept = ‘Administration’ OR Dept =

‘Production’)

Result:

Employee(FirstName, Surname, Dept, Office, Salary, City)
Department(DeptName, Address, City)

FirstName

Mary

Example: String Matching Operator LIKE

"Find employees with surnames that have ‘r’ as the

second letter and end in ‘n’":

SELECT *

FROM Employee

WHERE Surname LIKE ‘_r%n’

Result:

Employee(FirstName, Surname, Dept, Office, Salary, City)
Department(DeptName, Address, City)

FirstName Surname Dept Office Salary City

Mary Brown Administration 10 45 London

Gus Green Administration 20 40 Oxford

Charles Brown Planning 14 80 London

Example: Aggregate Queries: Operator Count

“Find the number of employees":

SELECT count(*) FROM Employee

"Find the number of different values on attribute Salary for all tuples in
Employee":

SELECT count(DISTINCT Salary) FROM Employee

"Find the number of tuples in Employee having non-null values on the
attribute Salary":

SELECT count(ALL Salary) FROM Employee

Employee(FirstName, Surname, Dept, Office, Salary, City)
Department(DeptName, Address, City)

Example: Operators Sum, Avg, Max and Min

"Find the sum of all salaries for the Administration

department":

SELECT sum(Salary) AS SumSalary

FROM Employee

WHERE Dept = ‘Administration’

Result:

Employee(FirstName, Surname, Dept, Office, Salary, City)
Department(DeptName, Address, City)

SumSalary

125

Example: Operators Sum, Avg, Max and Min

"Find the maximum and minimum salaries among

all employees":

SELECT max(Salary) AS MaxSal, min(Salary) AS MinSal

FROM Employee

Result:

Employee(FirstName, Surname, Dept, Office, Salary, City)
Department(DeptName, Address, City)

MaxSal MinSal

80 36

Example: Aggregate Operators with Join

"Find the maximum salary among the employees

who work in a department based in London":

SELECT max(Salary) AS MaxLondonSal

FROM Employee, Department

WHERE Dept = DeptName AND Department.City = ‘London’

Result:

Employee(FirstName, Surname, Dept, Office, Salary, City)
Department(DeptName, Address, City)

MaxLondonSal

80

MORE COMPLEX QUERIES

47

Example: GROUP BY

"Find the sum of salaries of all the employees of

each department":

SELECT Dept, sum(Salary) as TotSal

FROM Employee

GROUP BY Dept

Result:

Employee(FirstName, Surname, Dept, Office, Salary, City)
Department(DeptName, Address, City)

Dept TotSal

Administration 125

Distribution 45

Planning 153

Production 82

Example: GROUP BY Semantics

GROUP BY Processing:

• the query is executed without GROUP BY and without aggregate

operators

SELECT Dept, Salary as TotSal

FROM Employee

• … then the query result is divided in subsets characterized by the

same values for the GROUP BY attributes (in this case, Dept):

• the aggregate operator sum is applied separately to each group

Dept Salary

Administration 45

Production 36

Administration 40

Distribution 45

Planning 80

Planning 73

Administration 40

Production 46

Dept Salary

Administration 45

Administration 40

Administration 40

Distribution 45

Planning 80

Planning 73

Production 36

Production 46

Dept TotSal

Administration 125

Distribution 45

Planning 153

Production 82

GROUP BY in practice
GROUP BY

• is useful for retrieving information about a group of data

(If you only had one product of each type, it won’t be that useful)

• is useful when you have many similar things

(if you have a number of products of the same type, and you want
to find some statistical information like the min, max, etc.)

SQL technical rules:

• The attribute(s) that you GROUP BY must appear in the SELECT

• GROUP BY must list all non-aggregate attributes used in
SELECT

• Remember to GROUP BY the column you want information about
and not the one you are applying the aggregate function on

50

GROUP BY in practice (cont.)

