
Relational Algebra

EECS3421 - Introduction to Database Management Systems

Why the relational model?

• Sounds good: matches how we think about data

• Real reason: data independence!

• Earlier models tied to physical data layout

− Procedural access to data (low-level, explicit access)

− Relationships stored in data (linked lists, trees, etc.)

− Change in data layout => application rewrite

• Relational model

− Declarative access to data (system optimizes for you)

− Relationships specified by queries (schemas help, too)

− Develop, maintain apps and data layout separately

2Similar battle today with languages

Comparing data models

3

Student job example

Network (graph)

Hierarchical (tree)

Relational (table)

Mary (M) and Xiao (X) both
work at Tim Hortons (T)

Jaspreet (J) works at both
Bookstore (B) and Wind (W)

M X

T

J

B

J

W

B W

JM X

T

E

B …

T …

W …

E

E

S

S

J …

M …

X …

R

M T

X T

J B

J W

What is the relational model?

• Logical representation of data

− Two-dimensional tables (relations)

• Formal system for manipulating relations

− Relational algebra

• Result

− High-level (logical, declarative) description of data

− Mechanical rules for rewriting/optimizing low-level access

− Formal methods to reason about soundness

4Relational algebra is the key

Relations and tuples

5

R a1 … am

t1 v1,1

…

…

tn vn,m

Tuple (row)

Attribute (column)

Body

Heading (schema)

Relation Name

Logical: physical layout might be *very* different!

Value (field, component)

Set-based: arbitrary row/col ordering

cardinality: n=|R|

arity: m=|schema(R)|

Atomic (no sub-tuples)

Set of attributes

Set of tuples

What is an algebra?

• Operands (values)

− Variables, constants

− Closed domain

• Operators

+ “Addition”

* “Multiplication”

• Expressions:

− Combine operations with

parenthesis (explicit)

− OR using either precedence

(implied)

• Laws

− Identify semantically

equivalent expressions

− Commutativity, associativity,

etc.

6Offers formal, sound, mechanical rewriting

Example algebra: integer arithmetic

• Domain: integers

… -100, … -1, 0, 1, … 100, …

• Operators: -, +, *, …

• Expressions

− ((2*a) + ((5*(c + (-d))) + e))

• Laws

− a*b = b*a

− a*(b*c) = (a*b)*c

− a*(b+c) = a*b + a*c

7

‘-’ is unary negation

Associative

Distributive

Commutative

Allows compilers to reason about, optimize

Relational algebra

• Values
− Finite relations (cardinality and arity both bounded)
− Attributes may or may not be typed

• Operators
− Unary: s, p, r
− “Additive” (set): U, ∩, -
− “Multiplicative:” ,
− [details to come]

• Expressions
− Same as arithmetic, but called “queries”

• Laws
− Allow “query rewriting”
− Basis for query optimization
− [details to come]

9Expressive power equivalent to 1st order logic

Unary operators: select (s)

• sP(R) outputs tuples of R which satisfy P

• same schema as R

10

σσ

Removes unwanted rows from relation

Unary operators: select (s) example

11

Surname FirstName Age Salary

Smith Mary 25 2000
Black Lucy 40 3000
Verdi Nico 36 4500
Smith Mark 40 3900

Employees

Surname FirstName Age Salary

Smith Mary 25 2000
Verdi Nico 36 4500

s Age<30 V Salary>4000 (Employees)

Unary operators: project (p)

• pY(R) outputs a subset Y of the set of attributes X of

relation R

12

ππ

Removes unwanted columns from relation

Unary operators: project (p) example

13

Surname FirstName Department Head

Smith Mary Sales De Rossi
Black Lucy Sales De Rossi
Verdi Mary Personnel Fox
Smith Mark Personnel Fox

Employees

Surname FirstName

Smith Mary
Black Lucy
Verdi Mary
Smith Mark

pSurname, FirstName(Employees)

Department Head

Sales De Rossi
Personnel Fox

pDepartment, Head (Employees)

Unary operators: rename (r)

• rS(A,B,C)(R) renames attributes of R to A,B,C and calls the

result S

− rS(R) renames relation R (same attributes)

