WG
\

Introduction to
C Programming (Part C

Overview (King Ch. 13, 22, 16-17)

e Strings (Ch. 13)

* Input/Output (Ch. 22)

e Structures (Ch. 16)

« Dynamic memory Management/Linked Lists (Ch. 17)
« Makefile (Ch. 15)

IIIIIIIIII

Chapter 13

Strings

IIIIIIIIII
IIIIIIIIII

Introduction

« This chapter covers
— string constants (or literals)
— string variables
« Strings are arrays of characters

« The C library provides a collection of functions for working
with strings: <string.h>

IIIIIIIIII

How String Literals Are Stored

* The string literal "abc" is stored as an array of four
characters:

a | b c | \O

» A special character—the null character—marks the end
of a string (i.e., a byte whose bits are all zero)

« The string "" is stored as a single null character:

IIIIIIIIII

Operations on String Literals

 We can use a string literal wherever C allows a char *
pointer:

char *p;

p = "abc";

This assignment makes p point to the first character of the
string.

« String literals can be subscripted:
char ch;
ch = "abc"[1];
The new value of ch will be the letter b

IIIIIIIIII

Operations on String Literals

« Attempting to modify a string literal causes undefined

behavior:
char *p = "abc";
*p — 'd'; /*** WRONG ***/

A program that tries to change a string literal may crash or
behave erratically.

IIIIIIIIII

String Variables

 If a string variable needs to hold 80 characters, it must be
declared to have length 81.:

#define STR LEN 80

char str[STR LEN+1];

« Adding 1 to the desired length allows room for the null
character at the end of the string.

IIIIIIIIII

Initializing a String Variable

« A string variable can be initialized at the same time it's
declared:

char datel[8] = "June 14";

« The compiler will automatically add a null character so
that datel can be used as a string:

datel | J | u n e 1 4 |\O

« We may omit its length:
char datel][] = "June 14";

IIIIIIIIII

Initializing a String Variable

 If the initializer is too short to fill the string variable, the
compiler adds extra null characters:

char date2[9] = "June 14";

date2 | J u n e 1 4 | \0 | \oO

« An initializer can’t be longer than the variable size:
char date3[7] = "June 147;

date?3 J u n e 1 4

IIIIIIIIII

Character Arrays vs Character Pointers

* The declaration
char date[] = "June 14";
declares date to be an array,

* The similar-looking
char *date = "June 14";

declares date to be a pointer.

« Thanks to the close relationship between arrays and
pointers, either version can be used as a string.

IIIIIIIIII

Character Arrays vs Character Pointers

« However, there are significant differences between the
two versions of date.
— In the array version, the characters stored in date can be
modified. In the pointer version, date points to a string
literal that shouldn’t be modified.

= String literals are stored at read-only memory and trying to
modify this memory leads to undefined behavior (memory
access violation)
— In the array version, date is an array name. In the pointer
version, date IS a pointer variable that can point to other

strings.

Character Arrays vs Character Pointers

* The declaration
char *p;
does not allocate space for a string.

« Before we can use p as a string, it must point to an
array of characters.

* One possiblility is to make p point to a string variable:
char str[STR LEN+1], *p;
P = stry;

* Another possibility is to make p point to a dynamically
allocated string.

IIIIIIIIII

Character Arrays vs Character Pointers

« Using an uninitialized pointer variable as a string is a
serious error.

« An attempt at building the string "abc":

char *p;
pl0] = 'a'; /*** WRONG ***/
p[l] = 'b'; /**% WRONG ***/
pl[2] = 'c'; /*** WRONG ***/
p[3] = "\0'; /*** WRONG ***/
* Since p hasn’t been initialized, this causes undefined
behavior.

IIIIIIIIII

Reading and Writing Strings

« Writing a string Is easy using printf Or puts.
« Reading a string is easy using scanf or gets.

« We can read strings one character at a time, using a
function that
— (1) doesn’t skip white-space characters

— (2) stops reading at the first new-line character (which isn’t
stored in the string)

— (3) discards extra character

IIIIIIIIII

Reading Strings Char. by Char.

 read line consists primarily of a loop that calls
getchar to read a character and then stores the
character in str, provided that there’s room left:

int read line(char str[], int n)

{

int ch, 1 = 0;
while ((ch = getchar()) != '\n")
1f (1 < n)
str[i++] = ch;
str[i] = "\O0'; /* terminates string */
return 1i; /* number of characters stored */

)
* ch has int type rather than char type because
getchar returns an int value.

