The C String Library

IIIIIIIIII
IIIIIIIIII

Using the C String Library

« Some programming languages provide operators that can
copy strings, compare strings, concatenate strings, select
substrings, and the like.

« (C's operators, in contrast, are essentially useless for
working with strings.

« Strings are treated as arrays in C, so they're restricted in
the same ways as arrays.

 |n particular, they can’t be copied or compared using
operators.

Using the C String Library

« Direct attempts to copy or compare strings will fail.

« Copying a string into a character array using the =
operator is not possible:

char strl[10], str2[10];

strl "abc"; /*** WRONG ***/
str2 strl; /*** WRONG ***/

Using an array name as the left operand of = is illegal.
 Initializing a character array using = is legal, though:

char strl1l[10] = "abc";

In this context, = IS not the assignment operator.

3 UNIVERSITY

Using the C String Library

« Attempting to compare strings using a relational or
equality operator is legal but won’t produce the desired
result:

1f (strl == str2) .. /*** WRONG ***/
« This statement compares strl and str2 as pointers.

e Since str1 and str2 have different addresses, the
expression strl == str2 must have the value 0.

Using the C String Library

* The C library provides a rich set of functions for
performing operations on strings.

* Programs that need string operations should contain the
following line:
#include <string.h>

* In subsequent examples, assume that strl and str2
are character arrays used as strings.

The strepy (String Copy) Function

* Prototype for the strcpy function:

char *strcpy(char *sl, const char *s2);
* strcpy copies the string s2 into the string s1.

— To be precise, we should say “strcpy copies the string
pointed to by s2 into the array pointed to by s1.”

 strcpy returns s1 (a pointer to the destination string).

The strepy (String Copy) Function

« Acall of strcpy that stores the string "abcd" In str2:

strcpy (str2, "abcd");
/* str2 now contains "abcd" */

« A call that copies the contents of str2 into strl:

strcpy (strl, str2);
/* strl now contains "abcd" */

IIIIIIIIII

The strepy (String Copy) Function

 Inthecall strcpy(strl, str2), strcpy has no way to
check that the str2 string will fit in the array pointed to by
strl.

* If it doesn’t, undefined behavior occurs.

The strepy (String Copy) Function

« Calling the strncpy function is a safer, albeit slower, way
to copy a string.

 strncpy has a third argument that limits the number of
characters that will be copied.

 Acall of strncpy that copies str2 into strl:
strncpy(strl, str2, sizeof(strl));

The strepy (String Copy) Function

10

strncpy WIill leave strl without a terminating null
character if the length of str2 is greater than or equal to
the size of the str1 array.

A safer way to use strncpy:

strncpy(strl, str2, sizeof(strl) - 1);
strl[sizeof (strl)-1] = '"\0';

The second statement guarantees that str1 Is always
null-terminated.

IIIIIIIIII

The strlen (String Length) Function

* Prototype for the strlen function:
size t strlen(const char *s);

 size tisa typedef name that represents one of C’s
unsigned integer types.

UUUUUUUUU
i UNIVERSITY

The strlen (String Length) Function

* strlen returns the length of a string s, not including the
null character.

« Examples:

int len;

len = strlen("abc"); /* len is now 3 */

len = strlen(""); /* len 1s now 0 */
strcpy(strl, "abc");
len = strlen(strl) ; /* len is now 3 */

2z UNIVERSITY

The strcat (String Concat.) Function

* Prototype for the strcat function:
char *strcat (char *sl, const char *s2);

* strcat appends the contents of the string s2 to the
end of the string s1.

* Itreturns s1 (a pointer to the resulting string).

 strcat examples:

strcpy(strl, "abc");
strcat (strl, "def");
/* strl now contains "abcdef" */
strcpy(strl, "abc");
strcpy(str2, "def");
strcat (strl, str2);
/* strl now contains "abcdef" */

13 UNIVERSITY

The strcat (String Concat.) Function

 As with strcpy, the value returned by strcat is
normally discarded.

* The following example shows how the return value might
be used:
strcpy(strl, "abc");
strcpy (str2, "def");
strcat (strl, strcat(str2, "ghi"));
/* strl now contains "abcdefghi";
str2 contains "defghi" */

UUUUUUUUU E
14

IIIIIIIIII

The strcat (String Concat.) Function

e strcat (strl, str2) causes undefined behavior if the
strl array isn’'t long enough to accommodate the
characters from str2.

« Example:

char strl[o] = "abc";

strcat (strl, "def"); /*** WRONG ***/

 strl islimited to six characters, causing strcat to write
past the end of the array.

s UNIVERSITY

The strcat (String Concat.) Function

* The strncat function is a safer but slower version of
strcat.

* Like strncpy, it has a third argument that limits the
number of characters it will copy.

« Acall of strncat:
strncat (strl, str2, sizeof (strl) - strlen(strl) - 1);

e strncat will terminate str1 with a null character, which
Isn’t included in the third argument.

UUUUUUUUU
e UNIVERSITY

The strcat (String Concat.) Function

17

Prototype for the strcmp function:
int strcmp (const char *sl, const char *s2);

strcmp compares the strings s1 and s2, returning a

value less than, equal to, or greater than O, depending on
whether s1 is less than, equal to, or greater than s2.