− rA=X,C=Y(R) (or rA, CX, Y(R)) renames attributes A and C

only

14

ρρ

Modifies schema only - same values

Unary operators: rename (r) example

15

Father Child

Adam Cain
Adam Abel

Abraham Isaac
Abraham Ishmael

Paternity

Parent Child

Adam Cain
Adam Abel

Abraham Isaac
Abraham Ishmael

rFather Parent(Paternity)

Additive operators (U, ∩, -)

• Standard set operators

• Operate on tuples within input relations, but not on

schema

16

UU

Additive operators: Union (U)

17

Number Surname Age

7274 Robinson 37
7432 O'Malley 39
9824 Darkes 38

Number Surname Age

9297 O'Malley 56
7432 O'Malley 39
9824 Darkes 38

Graduates

Managers

Number Surname Age

7274 Robinson 37
7432 O'Malley 39
9824 Darkes 38
9297 O'Malley 56

Graduates Managers

Additive operators: Intersection (∩)

18

Number Surname Age

7432 O'Malley 39
9824 Darkes 38

Graduates Managers

Number Surname Age

7274 Robinson 37
7432 O'Malley 39
9824 Darkes 38

Number Surname Age

9297 O'Malley 56
7432 O'Malley 39
9824 Darkes 38

Graduates

Managers

Additive operators: Difference (-)

19

Number Surname Age

7274 Robinson 37

Graduates - Managers

Number Surname Age

7274 Robinson 37
7432 O'Malley 39
9824 Darkes 38

Number Surname Age

9297 O'Malley 56
7432 O'Malley 39
9824 Darkes 38

Graduates

Managers

… how about: Managers - Graduates?

A Meaningful but Impossible Union

• The problem: Father and Mother are different names, but

both represent a parent

• Solution: rename attributes!

20

Paternity Maternity ???

Father Child

Adam Cain
Adam Abel

Abraham Isaac
Abraham Ishmael

Paternity
Mother Child

Eve Cain
Eve Seth

Sarah Isaac
Hagar Ishmael

Maternity

Union with Renaming

21

Father Child

Adam Cain
Adam Abel

Abraham Isaac
Abraham Ishmael

Paternity
Mother Child

Eve Cain
Eve Seth

Sarah Isaac
Hagar Ishmael

Maternity

rFather->Parent(Paternity) rMother->Parent(Maternity)

Parent Child

Adam Cain
Adam Abel

Abraham Isaac
Abraham Ishmael

Eve Cain
Eve Seth

Sarah Isaac
Hagar Ishmael

Union with Renaming (Many Attributes)

22

Surname Branch Salary

Patterson Rome 45
Trumble London 53

Employees

rBranch,SalaryLocation,Pay(Employees) rFactory, WagesLocation,Pay(Staff)

Surname Location Pay

Patterson Rome 45
Trumble London 53
Cooke Chicago 33
Bush Monza 32

Surname Factory Wages

Cooke Chicago 33

Bush Monza 32

Staff

Cartesian product ()

• The outcome of combining every record in R with every

record in S

• T = R S contains every pairwise combination of R and S

tuples

− schema(T) = schema(R) U schema(S)

− |T| = |R|*|S|

23

3
2
1

C
B
A xx

C
B
A

C
B
A

C
B
A3

2

1

3

2

1

3

2

1

Input schemata must *not* overlap

Cartesian product () example

24

Employee Project

Smith A

Black A

Black B

Code Name

A Venus

B Mars

Employee Project Code Name

Smith A A Venus

Black A A Venus

Black B A Venus

Smith A B Mars

Black A B Mars

Black B B Mars

Employees Projects

Employees Projects

Division (/)

• Let R and S be relations with schemas A1, …, An, B1, …,

Bn and B1, …, Bn respectively. The result of R/S is a

relation T with

− Schema A1, …, An (attribute names in R but not in S)

− Tuples t such that, for every tuple s of S, the tuple t||s (the

concatenation of t and s) is in relation R

− T contains the largest possible set of tuples s. t. S × T ⊆ R

• Analogy to integer division:

− For integers, A / B is: the largest int Q s.t. Q x B ≤ A

− For relations, A / B is: the largest relation Q s.t. Q × B ⊆ A

25

Division example

26

A B C

a1 b1 c1

a2 b1 c1

a1 b2 c1

a1 b2 c2

a2 b1 c2

a1 b2 c3

a1 b2 c4

a1 b1 c5

R S1 T1=R/S1C

c1

A B

a1 b1

a2 b1

a1 b2

C

c1

c2

A B

a1 b2

a2 b1

T2=R/S2S2

A B

a1 b2

T3=R/S3C

c1

c2

c3

c4

S3

Division example (cont.)