Incorrect query:
SELECT Office

FROM Employee

GROUP BY Dept

Incorrect query:
SELECT DeptName, D.City, count(*)
FROM Employee E JOIN Department D ON (E.Dept = D.DeptName)
GROUP BY DeptName

Correct query:
SELECT DeptName, D.City, count(*)
FROM Employee E JOIN Department D ON (E.Dept = D.DeptName)
GROUP BY DeptName, D.City

51

Example: HAVING

"Find which departments spend more than 100 on

salaries":

SELECT Dept

FROM Employee

GROUP BY Dept

HAVING sum(Salary) > 100

Result:

Employee(FirstName, Surname, Dept, Office, Salary, City)
Department(DeptName, Address, City)

Dept

Administration

Planning

HAVING in practice

• If a condition refers to an aggregate function, put that
condition in the HAVING clause. Otherwise, use the
WHERE clause.

• You can't use HAVING unless you also use GROUP BY.

"Find the departments where the average salary of employees working
in office number 20 is higher than 25":

SELECT Dept

FROM Employee

WHERE office = ‘20’

GROUP BY Dept

HAVING avg(Salary) > 25

53

EXERCISE

54

Exercise

Note: Values for Semester are YYYY (F | S | W), e.g., ‘2018F', ‘2019W‘

Questions:

• “Find the names of all professors who taught in Fall 2018”

• “Find the names of all courses taught in Fall 2018, together with the

names of professors who taught them”

• “Find the average number of courses taught by professors in Comp. Sc.

(CS)”

• “Find the number of courses taught by each professor in Comp. Sc. (CS)”

• “Find the number of courses taught by each professor in Comp. Sc. (CS)

in 2018”

55

Professor(Id, Name, DeptId)
Course(CrsCode, DeptId, CrsName, Description)
Teaching(ProfId, CrsCode, Semester)

Answers

 “Find the names of all professors who taught in Fall 2018”

SELECT P.Name

FROM Professor P, Teaching T

WHERE P.Id=T.ProfId AND T.Semester=‘2018F'

 “Find the names of all courses taught in Fall 2018, together with the

names of professors who taught them”

SELECT C.CrsName, P.Name

FROM Professor P, Teaching T, Course C

WHERE T.Semester = ‘2018F' AND P.Id = T.ProfId AND T.CrsCode =

C.CrsCode
56

Professor(Id, Name, DeptId)
Course(CrsCode, DeptId, CrsName, Description)
Teaching(ProfId, CrsCode, Semester)

Answers (cont.)

 “Find the average number of courses taught by professors in Comp. Sc.
(CS)”

SELECT count(CrsCode)/count(DISTINCT ProfId) AS avgCrsTaughtinCS

FROM Teaching T, Course C

WHERE T.CrsCode=C.CrsCode AND C.DeptId = 'CS'

 “Find the number of courses taught by each professor in Comp. Sc. (CS)”

SELECT T.ProfId, count(*)

FROM Teaching T, Course C

WHERE T.CrsCode=C.CrsCode AND C.DeptId='CS'

GROUP BY ProfId
57

Professor(Id, Name, DeptId)
Course(CrsCode, DeptId, CrsName, Description)
Teaching(ProfId, CrsCode, Semester)

Answers (cont.)

 "Find the number of courses taught by each professor in Comp. Sc. (CS)

in 2018"

SELECT T.ProfId, count(*)

FROM Teaching T, Course C

WHERE T.CrsCode=C.CrsCode AND C.DeptId='CS' AND Semester LIKE

‘2018_'

GROUP BY ProfId

58

Professor(Id, Name, DeptId)
Course(CrsCode, DeptId, CrsName, Description)
Teaching(ProfId, CrsCode, Semester)

OTHER CONCEPTS

59

NULL values in SQL

• Values allowed to be NULL

− Explicitly stored in relations

− Result of outer joins

• Possible meanings

− Not present (homeless man’s address)

− Unknown (Julian Assange’s address)

• Effect: “poison”

− Arithmetic: unknown value takes over expression

− Conditionals: ternary logic (TRUE, FALSE, UNKNOWN)

− Grouping: “not present”