Accessing the Characters in a String

« Since strings are stored as arrays, we can use
subscripting to access the characters in a string.

« To process every character in a string s, we can set up a
loop that increments a counter i and selects characters

via the expression s [1i].

IIIIIIIIII

Accessing the Characters in a String

« A function that counts the number of spaces in a string:

int count spaces (const char s[])

{

int count = 0, 1;

for (1 = 0; s[i] != "\O0'; 1i++)
1f (s[1] == " ")
count++;
return count;

IIIIIIIIII

Accessing the Characters in a String

« Aversion that uses pointer arithmetic instead of array
subscripting :

1nt count spaces(const char *s)

{

int count = 0;

for (; *s != '"\0'; s++)
1f (*s == ' ")
count++;
return count;

IIIIIIIIII

Accessing the Characters in a String

* Questions raised by the count spaces example:
— Q1: Is it better to use array operations or pointer operations
to access the characters in a string?

= Al: We can use either or both. Traditionally, C programmers
lean toward using pointer operations.

— Q2: Should a string parameter be declared as an array or
as a pointer?
= A2: There’s no difference between the two.
— Q3: Does the form of the parameter (s [] or *s) affect what
can be supplied as an argument?
= A3: No.

UNIVERSITE '
UNIVERSITY

Array of
Strings

Array of Strings

« There is more than one way to store an array of strings.

* One option is to use a two-dimensional array of
characters, with one string per row:
char planets[][8] = {"Mercury", "Venus", "Earth",

"Mars", "Jupiter", "Saturn",
"Uranus", "Neptune", "Pluto"};

« The number of rows in the array can be omitted, but we
must specify the number of columns.

Arrays of Strings

« Unfortunately, the planets array contains a fair bit of
wasted space (extra null characters):

0] 1 2 3 4 5 6 7
OlM|e|xr |c|u | x|y |\O
1| V|e | n|ul| s |[\o|\o|\O
2| E | a | x|t | h|[\o|l\o|\oO
3|/ M [a | r | s |\o|\o|\o|\o
4| Jlu|lp | 1]t e | |\O
5| 8 a t u r n | \0o |\O
6| U r a n u s | \o |\O
7/ N |e|p |t |u|/n|le |\O
8| P |1 |ul|t | o |\o|l\o|\oO

Arrays of Strings

* Most collections of strings will have a mixture of long
strings and short strings.

 What we need is a ragged array, whose rows can have
different lengths.

« We can simulate a ragged array in C by creating an array
whose elements are pointers to strings:
char *planets|[] = {"Mercury", "Venus", "Earth",

"Mars", "Jupiter", "Saturn",
"Uranus", "Neptune", "Pluto"};

Arrays of Strings

« This small change has a dramatic effect on how planets

IS stored:
planets
0 »M | e|lr|c ulxr |y \OI
1| = » Vi e |n|u| s \Ol
2] » E a|r |t | hl|\O
3 »M | a|r|s |\O
4 »J |u|lpl|il t|le|r \Ol
5 » S la|t|u|r|n|\O
6 U/ rla|n| ul|s \OI
7 » N e|p|lt|uln|e \OI
8 » P |1 |u|t | o]\O

Arrays of Strings

« To access one of the planet names, all we need do is
subscript the planets array.

« Accessing a character in a planet name is done in the

same way as accessing an element of a two-dimensional
array.

* Aloop that searches the planets array for strings
beginning with the letter M:
for (1 = 0; 1 < 9; 1i++)
1f (planets[i] [0] == 'M'")
printf ("%$s begins with M\n", planets[i]);

UNIVERSITY

Command-Line Arguments

 When we run a program, we’ll often need to supply it with
Information.

« This may include a file name or a switch that modifies the
program’s behavior.

« Examples of the UNIX 1s command:

1s
1ls —1
ls -1 remind.c

IIIIIIIIII

Command-Line Arguments

« Command-line information is available to all programs,
not just operating system commands.

« To obtain access to command-line arguments, main
must have two parameters:

int main(int argc, char *argvl|[])

{

}

« Command-line arguments are called program
parameters in the C standard.

IIIIIIIIII

Command-Line Arguments

* argc (“argument count”) is the number of command-line
arguments.