27

S4 T4=R/S4B C

b1 c1

A

a1

a2

B C

b1 c1

b2 c1

A

a1

T5=R/S5S5

A B C

a1 b1 c1

a2 b1 c1

a1 b2 c1

a1 b2 c2

a2 b1 c2

a1 b2 c3

a1 b2 c4

a1 b1 c5

R

Division in RA

• Consider two relations A(x,y), B(y) and suppose we want

to specify the query

"Find all x's that are associated through A with all

B's"

− This can be expressed as:

A/B = px(A) - px((px(A) B) - A)

− Often useful when the query is about “every” or “all” (but

don’t just look for these keywords!)

− Doesn’t extend the expressiveness of Relational Algebra

(convenient to use in many situations)

28

Division in RA example

• Assume

− Take(x,y) - "student x has taken course y",

− CS(z) - "z is a CS course"

• We want "All students who have taken all CS courses"

− px(Take) CS

(Relation of all <student, CS course> pairs)

− (px(Take) CS) - ry->z(Take)

(Relation of all <student, CS course> pairs that did NOT occur)

− px((px(Take) CS) - ry->z(Take))

(Relation of all <students> who have NOT taken all CS courses)

− px(Take) - px((px(Take) CS) - ry->z(Take))

(Relation of all <students> who have taken all CS courses)

29Work a simple example at home

Division Example

30

x y

S1 C1

S1 C2

S1 C3

S2 C1

S3 C1

S3 C3

S4 C1

S4 C2

S4 C3

S5 C2

z

C1

C2

C3

x z

S1 C1

S1 C2

S1 C3

S2 C1

S2 C2

S2 C3

S3 C1

S3 C2

S3 C3

S4 C1

S4 C2

S4 C3

S5 C1

S5 C2

S5 C3

x z

S2 C2

S2 C3

S3 C2

S5 C1

S5 C3

x

S2

S3

S5

x

S1

S4

Take CS R1 R2 R3 R4

px(Take) - px((px(Take) CS) - ry->z(Take))

Join

• The most used operator in relational algebra

• Used to establish connections among data in different

relations, taking advantage of the "value-based" nature of

the relational model

• Two main versions of the join:

− natural join: takes attribute names into account

− theta join: takes attribute values into account

• Both join operations denoted by the symbol ⋈

31

Natural join ()

• T = R S merges tuples from R and S having equal

values where their schemas overlap (join attributes)

− T Schema: Union of schemas

− |T| ≤ |R|*|S|, usually ≈ max(|R|, |S|)

• Special cases

− No schema overlap:

− Full schema overlap: ∩

32Equivalent to p(s(R r(S)))

schema(R) ∩ schema(S) ≠ Ø

3
4
5

2
1

6

C
B
A 1

3
4
4 C

B
A
A

“join cardinality”

Natural join () example

33

Employee Department
Smith sales
Black production
White production

Department Head
production Mori

sales Brown

Employee Department Head
Smith sales Brown
Black production Mori
White production Mori

r1 r2

r1 ⋈ r2

Properties of Natural Join

• Commutative:

R ⋈ S = S ⋈ R

• Associative:

(R ⋈ S) ⋈ T = R ⋈ (S ⋈ T)

• N-ary joins without ambiguity:

R1 ⋈ R2 ⋈ … ⋈ Rn

34

Example of N-ary Join Operation

35

Employee Department
Smith sales
Black production

Brown marketing

White production

Department Division
production A
marketing B

purchasing B

r1 r2

Division Head
A Mori
B Brown

r3

r1 ⋈ r2 ⋈ r3

Employee Department Division Head
Black production A Mori
Brown marketing B Brown

White production A Mori

Theta join

• Written as T = R θ S

− Outputs pairwise combinations of tuples which satisfy θ

− Join cardinality: |T| ≤ |R|*|S|

• Most general join

− Arbitrary join predicate (not just equality)

• Equivalent to s θ(R r(S))

