Linked Lists

IIIIIIIIII
IIIIIIIIII

Linked Lists

« Dynamic storage allocation is especially useful for
building lists, trees, graphs, and other linked data
structures.

« Alinked list consists of a chain of structures (called
nodes), with each node containing a pointer to the next
node in the chain:

BES S

« The last node in the list contains a null pointer.

Linked Lists

« Alinked list is more flexible than an array: we can easily

Insert and delete nodes in a linked list, allowing the list to
grow and shrink as needed.

 On the other hand, we lose the “random access”
capability of an array:

— Any element of an array can be accessed in the same
amount of time.

— Accessing a node in a linked list is fast if the node is close
to the beginning of the list, slow if it's near the end.

IIIIIIIIII

Declaring a Node Type

« To set up a linked list, we’'ll need a structure that
represents a single node.

« Anode structure will contain data (an integer in this
example) plus a pointer to the next node in the list:

struct node {
int value; /* data stored in the node */
struct node *next; /* pointer to the next node */
I
« node must be a tag, not a typedef name, or there
would be no way to declare the type of next.

UNIVERSITY

Declaring a Node Type

* Next, we'll need a variable that always points to the first
node in the list:

struct node *first = NULL;

« Setting first to NULL indicates that the list is initially
empty.

Creating a Node

« As we construct a linked list, we’'ll create nodes one by
one, adding each to the list.

Steps involved in creating a node:
1. Allocate memory for the node.
2. Store data in the node.

3. Insert the node into the list.

We'll concentrate on the first two steps for now.

Creating a Node

« When we create a node, we’ll need a variable that can
point to the node temporarily:

struct node *new node;

 WEe'll use malloc to allocate memory for the new node,
saving the return value in new node:

new node = malloc(sizeof (struct node));

* new node now points to a block of memory just large
enough to hold a node structure:

new node B—> I

value next

7 UNIVERSITY

Creating a Node

 Next, we'll store data in the value member of the new
node:

(*new node) .value = 10;

« The resulting picture:

new_ node E—> 10 I

value next

* The parentheses arounu ~new node are mandatory
because the . operator would otherwise take precedence
over the * operator.

The -> Operator

« Accessing a member of a structure using a pointer is so
common that C provides a special operator for this
purpose.

« This operator, known as right arrow selection, is a
minus sign followed by >.

« Using the —-> operator, we can write

new node->value = 10;
Instead of
(*new node) .value = 10;

The -> Operator

 The -> operator produces an lvalue, so we can use it
wherever an ordinary variable would be allowed.

 Ascanf example:

scanf ("%d", &new node->value);

* The & operator is still required, even though new node is
a pointer.

10 UNIVERSITY

Inserting a Node at the
Beginning of a Linked List

* One of the advantages of a linked list is that nodes
can be added at any point in the list.

 However, the beginning of a list is the easiest place
to insert a node.

« Suppose that new node is pointing to the node to be
Inserted, and f£irst is pointing to the first node in the

linked list.

i UNIVERSITY

Inserting a Node at the
Beginning of a Linked List

12

It takes two statements to insert the node into the list.
The first step is to modify the new node’s next
member to point to the node that was previously at
the beginning of the list:

new node->next = first;

The second step is to make first point to the new
node:

first = new node;

« These statements work even if the list is empty.

IIIIIIIIII

Inserting a Node at the
Beginning of a Linked List

« Let's trace the process of inserting two nodes into an
empty list.

« WEe'll insert a node containing the number 10 first,
followed by a node containing 20.

IIIIIIIIII

13

Inserting a Node at the
Beginning of a Linked List

first = NULL; Firat

new node

new node =
_ first

malloc (sizeof (struct node))

new node

new node->value = 10; first

new node

14

. L]
\ \
\ |
\
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \

IIIIIIIIII
IIIIIIIIII

Inserting a Node at the
Beginning of a Linked List

new node->next = first; .
— first

new node

first = new node;
- first

> 10

new node

new node = first

malloc (sizeof (struct node))

new node

.
| ! !
\ f
\
|I \ | \
\ | \
I‘ "\ | \
| \ | \\
| \ | \
| | | \
| \ | \
/ \ / \
| \ | \
| \ | \
| \ | \
| \ | \
| \ | \
| \ | \
| \ | \
| \ | \
\ \ | \
| \ | \
| | | \
| \ | \
| \ f \
| \
| | \\
=
o

15 UNIVERSITY

Inserting a Node at the
Beginning of a Linked List

new node->value = 20; .
— first M
20 | 10
new node : I
new node->next = first;
- first | 44—
20 10 : |
new node
first = new node;

S OENT
e EEL

IIIIIIIIII

e UNIVERSITY

new node

Inserting a Node at the
Beginning of a Linked List

« A function that inserts a node containing n into a
linked list, which pointed to by 1ist:

struct node *add to list(struct node *list, int n)

{

struct node *new node;

new node = malloc(sizeof (struct node));
if (new node == NULL) {
printf ("Error: malloc failed in add to list\n");

exit (EXIT FAILURE);
}

new node->value = n;
new node->next = list;
return new node;

17

Inserting a Node at the
Beginning of a Linked List

* Note that add to 1list returns a pointer to the
newly created node (now at the beginning of the list).