* argv (‘argument vector”) is an array of pointers to the
command-line arguments (stored as strings).

 argv[0] points to the name of the program, while
argv[1] through argvargc-1] point to the remaining
command-line arguments.

« argv[argc] Is always a null pointer—a special pointer
that points to nothing.

— The macro NULL represents a null pointer.

IIIIIIIIII

Command-Line Arguments

* |f the user enters the command line

ls -1 remind.c
then argc will be 3, and argv will have the following

appearance:
argv
0 program name
1 - | 1 |\O
2 ri e m|i|/n|dl|.|c|\O
3

IIIIIIIIII

Command-Line Arguments

« Since argv IS an array of pointers, accessing command-
line arguments Is easy.

« Typically, a program that expects command-line
arguments will set up a loop that examines each
argument in turn.

« One way to write such a loop Is to use an integer variable
as an index into the argv array:

int 1;

for (i = 1; 1 < argc; 1i++)
printf ("%s\n", argv([i]);

IIIIIIIIII

Command-Line Arguments

« Another technigue is to set up a pointer to argv [11], then
Increment the pointer repeatedly:

char **p;

for (p = &argv[l]; *p != NULL; pt++)
printf ("%s\n", *p);

IIIIIIIIII

Program: Checking Planet Names

* The planet.c program illustrates how to access
command-line arguments.

« The program is designed to check a series of strings to
see which ones are names of planets.

* The strings are put on the command line:
S ./planet Jupiter venus Earth fred

« The program will indicate whether each string is a
planet name and, if it is, display the planet’s number:

Jupliter 1s planet 5
venus 1s not a planet
Earth i1s planet 3
fred 1s not a planet

IIIIIIIIII

planet.c

/* Checks planet names */

#include <stdio.h>
#include <string.h>

#define NUM PLANETS
int main(int argc,

{

char *planets|[] =

int i, 9;

9
char *argv]]

{"Mercury",

"Mars", "Jupiter",

"Uranus",

)

"Venus",

"Neptune",

"Earth",

"Saturn",

"Pluto"};

planet.c (cont.)

for (1 = 1; 1 < argc; 1++) {
for (J = 0; 7 < NUM_PLANETS; J++)

1f (strcmp(argv([i], planets[3j]) == 0) {
printf ("%s is planet %d\n", argv([i], J + 1);
break;
}
if (j == NUM PLANETS)

printf ("%$s is not a planet\n", argv[il]):

}

return 0;

C String
Library
&
Code
Examples

Chapter 22

Input/Output

IIIIIIIIII

Streams

* In C, the term stream means any source of input or any
destination for output.

« Many small programs obtain all their input from one
stream (the keyboard) and write all their output to another
stream (the screen).

e Larger programs may need additional streams.
« Streams often represent files stored on various media.

 However, they could just as easily be associated with
devices such as network ports and printers.

IIIIIIIIII

File Pointers

« Accessing a stream is done through a file pointer, which
has type FILE *.

« The FILE type is declared in <stdio.h>.

« Certain streams are represented by file pointers with
standard names.

« Additional file pointers can be declared as needed.:
FILE *fpl, *fp2;

IIIIIIIIII

Standard Streams and Redirection

 <stdio.h> provides three standard streams:

File Pointer Stream Default Meaning
stdin Standard input Keyboard
stdout Standard output Screen
stderr Standard error Screen

 These streams are ready to use—we don’t declare them,
and we don’t open or close them.

* File operations are provided by <stdio.h>.

IIIIIIIIII

File
Operations

Opening a File

* Opening a file for use as a stream requires a call of the
fopen function. Prototype for fopen:

FILE *fopen(const char * filename,
const char * mode);

« filename IS the name of the file to be opened.

— This argument may include information about the file’s
location, such as a drive specifier or path.

 mode is a “mode string” that specifies what operations we
Intend to perform on the file.

UNIVERSITY

Opening a File

« fopen returns a file pointer that the program saves in a
variable or returns a null pointer.

fp = fopen("in.dat", "r");
/* opens in.dat for reading */
« Or combined with the declaration of fp:
FILE *fp = fopen(FILE NAME, "r");
« Or combined with test against NULL:
if ((fp = fopen(FILE NAME, "r")) == NULL)

UNIVERSITY

Opening a File

* |In Windows, be careful when the file name in a
call of fopen Includes the \ character.