− Schemas must not overlap

− Does not project away any attributes

36

Theta join example

37

Car CarPrice
CarA 20000
CarB 30000
CarC 50000

Boat BoatPrice
BoatA 10000
BoatB 40000
BoatC 60000

Car CarPrice Boat BoatPrice
CarA 20000 BoatA 10000
CarB 30000 BoatA 10000
CarC 50000 BoatA 10000

CarC 50000 BoatB 40000

Car Boat

Car⋈CarPrice>BoatPriceBoat

Equijoin

• Special case of theta join

• Written as R A=X,B=Y,… S

− Attribute names in R and S can differ

− Still compare values for equality

• Like natural join, but using arbitrary attributes

− Very common due to foreign keys in relations

• Equivalent to R r(S)

38

Equijoin example

39

Employee Project
Smith A
Black A
Black B

Code Name
A Venus
B Mars

Employee Project Code Name
Smith A A Venus
Black A A Venus
Black B B Mars

Employees Projects

Employees ⋈Project=Code Projects

Comparison: vs. ∩ vs.

• Same general operation

− Test “overlapping” parts of tuples for equality

− Combine “matching” pairs (ignore others)

• Differ in degree of schema overlap

40

Intersection (∩)
(full overlap)

Natural join ()
(partial overlap)

Cartesian product ()
(no overlap)

“Generalized intersection”

r tuple

s tuple

joined
tuple

Mathematical power vs. efficiency

• Note that expresses both ∩ and

=> Mathematically, intersection and joins are unnecessary

• Why bother with them? Two big reasons

• Notation

− p(s(R r(S))) vs. R ∩ S

− Cartesian product seldom useful

• Performance

− Efficient algorithms compute result directly

=> |R|*|S| rows vs. min(|R|,|S|)

41

Why not?

Consider |R|=|S|=106

Summary of Operators

42

Operation Name Symbol Precedence

choose rows select σ

1
choose columns project π

rename
relation/attribute

rename ρ

combine tables

natural join ⋈

2theta join ⋈condition

cartesian product ×

set operations

intersection ∩

3union ∪

subtraction −

assignment assignment := -

Expressing Integrity Constraints

• Our text (sec 2.5) defines two ways to express an integrity

constraint in Relational Algebra. Suppose R and S are

expressions in RA. We can write an IC in either of these

ways:

R = ∅ (expresses the fact that R is the empty set.)

R ⊆ S (expresses the fact that R is a subset of S.)

• Equivalent (we don’t need the second form) but it’s

convenient:

− Saying R = ∅ is equivalent to saying R ⊆ ∅.

− Saying R ⊆ S is equivalent to saying R - S = ∅.

43

Expressing ICs Examples

• Referential integrity constraints
Dept and CourseNum form a foreign key within Section

πDept,CourseNum (Section) ⊆ πDept,CourseNum(Course)

• Key constraints
Two tuples which agree on CRN must also agree on Dept,
CourseNum, Room, Time, and InstructorID. One of the constraints
implied is:

(ρS1(Section) ⋈ (S1.CRN=S2.CRN Λ S1.Dept!=S2.Dept) ρS2(Section)) = ∅

• Domain constraints
E.g., "Course Numbers must be in the range 100-999"

σCourseNum<100 or CourseNum>999 (Course) = ∅

44

Course (Dept, CourseNum, Title, Credits)
Section (CRN, Dept, CourseNum, Room, Time, InstructorID)

Coming next…

• Working Examples

• Tips and Tricks

• You

− Attend the lectures

− Read the material and practice

− Assignment 1

45

WORKING EXAMPLES

(SET-SEMANTICS)

46

A Sample Database

47

Number Name Age Salary

101 Mary Smith 34 40

103 Mary Bianchi 23 35

104 Luigi Neri 38 61

105 Nico Bini 44 38

210 Marco Celli 49 60

231 Siro Bisi 50 60

252 Nico Bini 44 70

301 Steve Smith 34 70

375 Mary Smith 50 65

Employees

Head Emp

210 101

210 103

210 104

231 105

301 210

301 231

375 252

Supervision

In fact, only the database schema and integrity constraints are needed:

Employees(Number,Name,Age,Salary)
Supervision(Head,Emp)
πHead(Supervision) ⊆ πNumber(Employees)
πEmp(Supervision) ⊆ πNumber(Employees)

Example 1

“Find the numbers, names and ages of employees

earning more than 40K”
Employees(Number,Name,Age,Salary)

