

EECS3421 – Introduction to Database Management Systems

£

Thanks to John Mylopoulos and Ryan Johnson for material in these slides

Overview

- What is a database?
- Course administrivia
- The relational model

What is a database <u>system</u>?

- Database: a large, integrated collection of data
- Models <u>relevant aspects of reality</u>
 - Entities (teams, players)
 - Relationships (Lionel Messi plays for Barcelona)
 - Constraints (at least one goalkeeper per team)
 - More recently, active components ("business logic")
- <u>Database Management System (DBMS)</u>: a software system designed to store, manage, and facilitate access to databases

In the beginning...

- There was *The Mainframe*
 - Cost: millions
 - Watts: millions
 - Size: 2000 m²
 - MIPS: 0.04
 - Memory: 2kB
 - Storage: 3.5MB (tape)

SAGE (1954)

Few organizations could afford two!

Early computing challenges

- Bare hardware
 - No OS
 - No device drivers
 - No file system

UNIVAC (1951)

=> File Management System

- Time sharing
 - ~100 terminals per mainframe
 - Users share hardware
 - Want to share *data*, too

SABRE (1960)

=> "The Database"

"The Database"

- Abstract concept dating back to the 1950's
 - Centralized repository for all the enterprise's data
 - Real-time updates from many sources
 - Concurrent access by many users
 - Interactive (ad-hoc) exploration and reporting

Example System: Semi Automatic Ground Environment (SAGE)

- Goal: Produce a single unified image of the airspace over an area
- Computer-aided tracking and interception of aircraft
- Dozens of SAGE installations (big one in North Bay)
- Hundreds of radar stations throughout North America
- Thousands of operators

Goal: all relevant information at your fingertips 6

File management systems (FMS)

- File management ca. 1935
 - File: box of punchcards
 - Metadata: label on the box
 - Ad-hoc report: no big deal
 - Hardware change: no big deal
- File management ca. 1955
 - File: several km of magnetic tape
 - Metadata: embedded in application logic
 - Ad-hoc report: hire a couple programmers
 - Hardware change: hire a dozen programmers...

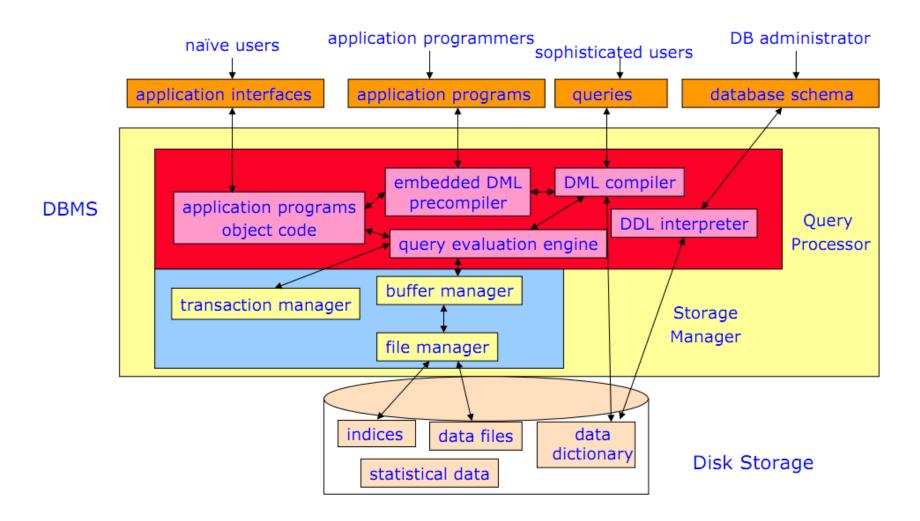
Huge need for portability, abstraction

7

Database Management System

- File management systems meet *The Database*
 - Protect users from each other (isolation, consistency)
 - Protect application from data changes (at logical level)
 - Protect data from hardware changes (at physical level)
- Split personality remains to this day
 - Theory/applications (declarative access to changing data)
 - Systems (make it run fast on ever-changing hardware)

This semester: the theory/application side


EECS3421 Topics

- The Relational Data Model
- Relational Algebra
- Defining, Querying and Manipulating Databases
 - the Structured Query Language (SQL)
- Application Programming with SQL
- Database Design and Normalization
- NoSQL Databases
- Advanced Topics (SQL security, Transactions, Recovery)

Why study databases?