* The following call will fall:
fopen ("c:\project\testl.dat", "r”)

* One way to avoid the problem is to use \\ Iinstead
of \:
fopen ("c:\\project\\testl.dat"™, "r")

* An alternative is to use the / character instead of
\:

fopen ("c:/project/testl.dat", "r")

IIIIIIIIII

Modes

« Factors that determine which mode string to pass to
fopen:

— Which operations are to be performed on the file
— Whether the file contains text or binary data

IIIIIIIIII

Modes

« Mode strings for text files:

String
e
g
g m
wpgw
g
TPRY

Meaning
Open for reading
Open for writing (file need not exist)
Open for appending (file need not exist)
Open for reading and writing, starting at beginning
Open for reading and writing (truncate if file exists)
Open for reading and writing (append if file exists)

IIIIIIIIII

Closing a File

« The fclose function allows a program to close a file that
it's no longer using.

 The argument to fclose must be a file pointer obtained
from a call of fopen or freopen.

« fclose returns zero if the file was closed successfully.

« Otherwise, it returns the error code EOF (a macro defined
IN <stdio.h>).

IIIIIIIIII

Opening/Closing a File

« The outline of a program that opens a file for reading:

#include <stdio.h>
#include <stdlib.h>

#define FILE NAME "example.dat"

int main (void)

{
FILE *fp;

fp = fopen(FILE NAME, "r");
if (fp == NULL) {

printf ("Can't open %s\n", FILE NAME) ;
} exit (EXIT FAILURE); -

fclose (fp) ;
return 0;

Writing to a File

« The fprintf and printf functions write a variable
number of data items to an output stream, using a
format string to control the appearance of the output.

* The prototypes for both functions end with the . ..

symbol (an ellipsis), which indicates a variable number
of additional arguments:

int fprintf (FILE * restrict stream,
const char * restrict format, ...);
int printf (const char * restrict format, ...);

« Both functions return the number of characters written;
a negative return value indicates that an error occurred.

YORKJ

IIIIIIIIII

Writing to a File

 printf always writes to stdout, whereas fprintf
writes to the stream indicated by its first argument:

printf ("Total: %d\n", total);
/* writes to stdout */
fprintf (fp, "Total: %d\n", total);
/* writes to fp */
« Acall of printf is equivalent to a call of fprintf with
stdout as the first argument.

UNIVERSITY

Writing to a File

 fprintf works with any output stream.

 One of its most common uses Is to write error
messages to stderr:

fprintf (stderr, "Error: data file can't be opened.\n");
« Writing a message to stderr guarantees that it will

appear on the screen even if the user redirects
stdout.

Reading from a File

« fscanf and scanf read data items from an input stream,
using a format string to indicate the layout of the input.

 After the format string, any number of pointers—each
pointing to an object—follow as additional arguments.

 Input items are converted (according to conversion
specifications in the format string) and stored in these
objects.

IIIIIIIIII

Detecting End-of-File (EOF) and Error
Conditions

 |fwe ask a..scanf function to read and store n data
items, we expect its return value to be n.

 If the return value is less than n, something went wrong:

— End-of-file. The function encountered end-of-file before
matching the format string completely.

— Read error. The function was unable to read characters
from the stream.

— Matching failure. A data item was in the wrong format.

IIIIIIIIII

Detecting End-of-File and Error Conditions

« Every stream has two indicators associated with it: an
error indicator and an end-of-file indicator.

« These indicators are cleared when the stream is opened.

* Encountering end-of-file sets the end-of-file indicator, and
a read error sets the error indicator.

— The error indicator is also set when a write error occurs on
an output stream.

« A matching failure doesn’t change either indicator.

IIIIIIIIII

Code
Examples

Chapter 16

Structures

IIIIIIIIII

Structure Variables

« The properties of a structure are different from those of
an array.

— The elements of a structure (its members) aren’t required
to have the same type.

— The members of a structure have names; to select a
particular member, we specify its name, not its position.

IIIIIIIIII

Declaring Structure Variables

« Astructure is a logical choice for storing a collection of
related data items.

« A declaration of two structure variables that store
Information about parts in a warehouse:
struct {
int number;
char name [NAME LEN+1];
int on hand;
} partl, part?2;

IIIIIIIIII

Declaring Structure Variables

« The members of a structure are
stored in memory in the order Iin
which they're declared.