Supervision(Head,Emp)

48

Number Name Age

104 Luigi Neri 38

210 Marco Celli 49

231 Siro Bisi 50

252 Nico Bini 44

301 Steve Smith 34

375 Mary Smith 50

pNumber,Name,Age(sSalary>40Employees)

Example 2

“Find the registration numbers of the supervisors of the

employees earning more than 40K.”
Employees(Number,Name,Age,Salary)

Supervision(Head,Emp)

49

Head

210

301

375

pHead(Supervision⋈Emp=Number(sSalary>40Employees))

R(Head,Emp,Number,Name,Age,Salary))

Example 3
“Find the names and salaries of the supervisors of the

employees earning more than 40K.”
Employees(Number,Name,Age,Salary)

Supervision(Head,Emp)

50

NameH SalaryH

Marco Celli 60

Steve Smith 70

Mary Smith 65

pNameH,SalH(rNumber,Name,Salary,AgeNumH,NameH,SalH,AgeHEmployees

⋈NumberH=Head (Supervision ⋈Number=Emp(sSalary>40Employees))))

R(NumH,NameH,AgeH,SalH,Head,Emp,Number,Name,Age,Salary)

Example 4

“Find the employees earning more than their respective

supervisors; return registration numbers, names and

salaries of the employees and their supervisors.”

Employees(Number,Name,Age,Salary)

Supervision(Head,Emp)

51

Number Name Salary NumH NameH SalH

104 Luigi Neri 61 210 Marco Celli 60

252 Nico Bini 70 375 Mary Smith 65

pNumber,Name,Salary,NumH,Nam3H, SalH

(sSalary>SalH(rNumber,Name,Salary,AgeNumH,NameH,SalH,AgeHEmployees
⋈NumH=Head (Supervision ⋈Emp=Number Employees)))

R(NumH,NameH,AgeH,SalH,Head,Emp,Number,Name,Age,Salary)

Example 5

“Find registration numbers and names of supervisors, all

of whose employees earn more than 40K.”
Employees(Number,Name,Age,Salary)

Supervision(Head,Emp)

52

Number Name

301 Steve Smith

375 Mary Smith

pNumber,Name(Employees⋈Number=Head (pHead (Supervision) -

pHead (Supervision ⋈Number=Emp (sSalary≤40Employees))))

Example 6

“Find registration numbers of supervisors, who supervise

all employees earning more than 40K.”
Employees(Number,Name,Age,Salary)

Supervision(Head,Emp)

53

rEmpNumberSupervision / pNumber(sSalary>40Employees)

result is the empty set: ∅

Example 7

“Find the employees earning maximum salary.”
Employees(Number,Name,Age,Salary)

Supervision(Head,Emp)

54

A := pSalary(Emp) - pSalary(s Salary1>Salary(Emp X reverything(Emp))

A provides the maximum salary; the rest is easy …
pNumber(Emp ⋈ A)

How to find minimum salary?
How to find average salary?

Number

252

301

Example 8

"Find all locations that have at least two employees

earning more than 40K"
Employees(Number,Name,Loc,Salary)

Supervision(Head,Emp)

55

s salary>40(Emp) ⋈ s salary1>40(rNumber,Name,SalaryNum1,Name1,Sal1Emp)

This results in a relation
R(Number, Name, Salary, Loc, Num1, Name1, Sal1)

Now we select tuples where Number≠Num1 and project on Loc
pLoc(s NumberNum1R)

Assume that in the schema we have ‘Loc’
instead of ‘Age’ for this example only.

How to find locations that have at least three employees …?
How to find locations that have exactly two employees …?

Another Series of Examples

Films(Film#, Title, Director, Year, ProdCost)

Artists(Actor#, Surname, FirstName, Sex, Birthday, Nationality)

Roles(Film#, Actor#, Character)

56

Example 1

Films(Film#, Title, Director, Year, ProdCost)

Artists(Actor#, Surname, FirstName, Sex, Birthday, Nationality)

Roles(Film#, Actor#, Character)

“Find the titles of films starring Henry Fonda"

57

pTitle(Films⋈ (s(FirstName=“Henry”) (Surname=“Fonda”)(Artists ⋈ Roles)))

Example 2

Films(Film#, Title, Director, Year, ProdCost)

Artists(Actor#, Surname, FirstName, Sex, Birthday, Nationality)