« Whenwe call add to 1list, we'll need to store its
return value into first:

first = add to list(first, 10);
first = add to list(first, 20);

« Getting add to list toupdate first directly,
rather than return a new value for first, turns out to

be tricky.

s UNIVERSITY

Inserting a Node at the
Beginning of a Linked List

* Afunction that uses add to list to create a
linked list containing numbers entered by the user:

struct node *read numbers(void)

{
struct node *first = NULL;

int n;
printf ("Enter a series of integers (0 to terminate): ");
for (;;) A

scanf ("%d", &n);

if (n == 0)

return first;

first = add to list(first, n);
}
}

* The numbers will be in reverse order Withi@(@ﬁ%u

| SIT

V ER
V ER

Searching a Linked List

« Although a while loop can be used to search a list, the
for statement is often superior.

* Aloop that visits the nodes in a linked list, using a pointer
variable p to keep track of the “current” node:

for (p = first; p != NULL; p = p->next)

« Aloop of this form can be used in a function that searches
a list for an integer n.

200 UNIVERSITY

Searching a Linked List

 Ifitfinds n, the function will return a pointer to the
node containing n; otherwise, it will return a null
pointer.

* An Initial version of the function:

struct node *search list(struct node *list, int n)

{

struct node *p;

for (p = list; p != NULL; p = p->next)
1f (p—->value == n)
return p;

return NULL;
}

UN
21 UN

Searching a Linked List

* There are many other ways to write search 1list.

* One alternative is to eliminate the p variable, instead
using 1ist itself to keep track of the current node:

struct node *search list(struct node *list, 1int n)

{
for (; list != NULL,; list = list->next)
if (list->value == n)
return list;

return NULL;
}

« Since 1list Is a copy of the original list pointer,
there’s no harm in changing it within the function.

u
22 U

Searching a Linked List

 Another alternative:

struct node *search list(struct node *list, int n)

{
for (; list != NULL && list->value != n;

list = list->next)
return list;

}

 Since list is NULL If we reach the end of the list,
returning 1ist is correct even if we don't find n.

UN
23 UN

Searching a Linked List

* This version of search 1ist might be a bit clearer if
we used a while statement:

struct node *search list(struct node *list, int n)

{
while (list != NULL && list->value
list = list->next;
return list;

= n)

}

YORKJ I

Deleting a Node from a Linked List

« A Dbig advantage of storing data in a linked list is that we
can easily delete nodes.

* Deleting a node involves three steps:
1. Locate the node to be deleted.

2. Alter the previous node so that it “bypasses” the deleted
node.

3. Call free to reclaim the space occupied by the deleted
node.

« Step 1is harder than it looks, because step 2 requires
changing the previous node.

« There are various solutions to this problem.

25 UNIVERSITY

Deleting a Node from a Linked List

26

The “trailing pointer” technique involves keeping a pointer
to the previous node (prev) as well as a pointer to the
current node (cur).

Assume that 11ist points to the list to be searched and n
IS the integer to be deleted.

A loop that implements step 1.

for (cur = list, prev = NULL;
cur != NULL && cur->value != n;
prev = cur, Ccur = cur->next)

When the loop terminates, cur points to the node to be
deleted and prev points to the previous node.

IIIIIIIIII

Deleting a Node from a Linked List

« Assume that 11ist has the following appearance and n is

20:

e ez]

mER

o]]

« After cur = 1list, prev = NULL has been executed:

27

]

EI R

IIIIIIIIII

Deleting a Node from a Linked List

« Thetest cur !=NULL && cur->value !=n s true,
since cur is pointing to a node and the node doesn’t

contain 20.
o After prev = cur, cur = cur->next has been
executed:
prev cur

T 1

28 UNIVERSITY

Deleting a Node from a Linked List

« Thetest cur !=NULL && cur->value !=n IS again
true, SO prev = cur, cur = cur->next IS executed

once maore.

prev cur

e

e Since cur now points to the node containing 20, the
condition cur->value !=n Is false and the loop

terminates.

29 UNIVERSITY

Deleting a Node from a Linked List

« The stateme

nt

prev->next = cur->next;

makes the pointer in the previous node point to the node
after the current node:

prev cur

yulies

Next, we'll perform the bypass required by step 2.

30

OER

IIIIIIIIII

Deleting a Node from a Linked List

« Step 3 is to release the memory occupied by the current
node:

free(cur) ;

31 UNIVERSITY

Deleting a Node from a Linked List

* The delete from 1list function uses the strategy just
outlined.

 When given a list and an integer n, the function deletes
the first node containing n.

* If no node contains n, delete from list does nothing.
 In either case, the function returns a pointer to the list.

« Deleting the first node in the list is a special case that
requires a different bypass step.

32 UNIVERSITY

Deleting a Node from a Linked List

struct node *delete from list (struct node *list, 1int n)

{

struct node *cur, *prev;

for (cur = list, prev = NULL;

cur != NULL && cur->value != n;
prev = cur, cur = cur—->next)
if (cur == NULL)
return list; /* n was not found */
if (prev == NULL)
list = list->next; /* n 1s 1n the first node */
else
prev->next = cur->next; /* n is in some other node */

free(cur);
return list;

UN
33 UN

Ordered Lists

34

When the nodes of a list are kept in order—sorted by the
data stored inside the nodes—we say that the list is
ordered.

Inserting a node into an ordered list is more difficult,
because the node won’t always be put at the beginning of
the list.

However, searching is faster: we can stop looking after
reaching the point at which the desired node would have
been located.

IIIIIIIIII