« Appearance of partl

e Assumptions:
— partl is located at address 2000.
— Integers occupy four bytes.
— NAME LEN has the value 25.

— There are no gaps between the
members.

2000

2001

2002

2003

2004

2029

2030

2031

2032

2033

>number

>name

>on_ hand

UNIVERSITY

Declaring Structure Variables

« Abstract representations of a structure:

number

name number name on_ hand

on hand

 Member values will go in the boxes later.

IIIIIIIIII

Declaring Structure Variables

« Each structure represents a new scope.
* Any names declared in that scope won’t conflict with other
names in a program.

« In C terminology, each structure has a separate name
space for its members.

IIIIIIIIII

Declaring Structure Variables

* For example, the following declarations can appear in the
same program:

struct {
int number;
char name [NAME LEN+1];
int on hand;

} partl, part?;

struct {
char name [NAME LEN+1];
int number;
char sex;

} employeel, employeeZ;

Initializing Structure Variables

« A structure declaration may include an initializer:

struct {
int number;
char name[NAME LEN+1];
int on hand;
} partl = {528, "Disk drive", 10},
part2 = {914, "Printer cable", 5};

« Appearance of part1 after initialization:

number 528

name |Disk drive

on hand 10

Operations on Structures

« To access a member within a structure, we write the
name of the structure first, then a period, then the
name of the member.

« Statements that display the values of partl’s
members:

printf ("Part number: %d\n", partl.number);
printf ("Part name: %$s\n", partl.name);
printf ("Quantity on hand: %d\n", partl.on hand);

UNIVERSITY

Operations on Structures

« The members of a structure are lvalues.

« They can appear on the left side of an assignment or as
the operand in an increment or decrement expression:

partl.number = 258;

/* changes partl's part number */
partl.on hand++;

/* increments partl's quantity on hand */

Operations on Structures

« The period used to access a structure member is actually
a C operator.

It takes precedence over nearly all other operators.
« Example:
scanf ("%d", &partl.on hand);

The . operator takes precedence over the & operator, So
& computes the address of partl.on hand.

IIIIIIIIII

Operations on Structures

« The other major structure operation is assignment:
part?2 = partl;
« The effect of this statement is to copy partl.number

INt0O part2.number, partl.name INtO part2.name,
and so on.

IIIIIIIIII

Operations on Structures

« Arrays can’t be copied using the = operator, but an array

embedded within a structure is copied when the enclosing
structure Is copied.

« Some programmers exploit this property by creating
“dummy” structures to enclose arrays that will be copied
later:
struct { int a[l1l0],; } al, aZ2;
al = az2;

/* legal, since al and a2 are structures */

IIIIIIIIII

Structure Types

« Suppose that a program needs to declare several
structure variables with identical members.

 We need a name that represents a type of structure, not a
particular structure variable.
« Ways to name a structure:

— Declare a “structure tag”
— Use typedef to define a type name

IIIIIIIIII

Declaring a Structure Tag

« Astructure tag is a name used to identify a particular
kind of structure.

The declaration of a structure tag named part:

struct part {
int number;
char name [NAME LEN+1];
int on hand;

¥
* Note that a semicolon must follow the right brace.

IIIIIIIIII

Declaring a Structure Tag

 The part tag can be used to declare variables:
struct part partl, part?2;

 We can’t drop the word struct:
part partl, part2; /*** WRONG ***/

part isn’'t a type name; without the word struct, itis
meaningless.

IIIIIIIIII

Declaring a Structure Tag

« The declaration of a structure tag can be combined with
the declaration of structure variables:

struct part {
int number;
char name [NAME LEN+1];
int on hand;

} partl, part2;

IIIIIIIIII

Defining a Structure Type

* As an alternative to declaring a structure tag, we can use
typedef to define a genuine type name.

« A definition of a type named Part:
typedef struct {
int number;
char name [NAME LEN+1];
int on hand;
} Part;

 Part IS used in the same way as the built-in types:
Part partl, part2;

IIIIIIIIII

Nested Arrays and Structures

« Structures and arrays can be combined without
restriction.

« Arrays may have structures as their elements, and
structures may contain arrays and structures as
members.

