
EECS2031 Review

EECS2031: Software tools …

• Unix
− files and directories
− permissions
− utilities/commands

• Shell
− programming
− quoting
− wild cards
− files

... and programming in C

• C

− basic syntax

− types

− arrays

− pointers

− functions

− strings

− structs

− header files

Course Topics

• Topics covered

− Part I: Unix, Shell & Shell Programming

− Part II: Programming in C

− Part III: UNIX System Programming

Part I

Unix, Shell & Shell Programming

Unix Philosophy

• Write programs that do one thing well

• Write programs that work together

• Write programs to handle text streams because that is the

universal interface

File interface

• “Everything is a file”

• We treat all sorts of devices as if they were files,
and use the file interface (open, read, write,
close) all over the place
− files

− directories

− pipes

− sockets

− kernel info via /proc (interface to kernel data
structures)

Shell Concepts

• Stdin, stdout, stderr

• I/O redirection (>, <, …)

• Process control (ps, kill,…)

• Job control (fg, bg, %, …)

• Pipes (|)

Bourne shell programming

• quoting
− single quotes (' … ') inhibit wildcard replacement,

variable substitution and command substitution

− double quotes (" … ") inhibit wildcard replacement only

− back quotes (` … `)cause command substitution

• variables – environment and local
− str1=“string”

− str2=“string”

− if test $str1 = $str2; then … fi

Bourne shell programming

• test –f filename – test if a file exists

• Command line arguments

− $0 = name of script, $1 .. $n = arguments

• set assigns positional parameters to a list of

words

• read – reads from stdin

• expr – math functions

Compiler vs. Interpreter

• Compiler translates whole program to object code

− produces the most highly optimized code

• Interpreter translates one line of code at a time

− can quickly make changes and try things out

• C – compiled

• Java – compiled to byte code, then interpreted

• Shell –interpreted

Part II

Programming in C

Programming in C

• Memory model
− pointers are addresses with a type

• Remember that no variables are automatically
initialized

• Arrays
− contiguous region of memory with fixed size

− provide random access

• Pointers
− dereference with *

− get the address of a variable with &

Strings

• Arrays of characters

• Remember the null termination character ('\0')

• Most string functions depend on it

• Whenever possible use the string functions rather
than re-implementing them

• E.g., use strncpy rather than copying each
character

• Be careful to ensure that you don't walk off the
end of a character array

Dynamic memory allocation

• malloc, calloc, realloc

• memory allocated using malloc should be freed when it

is no longer needed

• keep a pointer to the beginning of the region so that it is

possible to free

• memory leak occurs when you no longer have a pointer

to a region of dynamically allocated memory

When to use malloc?

• When passing a pointer to a new region of

memory back from a function

• When you don't know until runtime how much

space you need

Makefile & Header files

• Header files contain function prototypes
and type definitions

• Header files are useful when your program
is divided into multiple files

• Use Makefile to compile programs. Saves
typing and takes advantage of separate
compilation

FINAL EXAM INFORMATION

Final Exam

• Course Material & How to study
− Textbook

− Lecture slides

− Tutorials – play with example code provided

− Assignments – make sure you understand concepts
and code

• Covers everything in the course

• Closed book exam – No Aids Allowed

Remainder

• Pre-exam Office Hours:

− Thu, Apr 5 @ 10:30-11:30pm (LAS3050)

− Or, I’ll post in the discussion board about holding an
office hour in a classroom (Wed or Thu)

• Final Exam
WHEN: Mon, Apr 9 @ 2-5pm

WHERE: TM TAIT

• Course Evaluations 

Happy Holidays 2018