- Shift from <u>computation</u> to <u>information</u>
 - always true for corporate computing
 - Web made this point for personal computing
 - more and more true for scientific computing
- Need for DBMS has exploded
 - Corporate: retail swipe/clickstreams, "customer relationship mgmt", "supply chain mgmt", "data warehouses", etc.
 - Scientific: digital libraries, Human Genome project, Sloan Digital Sky Survey, physical sensors, grid physics network
- A practical discipline spanning much of
 - OS, languages, theory, AI, multimedia, logic
 - Yet with a focus on real-world apps

DBMS High-level Architecture

Advantages of a DBMS

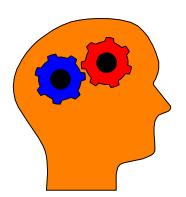
- Data independence
- Efficient data access
- Data integrity & security
- Data administration
- Concurrent access, crash recovery
- Reduced application development time
- So why not use them always?
 - Expensive/complicated to set up & maintain
 - Cost & complexity must be offset by need
 - General-purpose, not suited for special-purpose tasks (e.g. text search!)

What comes next?

- If you are heading for industry:
 - Database professionals are in demand and well paid
- If you want to do research:
 - Many interesting problems ahead [The Beckman Report on Database Research, Oct 2013]
 - Scalable Big/Fast Data Infrastructures
 - Diversity in the Data Management Landscape
 - End-to-End Processing and Understanding of Data
 - Cloud Services
 - Roles of Humans in the Data Life Cycle
 - <u>https://cacm.acm.org/magazines/2016/2/197411-the-beckman-report-on-database-research/fulltext</u>
- Further studies in data systems at EECS:
 - eecs4411: Database Management Systems
 - eecs4415: Big Data Systems

Summary (part 1)

- DBMS marries two very old concepts
 - The Database (idealistic vision)
 - File management system (imminently practical)


Benefits

- Maintain, query large datasets
- Manipulate data and exploit semantics
- Recover from system crashes
- Juggle/balance concurrent access, automatic parallelization
- Quick application development
- Preserve data integrity and security
- Powerful abstractions provide data independence
 - Application safe from changes to data organization, hardware

Summary (cont.)

DB administrators, developers are the bedrock of the information economy

Data management R&D spans a broad, fundamental branch of the science of computation

This semester: become an effective DBMS user

COURSE ADMINISTRIVIA

Course administrivia

- Website:
 - https://www.eecs.yorku.ca/~papaggel/courses/eecs3421/
 - Read the course syllabus online!
- Discussion forum (Piazza):
 - https://piazza.com/yorku.ca/fall2019/eecs3421
 - Questions: to Piazza (so everybody benefits)
- Contact:
 - website and discussion board (Piazza) are required reading
 - personal matters: email me (include "eecs3421" in the subject)
- Moodle:
 - https://moodle.yorku.ca/moodle/course/view.php?id=165756
 - Used mostly for test assessment and grade distribution
- Office hours:
 - Mon, 13:00-14:00 online (same Zoom link)

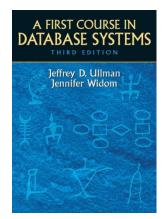
Course prerequisites

• LE/EECS 2030 3.00 or LE/EECS 1030 3.00

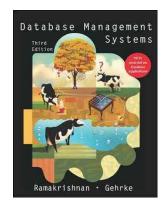
Active Lectures

- Goal: get your gears turning in class
- Some in-class activities like:
 - problem solving, short quizzes
- A number of tutorials and online resources

Active Lectures (cont.)


- Benefits of active learning
 - Exercise your knowledge and skills in class, with support
 - We'll know where the difficulties are
 - Get more from when I'm lecturing
- What it requires
 - Being active in class, including working with others and looking at each other's solutions to problems
 - A positive, encouraging environment

Course Marking Scheme


Work	Weight	Comment
3 Assignments	45%	15% each
1 Midterm Test	20%	_
Final Exam	35%	You must get >=40% to pass the course

Textbook

 A First Course in Database Systems, by Jeffrey D. Ullman and Jennifer Widom, 2008 (3rd Edition)

 (Optional) Database Management Systems, by Raghu Ramakrishnan and Johannes Gehrke, 2003 (3rd Edition)

Assignment Policies

- You may work with a partner on assignments
 - Can change partners between assignments
 - You may not dissolve a partnership in an assignment without permission
- Assignments must be submitted via submit
 - Your code must run on our lab computers ("PRISM")
- Late policy
 - No late assignments will be accepted!
 - Submit on time!

Next Hour

Relational Model