IIIIIIIIII

Nested Structures

« Nesting one structure inside another is often useful.
* Suppose that person name Is the following structure:

struct person name
char first[FIRST NAME LEN+1];
char middle initial;
char last[LAST NAME LEN+1];
I

UNIVERSITY

Nested Structures

 We can use person name as part of a larger structure:

struct student {
struct person name name;
int 1d, age;
char sex;
} studentl, student?2;
« Accessing student1l’s first name, middle initial, or last
name requires two applications of the . operator:

strcpy (studentl.name.first, "Fred");

Arrays of Structures

* One of the most common combinations of arrays and
structures is an array whose elements are structures.

« This kind of array can serve as a simple database.

« An array of part structures capable of storing information
about 100 parts:

struct part inventory[100];

IIIIIIIIII

Arrays of Structures

« Accessing a part in the array Is done by using
subscripting:
print part (inventoryl[i]);

« Accessing a member within a part structure

requires a combination of subscripting and member
selection:

inventory[1] .number = 883;

« Accessing a single character in a part name
requires subscripting, followed by selection,
followed by subscripting:

inventory[i] .name[0] = '\O0';

IIIIIIIIII

Structures as Arguments

* Functions may have structures as arguments and return

values.
« A function with a structure argument:

void print part (struct part p)
{

printf ("Part number: %d\n", p.number);

printf ("Part name: %s\n", p.name);
printf ("Quantity on hand: %d\n", p.on hand);

}
 Acallof print part:
print part (partl);

Structures as Arguments

« A function that returns a part structure:

struct part build part(int number,
const char *name,

int on hand)

struct part p;

p.number = number;
strcpy (p.name, name);
p.on hand = on hand;
return p;

}
* Acallof build part:

partl = build part (528, "Disk drive", 10);
YORKWS

Structures as Arguments

« Passing a structure to a function and returning a structure
from a function both require making a copy of all
members in the structure.

« To avoid this overhead, it's sometimes advisable to pass
a pointer to a structure or return a pointer to a structure.

« Chapter 17 gives examples of functions that have a
pointer to a structure as an argument and/or return a
pointer to a structure (see tutorial).

IIIIIIIIII

Pointers to Structures

 When we create a new part, we’ll need a variable that can
point to the new part temporarily:

struct part *new part;

 WEe'll use malloc to allocate memory for the new node,
saving the return value in new part:
new part = malloc(sizeof (struct part));

* new part now points to a block of memory just large
enough to hold a part structure:

IIIIIIIIII

Pointers to Structures

 Next, we'll store data in the number member of the new
node:

(*new part) .number = 10;

* The parentheses around *new part are mandatory
because the . operator would otherwise take precedence
over the * operator.

IIIIIIIIII

The -> Operator

« Accessing a member of a structure using a pointer is so
common that C provides a special operator for this
purpose.

« This operator, known as right arrow selection, is a
minus sign followed by >.

« Using the —-> operator, we can write

new part->number = 10;
Instead of
(*new part) .number = 10;

IIIIIIIIII

The -> Operator

 The -> operator produces an lvalue, so we can use it
wherever an ordinary variable would be allowed.

 Ascanf example:

scanf ("%d", &new part->number);

* The & operator is still required, even though new part is
a pointer.

IIIIIIIIII

Chapter 17

Dynamic Memory Management and Linked Lists

IIIIIIIIII

Dynamic Storage Allocation

« (C's data structures, including arrays, are normally fixed in
size.

* Fixed-size data structures can be a problem, since we’re
forced to choose their sizes when writing a program.

* Fortunately, C supports dynamic storage allocation: the
ability to allocate storage during program execution.

« Using dynamic storage allocation, we can design data
structures that grow (and shrink) as needed.

IIIIIIIIII

Dynamic Storage Allocation

« Dynamic storage allocation is used most often for strings,
arrays, and structures.

« Dynamically allocated structures can be linked together to
form lists, trees, and other data structures.

« Dynamic storage allocation is done by calling a memory
allocation function.

IIIIIIIIII

Memory Allocation Functions

« The <stdlib.h> header declares three memory
allocation functions:

malloc—Allocates a block of memory but doesn’t
Initialize it.
calloc—Allocates a block of memory and clears it.

realloc—Resizes a previously allocated block of
memory.

« These functions return a value of type void * (a “generic”
pointer).

IIIIIIIIII

Null Pointers

« If a memory allocation function can’t locate a memory
block of the requested size, it returns a null pointer.