IIIIIIIIII

The strcat (String Concat.) Function

« Testing whether strl isless than str2:
if (strcmp(strl, str2) < 0) /* 1is strl < str2? */

« Testing whether str1l is less than or equal to str2:
if (strcmp(strl, str2) <=0) /* is strl <= str2? */

« By choosing the proper operator (<, <=, >, >=, ==, =),

we can test any possible relationship between str1 and
str2.

UUUUUUUUU E
s UNIVERSITY

The strcat (String Concat.) Function

 strcmp considers s1 to be less than s2 if either one of
the following conditions is satisfied:

— The first | characters of s1 and s2 match, but the (i+1)st
character of s1 is less than the (i+1)st character of s2.

— All characters of s1 match s2, but s1 iIs shorter than s2.

9 . UNIVERSITY

The strcat (String Concat.) Function

« As it compares two strings, st rcmp looks at the
numerical codes for the characters in the strings.

« Some knowledge of the underlying character set is helpful
to predict what st rcmp will do.

« Important properties of ASCII:
- A-Z, a—z, and 0-9 have consecutive codes.

— All upper-case letters are less than all lower-case letters.
— Digits are less than letters.

— Spaces are less than all printing characters.

UUUUUUUUU E
20

IIIIIIIIII

Writing String Functions

« WEe'll explore some details of writing the strlen and
strcat functions.

21 UNIVERSITY

Searching for the End of a String

« Aversion of strlen that searches for the end of a string,
using a variable to keep track of the string’s length:

size_t strlen (const char *s)

{

Size_t n;

for (n = 0; *s != '"\0'; s++)
n++;
return n;

22 UNIVERSITY

Searching for the End of a String

 To condense the function, we can move the initialization
of n to its declaration:

size_t strlen (const char *s)

{

size t n = 0;

for (; *s != "\0'; s++)
n++;
return n;

23 UNIVERSITY

Searching for the End of a String

e The condition *s !'= "\0"' Isthe same as *s != 0,
which In turn iIs the same as *s.

« Aversion of strlen that uses these observations:

size_t strlen (const char *s)

{

size t n = 0;

for (;, *s; s++)
n++;
return n;

24 UNIVERSITY

Searching for the End of a String

« The next version increments s and tests *s in the same
expression:

size_t strlen (const char *s)

{

size t n = 0;

for (; *s++;)
n++;
return n;

25 UNIVERSITY

Searching for the End of a String

* Replacing the for statement with a while statement
gives the following version of strlen:

size_t strlen (const char *s)

{

size t n = 0;

while (*s++)
n++;
return n;

260 UNIVERSITY

Searching for the End of a String

Although we've condensed strlen quite a bit, it's likely
that we haven’t increased its speed.

 Aversion that does run faster, at least with some
compilers:

size_t strlen (const char *s)
{

const char *p = s;

while (*s)
s++,;
return s - p;

}

UUUUUUUUU E
27

IIIIIIIIII

Searching for the End of a String

* |dioms for “search for the null character at the end of a

string”:
while (*s) while (*s++)
s++, ;

« The first version leaves s pointing to the null character.

« The second version is more concise, but leaves s pointing
just past the null character.

28 UNIVERSITY

Copying a String

29

Copying a string is another common operation.

To introduce C’s “string copy” idiom, we’'ll develop two
versions of the strcat function.

The first version of strcat (next slide) uses a two-step
algorithm:

— Locate the null character at the end of the string s1 and
make p point to it.

— Copy characters one by one from s2 to where p Is pointing.

IIIIIIIIII

Copying a String

char *strcat (char *sl,

{

char *p = sl;

while (*p != "\0")
pt++;

while (*s2 != '"\0"'")
*P = *s2;
pt++;
s2++;

}

*o = "\0';

return sl;

30

{

const char *s2)

Copying a String

 p initially points to the first character in the s1 string:

31 UNIVERSITY

Copying a String

 The first while statement locates the null character at the
end of s1 and makes p point to it:

32 UNIVERSITY

Copying a String

 The second while statement repeatedly copies one
character from where s2 points to where p points, then
Increments both p and s2.

« Assume that s2 originally points to the string "def".
« The strings after the first loop iteration:

HOOOEEEROBOR

33 UNIVERSITY

Copying a String

« The loop terminates when s2 points to the null character:

81@ p@ 82@

o Af a| b | c|d|e]|f d | e | £ |\O

rcat
returns.

34 UNIVERSITY

Copying a String

« Condensed version of strcat:

char *strcat (char *sl, const char *s2)

{

char *p = sl;

while (*p)
pt++;
while (*p++ = *s2++)

return sl;

YORKJ I

UNIVER SITE
35 UNIVERSITY

Copying a String

* The heart of the streamlined strcat function is the
“string copy” idiom:
while (*p++ = *s2++)

 Ignoring the two ++ operators, the expression inside
the parentheses is an assignment:
P = *s2

« After the assignment, p and s2 are incremented.

* Repeatedly evaluating this expression copies
characters from where s2 points to where p points.

36 UNIVERSITY

Copying a String

« But what causes the loop to terminate?

 The while statement tests the character that was copied
by the assignment *p = *s2.

« All characters except the null character test true.

* The loop terminates after the assignment, so the null
character will be copied.

37 UNIVERSITY