Roles(Film#, Actor#, Character)

“Find the titles of all films in which the director is also an

actor”

58

pTitle(s(Director=Actor#)(Films ⋈ Roles))

Example 3

Films(Film#, Title, Director, Year, ProdCost)

Artists(Actor#, Surname, FirstName, Sex, Birthday, Nationality)

Roles(Film#, Actor#, Character)

“Find the actors who have played two characters in the

same film; show the title of each such film, first name and

surname of the actor and the two characters”

59

pTitle,FirstName,Surname,Character1,Character

(rFilm#,Actor#,CharacterFilm#1,Actor#1,Character1(Roles)

⋈(Film#1=Film#)(Actor#1=Actor#) (Character1Character)

Roles ⋈ Artists ⋈ Films)

Example 4
Films(Film#, Title, Director, Year, ProdCost)

Artists(Actor#, Surname, FirstName, Sex, Birthday, Nationality)

Roles(Film#, Actor#, Character)

“Find the titles of the films in which the actors are all of the
same sex”

60

pTitle(Films) –
pTitle(Films ⋈ s sexsex1 Film#1 = Film#((Artists ⋈
Roles) ⋈r Ac#,Char,Sur,Fir,Sex,BD,N

Ac#1,Char1,Sur1,Fir1,Sex1,BD1,N1(Artists ⋈ Roles))

TIPS & TRICKS FOR

RELATIONAL ALGEBRA QUERIES

61

Evaluating R.A. Queries

• R.A. is procedural

− an R.A. query itself suggests a procedure for constructing the

result (i.e., how to implement the query)

• R.A. suggests a query execution plan

− Two RA expressions might yield the same result

but suggest different query execution plans

− which is best depends on the relation cardinality,

defined indices, join ordering, etc.

• DBMSs: query optimization takes place

− Optimizer rewrites queries to be more efficient

− topic in eecs4411

62

p

s

R S

Ex
ec

u
ti

o
n

 f
lo

w

Tips and Tricks for R.A.

• Ask yourself which relations need to be involved?

− Ignore the rest

• Every time you combine relations confirm that:

− (a) attributes that should match will be made to match

− (b) attributes that will be made to match should match

63

Tips and Tricks for R.A. (cont.)

• Is there an intermediate relation that

would help you get the final answer?

− Draw it out with actual data in it

• Break the answer down by defining intermediate relations
using an assignment operator (:=):

− Use good names for the new relations

− Name the attributes on the Left-Hand-Side each time, so
you don’t forget what you have in hand

 MaxSal(Salary) := …

− Add a comment that explains what the relation contains

 // intermediate result to keep max salary tuples

 MaxSal(Salary) := …

64

Tips for Specific R.A. Queries
• To show “max” (min is analogous):

− Pair tuples (self-join) and find those that are not the max

− Then substract from all to find the max[es]

• To show “k or more”:

− Make all combos of k different tuples that meet the required condition

• To show “exactly k”:

− Find “k or more”

− Find “(k+1) or more”

− Then subtract “(k+1) or more” from “k or more”

• To show “every” (i.e., division):

− Make all combos that could have occurred

− Subtract those that did occur to find those that didn’t always; these are

the failures

− Subtract the failures from all to get the answer

65

RELATION OPERATIONS ON BAGS

66

Limitations of relational algebra

• Relational algebra is set-based

• Real-life applications need more

− Expensive (and often unnecessary) to eliminate duplicates

− Important (and often expensive) to order output

− Need a way to apply scalar expressions to values

− What’s *not* there often as important as what is

67Answer: non-set extensions

Extension: bag semantics

• In practice, relations are bags (multisets)

− Members are allowed to appear more than once

− Sometimes people purposefully insert duplicates

− Projections produce duplicates

• Example: {1,2,1,1,3} is a bag (still unordered!)