« Anull pointer is a special value that can be distinguished
from all valid pointers.

« After we've stored the function’s return value in a pointer
variable, we must test to see if it's a null pointer.

IIIIIIIIII

Null Pointers

« An example of testing malloc’s return value:

p = malloc(10000);
if (p == NULL) {
/* allocation failed; take appropriate action */

}
 NULL Is a macro (defined in various library headers)
that represents the null pointer.

« Some programmers combine the call of malloc with
the NULL test:

if ((p = malloc(10000)) == NULL) {
/* allocation failed; take appropriate action */

}

Dynamically
Allocated
Strings

Dynamically Allocated Strings

« Dynamic storage allocation is often useful for working with
strings.

e Strings are stored in character arrays, and it can be hard
to anticipate how long these arrays need to be.

« By allocating strings dynamically, we can postpone the
decision until the program is running.

IIIIIIIIII

Using malloc to Allocate Storage for a String

* Prototype for the malloc function:
volid *malloc(size t size);
 malloc allocates a block of size bytes and returns a

pointer to it.
* size tisanunsigned integer type defined in the library.

IIIIIIIIII

Using malloc to Allocate Storage for a String

« Acall of malloc that allocates memory for a string of n
characters:

char * p;

p = malloc(n + 1);

« Some programmers prefer to cast malloc’s return value,
although the cast is not required:

p = (char *) malloc(n + 1);

IIIIIIIIII

Using malloc to Allocate Storage for a String

« Memory allocated using malloc isn’t cleared, so p will
point to an uninitialized array of n + 1 characters:

IIIIIIIIII

Using malloc to Allocate Storage for a String

« Calling strcpy is one way to initialize this array:

strcpy (p, "abc");

« The first four characters in the array will now be a, b, c,
and \0:

IIIIIIIIII

Example function: concat

« Dynamic storage allocation makes it possible to write
functions that return a pointer to a "new” string.

« Consider the problem of writing a function that
concatenates two strings without changing either
one.

« The function will measure the lengths of the two
strings to be concatenated, then call malloc to
allocate the right amount of space for the result.

IIIIIIIIII

Example function: concat

char *concat (const char *sl, const char *s2)

{

char *result;

result = malloc(strlen(sl) + strlen(s2) + 1);

1f (result == NULL) {
printf ("Error: malloc failed in concat\n");
exit (EXIT FAILURE) ;

}
strcpy (result, sl);

strcat (result, s2);
return result;

Example function: concat

 Acall ofthe concat function:

p = concat ("abc", "detf");

 After the call, p will point to the string "abcdef",
which is stored in a dynamically allocated array.

IIIIIIIIII

Dynamically
Allocated
Arrays

Dynamically Allocated Arrays

« Dynamically allocated arrays have the same advantages
as dynamically allocated strings.

« The close relationship between arrays and pointers
makes a dynamically allocated array as easy to use as an
ordinary array.

« Although malloc can allocate space for an array, the
calloc function is sometimes used instead, since it
Initializes the memory that it allocates.

 The realloc function allows us to make an array “grow”
or “shrink” as needed.

IIIIIIIIII

Using malloc to Allocate Storage for an Array

e Suppose a program needs an array of n integers, where n
IS computed during program execution.

« WEe'll first declare a pointer variable:
int *a;

* Once the value of n is known, the program can call
malloc to allocate space for the array:

a = malloc(n * sizeof (int)):;

« Always use the sizeof operator to calculate the amount
of space required for each element.

IIIIIIIIII

Using malloc to Allocate Storage for an Array

« We can now ignore the fact that a is a pointer and use it
Instead as an array name, thanks to the relationship
between arrays and pointers in C.

* For example, we could use the following loop to initialize
the array that a points to:

for (i = 0; 1 < n; i++)
ali] = 0;

IIIIIIIIII

The calloc Function

« The calloc function is an alternative to malloc.
* Prototype for calloc:

void *calloc(size t nmemb, size t size);
* Properties of calloc:

— Allocates space for an array with nmemb elements, each of
which is size bytes long.

— Returns a null pointer if the requested space isn’t available.
— Initializes allocated memory by setting all bits to O.

UNIVERSITY

The calloc Function

« Acall of calloc that allocates space for an array of n
Integers:

a = calloc(n, sizeof (int));

IIIIIIIIII

The realloc Function

« The realloc function can resize a dynamically allocated
array.