60

Effect of NULL in expressions

• Arithmetic: NaN (Not a Number)

− NULL*0 NULL

− NULL – NULL NULL

• Logic: TRUE, FALSE, NULL

− NULL OR FALSE NULL

− NULL OR TRUE TRUE

− NULL AND TRUE NULL

− NULL AND FALSE FALSE

− NOT NULL NULL

61

Ternary logic tricks:

TRUE = 1
FALSE = 0
NULL = ½

AND = min(…)
OR = max(…)
NOT = 1-x

Effects of NULL on grouping

• Short version: complicated

− Usually, “not present”

• COUNT

− COUNT(R.*) = 2 COUNT(R.x) = 1

− COUNT(S.*) = 1 COUNT(S.x) = 0

− COUNT(T.*) = 0 COUNT(T.x) = 0

• Other aggregations (e.g. MIN/MAX)

− MIN(R.x) = 1 MAX(R.x) = 1

− MIN(S.x) = NULL MAX(S.x) = NULL

− MIN(T.x) = NULL MAX(T.x) = NULL

62

x

1

x

x

R

S

T

SET Queries: Union, Intersection, Difference

• Operations on pairs of subqueries

• Expressed by the following forms
− (<subquery>) UNION [ALL] (<subquery>)

− (<subquery>) INTERSECT [ALL] (<subquery>)

− (<subquery>) EXCEPT [ALL] (<subquery>)

• All three operators are set-based
− Adding ‘ALL’ keyword forces bag semantics (duplicates

allowed)

• Another solution to the join selectivity problem!
(SELECT R.x FROM R JOIN S ON R.x=S.x)
UNION

(SELECT R.x FROM R JOIN T ON R.x=T.x)

63

Example: Union

“Find all first names and surnames of employees”

SELECT FirstName AS Name FROM Employee

UNION

SELECT Surname AS Name FROM Employee

Duplicates are removed, unless the ALL option is used:

SELECT FirstName AS Name FROM Employee

UNION ALL

SELECT Surname AS Name FROM Employee

64

Example: Intersection

“Find surnames of employees that are also first names”

SELECT FirstName AS Name FROM Employee

INTERSECT

SELECT Surname AS Name FROM Employee

equivalent to:

SELECT E1.FirstName AS Name

FROM Employee E1, Employee E2

WHERE E1.FirstName = E2.Surname

65

Example: Difference

“Find the surnames of employees that are not first names”

SELECT SurName AS Name FROM Employee

EXCEPT

SELECT FirstName AS Name FROM Employee

(Can also be represented with a nested query. See later)

66

Nested queries

• Scary-looking syntax, simple concept

− Treat one query’s output as input to another query

− Inner schema determined by inner SELECT clause

• Consider the expression tree

67

s

p

R S

vs.
s

p

S T

s

p

R

Nested queries – uses

• Explicit join ordering

− FROM (A join B) is a (very simple) query to run first

• Input relation for a set operation

− Union, intersect, difference

• Input relation for a larger query

− Appears in FROM clause

− Usually joined with other tables (or other nested queries)

=> FROM A, (SELECT …) B WHERE …

=> Explicit join ordering is a degenerate case

68

Nested queries – more uses

• Conditional relation expression

− Dynamic list for [NOT] IN operator

=> WHERE (E.id,S.name)
IN (SELECT id,name FROM …)

− Special [NOT] EXISTS operator

=> WHERE NOT EXISTS (SELECT * FROM …)

• Scalar expression

− Must return single tuple (usually containing a single attribute)

=> 0.13*(SELECT sum(value)
FROM Sales WHERE taxable)

=> S.value > (SELECT average(S.value)
FROM Sales S)

69

List comparisons: ANY, ALL, [NOT] IN

• Compares a value against many others

− List of literals

− Result of nested query

Let op be any comparator (>, <=, !=, etc.)