• Most operators still work

− Select, Rename remain unchanged

− Project no longer eliminates duplicates

− Set operations need tweaks

− Joins tend to multiply the number of duplicates

• Some laws no longer apply

68

Bag versions of set operations

• Union
− Concatenation (except unordered)

− {1, 1, 2, 3} U {2, 2, 3, 4} = {1, 1, 2, 3, 2, 2, 3, 4}

• Intersection
− Take minimum count of each value

− {1, 1, 2, 3} ∩ {2, 2, 3, 4} = {2, 3}

• Difference
− Each occurrence on right can cancel one occurrence on left

− {1, 1, 2, 3} – {1, 2, 3, 4} = {1}

• Union, intersection no longer distribute
− {1} ∩ ({1} U {1}) vs. ({1} ∩ {1}) U ({1} ∩ {1})

− {1} ∩ {1, 1} vs. {1} U {1}

− {1} ≠ {1,1}

69

Bag-projection (p) and duplicates

• Consider a relation R modeling

cars for sale

• Bag-projection (p) does not

eliminate duplicate tuples (as

in set-projection)

− What does pMake(R) return?

− How to eliminate duplicates?

70

Make Model Color

Toyota Prius Gray

Toyota Prius Red

Honda Accord Green

Honda Accord Red

Honda Accord Red

Ford Echo Red

Ford Echo Gray

Ford Echo White

Duplicates important for summaries (“how many”)

Duplicate elimination (d)

• Consider a relation R

modeling cars for sale

• δ turns a bag into a set

• δ(pMake(R)) is a set

71

Make Model Color

Toyota Prius Gray

Toyota Prius Red

Honda Accord Green

Honda Accord Red

Honda Accord Red

Ford Echo Red

Ford Echo Gray

Ford Echo White

Make

Honda

Ford

Toyota

Summarizing groups of tuples (1)

72

Student Year Dept Course Grade

Xiao 2009 CS A08 B-

Xiao 2009 CS A48 B

Xiao 2009 CS A65 B+

Xiao 2009 Math A23 B

Xiao 2009 Math A30 B+

Xiao 2009 Math A37 A

Xiao 2010 CS B07 B

Xiao 2010 CS B09 B-

Xiao 2010 CS B36 B-

Xiao 2010 CS B58 B

Xiao 2010 Math B24 A-

Xiao 2010 Math B41 B

Xiao 2010 Stats B52 B-

Xiao 2011 CS C24 B+

Xiao 2011 CS C43 A-

Xiao 2011 CS C69 A

All courses Xiao has taken

All courses Xiao took
in 2010

All math courses
Xiao took in 2010

Summarizing groups of tuples (2)

73

Student Year Dept Course Grade

Xiao 2009 CS A08 B-

Xiao 2009 CS A48 B

Xiao 2009 CS A65 B+

Xiao 2009 Math A23 B

Xiao 2009 Math A30 B+

Xiao 2009 Math A37 A

Xiao 2010 CS B07 B

Xiao 2010 CS B09 B-

Xiao 2010 CS B36 B-

Xiao 2010 CS B58 B

Xiao 2010 Math B24 A-

Xiao 2010 Math B41 B

Xiao 2010 Stats B52 B-

Xiao 2011 CS C24 B+

Xiao 2011 CS C43 A-

Xiao 2011 CS C69 A

Student Dept Year Course Grade

Xiao CS 2009 ? ?

Xiao Math 2009 ? ?

Xiao CS 2010 ? ?

Xiao Math 2010 ? ?

Xiao Stats 2010 B52 B-

Xiao CS 2011 ? ?

Show the best grade?
Worst grade? Average?

How to summarize this??

These columns are
easy… equal for every
tuple in a group

Summarizing groups of tuples (3)

• Description #1: want to output a single tuple which
summarizes a set of related tuples

• Description #2: want to “collapse” a set of tuples into a
single, “representative” tuple

• Questions

− How to identify related tuples (set to collapse)?

=> Grouping key: a subset of attributes to test for equality

− How to collapse a column into a value (summarize it)?

=> Use an aggregation function (sum, count, avg, min, max,
…)

74

Grouping (G)

• Duplicates useful when computing statistics

− min, max, sum, count, average, …

• GA,B,C,f(X),g(Y),h(Z)(R) computes aggregate values using

some attributes as a grouping key

− Implicit projection (drops unreferenced attributes)

− A, B, C is the grouping key

− X, Y, Z are attributes to aggregate

− f, g, h are aggregating functions to apply

• Aggregating function should be commutative

− f(x,y) = f(y,x)

75

Grouping (G)

• All tuples having the same key go to same group

− One output tuple for each unique key

− Output “group total” for each non-key attribute in group

76

2

2

1

3

2

1

3

2

1

2

3

1

1
2
3

f

g

A B C

GA,f(B),g(C)

Example instance:
A is Employee level (1: Employee, 2: Manager, 3: Executive)
B is Age, so f(B) can represent average Age
C is Salary, so g(C) can represent average Salary

Duplicates and grouping

• Consider a relation R

modeling cars for sale

• GMake,count(*)(R) returns?