• x op ANY (a, b, c)

= x op a OR x op b OR x op c

• x op ALL (a, b, c)

= x op a AND x op b AND x op c

• [NOT] IN

− x NOT IN (…) equivalent to x != ALL(…)

− x IN (…) equivalent to x = ANY(…)

70ANY is (exist), ALL is (for each) (English usage often different!)

Example: Simple Nested Query

“Find the names of employees who work in departments in

London”

SELECT FirstName, Surname

FROM Employee

WHERE Dept = ANY(

SELECT DeptName

FROM Department

WHERE City = ‘London’)

equivalent to:

SELECT FirstName, Surname

FROM Employee, Department D

WHERE Dept = DeptName AND D.City = ‘London’
71

Example: Another Nested Query
 “Find employees of the Planning department, having the same

first name as a member of the Production department”

SELECT FirstName,Surname

FROM Employee
WHERE Dept = ‘Plan’ AND FirstName = ANY (

SELECT FirstName

FROM Employee

WHERE Dept = ‘Prod’)

equivalent to:

SELECT E1.FirstName,E1.Surname

FROM Employee E1, Employee E2
WHERE E1.FirstName=E2.FirstName

AND E2.Dept=‘Prod’ AND E1.Dept=‘Plan’

72

Example: Negation with Nested Query

 “Find departments where there is no employee named Brown”

SELECT DeptName

FROM Department

WHERE DeptName <> ALL (

SELECT Dept FROM Employee WHERE Surname = ‘Brown’)

equivalent to:

SELECT DeptName FROM Department

EXCEPT

SELECT Dept FROM Employee WHERE Surname = ‘Brown’

73

Operators IN and NOT IN

• Operator IN is a shorthand for = ANY

SELECT FirstName, Surname

FROM Employee

WHERE Dept IN (

SELECT DeptName FROM Department WHERE City = ‘London’)

• Operator NOT IN is a shorthand for <> ALL

SELECT DeptName

FROM Department

WHERE DeptName NOT IN (

SELECT Dept FROM Employee WHERE Surname = ‘Brown’)

74

max, min as Nested Queries

“Find the department of the employee earning the highest

salary”

with max:

SELECT Dept FROM Employee

WHERE Salary IN (SELECT max(Salary) FROM Employee)

without max:

SELECT Dept FROM Employee

WHERE Salary >= ALL (SELECT Salary FROM Employee)

75

Operator: [NOT] EXISTS

• Used to test for the existence of any record in a subquery

• Returns true if the subquery returns one or more records

“Find all persons who have the same first name and surname
with someone else (synonymous folks) but different tax codes”

SELECT * FROM Person P1
WHERE EXISTS (

SELECT * FROM Person P2

WHERE P2.FirstName = P1.FirstName

AND P2.Surname = P1.Surname

AND P2.TaxCode <> P1.TaxCode)

76

Operator: [NOT] EXISTS (cont.)

“Find all persons who have no synonymous persons”

SELECT * FROM Person P1

WHERE NOT EXISTS (

SELECT * FROM Person P2

WHERE P2.FirstName = P1.FirstName

AND P2.Surname = P1.Surname

AND P2.TaxCode <> P1.TaxCode)

77

Tuple Constructors

• The comparison within a nested query may involve
several attributes bundled into a tuple

• A tuple constructor is represented in terms of a pair of
angle brackets

− The previous query can also be expressed as:

SELECT * FROM Person P1
WHERE <FirstName,Surname> NOT IN (

SELECT FirstName,Surname

FROM Person P2

WHERE P2.TaxCode <> P1.TaxCode)

78

Comments on Nested Queries

• Use of nesting

(-) may produce less declarative queries

(+) often results in improved readability

• Complex queries can become very difficult to understand

• The use of variables must respect scoping conventions:

− a variable can be used only within the query where it is

defined, OR

− within a query that is recursively nested within the query

where it is defined

79

What’s next?

• The Data Definition Language (DDL)

− Subset of SQL used to manage schema

− CREATE, ALTER, RENAME, DROP

− Data types

• Data Manipulation Language (DML)

− Subset of SQL used to manipulate data

− INSERT, UPDATE, DELETE

80