− The number of cars of each

make

77

Make Model Color

Toyota Prius Gray

Toyota Prius Red

Honda Accord Green

Honda Accord Red

Honda Civic Red

Ford Echo Red

Ford Echo Gray

Ford Echo White

Duplicates important for summaries (“how many”)

Make Count

Toyota 2

Honda 3

Ford 3

Sorting (t)

• tL(R) sorts tuples in R on list of attributes L

− If L is A1, A2, …,An tuples sorted first by A1. Ties are broken

based on A2;…; Ties that remain after An broken arbitrarily.

− Default: ascending order; With ‘-’ in front: descending order

• Example: tMake, -Count (R)

• Sorted relations not in the R.A. value domain!

=> t must be root operator of query tree**

78

Make Count

Toyota 2

Honda 3

Ford 3

Make Count

Ford 3

Honda 3

Toyota 2
t

Descending count

Alphabetical order
when count is equal

The dangling tuple problem

• Consider the following query

− t-Total(rName,Total(GName,sum(Value)(Emp Sales)))

− “List employees and their total sales in descending order”

• Join hides fact that Xiao has no sales!

− Challenge: rewrite query to include Xiao’s zero

79

Emp

EID Name

1 Mary

2 Xiao

3 Jaspreet

Sales

EID Value …

1 20 …

3 10 …

3 15 …

Name Total

Jaspreet 25

Mary 20

=

Xiao?

What’s not there can be very important

Extending the “inner” join

• All joins so far resemble intersection

=> Tuples with no match discarded (“dangling”)

• Sometimes desirable to output dangling tuples

− List all employees and their sales total (even if zero)

• Problem: what to use as missing half of tuple?

− Introduce special value (null)

− Pad dangling tuples as needed to match schema

− Note: technically outside R.A. value domain

80

Outer join ()

• T = R S computes the “outer” join of R (left) and S (right)
− Like normal join, but all tuples from R and S appear in output

− Pad (left, right, or all) dangling tuples with or NULL
 LEFT — Tuples in inner join padded with tuples in R that have no matching tuples in S.

 RIGHT — Tuples in inner join padded with tuples in S that have no matching tuples in R.

 FULL — Tuples in inner join padded with tuples in R that have no matching tuples in S and
tuples in S that have no matching tuples in R.

− Natural, equi-, and theta- variants still apply

− |T| ≥ max(|R|, |S|)

81

X

X

3
4

D

2
1

5

C
B
A

1

3
4
4 C

B
A

A
2

D
5

X

X

X

L R

X

Outer join () examples

82

Employee Department
Smith sales
Black production
White production

Department Head
production Mori
purchasing Brown

Employee Department Head
Smith sales NULL
Black production Mori
White production Mori

r1 r2

r1 ⋈LEFT r2

Employee Department Head
Black production Mori
White production Mori
NULL purchasing Brown

r1 ⋈RIGHT r2

r1 ⋈FULL r2

Employee Department Head
Smith Sales NULL
Black production Mori
White production Mori
NULL purchasing Brown

Outer join in action

• Consider the following query

− t-Total(rName,Total(GName,sum(Value)(Emp Sales)))

− “List employees and their total sales in descending order”

83

Emp Sales

EID Name

1 Mary

2 Xiao

3 Jaspreet

EID Value …

1 20 …

3 10 …

3 15 …

=

Name Total

Jaspreet 25

Mary 20

Xiao

Extended projection

• px=E(R) computes column x from expression E

− Arithmetic (z=3*x + y)

− String manipulation (substring, capitalization)

− Some conditional expressions

• Example:

t-Total(pName,Total=T?T:0(rName,T(GName,sum(Value)(Emp Sales))))

84

Emp Sales

EID Name

1 Mary

2 Xiao

3 Jaspreet

EID Value …

1 20 …

3 10 …

3 15 …

=

Name Total

Jaspreet 25

Mary 20

Xiao 0

Coming next…

• SQL (Structured Query Algebra)

85