* Prototype for realloc:
void *realloc(void *ptr, size t size);

* ptr must point to a memory block obtained by a previous
callof malloc, calloc,0or realloc.

* size represents the new size of the block, which may be
larger or smaller than the original size.

IIIIIIIIII

The realloc Function

* Properties of realloc:

— When it expands a memory block, realloc doesn’t
Initialize the bytes that are added to the block.

- If realloc can’t enlarge the memory block as requested, it

returns a null pointer; the data in the old memory block is
unchanged.

— If realloc Is called with a null pointer as its first argument,
It behaves like malloc.

— If realloc Is called with O as its second argument, it frees
the memory block.

UNIVERSITY

The realloc Function

 We expect realloc to be reasonably efficient:

— When asked to reduce the size of a memory block,
realloc should shrink the block “in place.”

— realloc should always attempt to expand a memory
block without moving it.
 |fit can’t enlarge a block, realloc will allocate a
new block elsewhere, then copy the contents of the
old block into the new one.

 Once realloc has returned, be sure to update all
pointers to the memory block in case it has been
moved.

IIIIIIIIII

Deallocating Storage

 malloc and the other memory allocation functions obtain
memory blocks from a storage pool known as the heap.

« Calling these functions too often—or asking them for large
blocks of memory—can exhaust the heap, causing the
functions to return a null pointer.

« To make matters worse, a program may allocate blocks of
memory and then lose track of them, thereby wasting
space.

IIIIIIIIII

Deallocating Storage

« Example:
p = malloc(..);
g = malloc(..);
L = ds
« A snapshot after the first two statements have been
executed:

g
IS

L

IIIIIIIIII

Deallocating Storage

« After g is assigned to p, both variables now point to the
second memory block:

« There are no pointers to the first block, so we’'ll never be
able to use it again.

IIIIIIIIII

Deallocating Storage

« ADblock of memory that's no longer accessible to a
program is said to be garbage.

« A program that leaves garbage behind has a memory
leak.

« Some languages provide a garbage collector that
automatically locates and recycles garbage, but C
doesn't.

* Instead, each C program is responsible for recycling its
own garbage by calling the free function to release

unneeded memory.

IIIIIIIIII

The £free Function

* Prototype for free:
volid free (void *ptr);
 free Will be passed a pointer to an unneeded memory

block:
p = malloc(..);
g = malloc(..);
free (p);
e = ds
« Calling free releases the block of memory that p points
to.

IIIIIIIIII

The "Dangling Pointer” Problem

* Using free leads to a new problem: dangling pointers.

« free (p) deallocates the memory block that p points to,
but doesn’t change p itself.

 If we forget that p no longer points to a valid memory
block, chaos may ensue:
char *p = malloc(4);
free(p);
gtrcpy(p, "abc") ; /*** WRONG **x*/
* Modifying the memory that p points to Is a serious errotr.

IIIIIIIIII

The "Dangling Pointer” Problem

« Dangling pointers can be hard to spot, since several
pointers may point to the same block of memory.

* When the block is freed, all the pointers are left dangling.

IIIIIIIIII

Linked
Lists

Makefile

(Extra Topic -
No exam material)

LY ‘
I'VERSITE '
IVERSITY

Makefiles

Makefiles were originally designed to support separate

compilation of C files.

FLAGS = -g
all: query printlog

query: query.o message.o queue.o
gcc ${FLAGS} -o $@ s$”

printlog: printlog.o message.o queue.o
gcc S${FLAGS} -o $@ $~

Separately compile each C file
.0 : %.C message.h
gcc S{FLAGS} -c $<

o®

clean :
-rm *.0 query

Terminology

Target Prerequiste(s)

| revexse [reverse.cC

|
|
gcc -Wall -0 reverse reverse.c |
|
|

Actions(s)

« May be many prerequisites
* Rule may have many actions (one per line)

IIIIIIIIII

Running make

* make

— with no options looks for a file called Makefile, and
evaluates the first rule

* make query

— Looks for a file called Makefile and looks for a rule with the
target query and evaluates it

UNIVERSITY

How It works

 Make looks at the target and when its prerequisites were
last modified

— It assumes targets are files and checks the dates of
the files

» Make does nothing...
— If the target exists, and
— |Is more recent than all its prerequisites
« Make executes the actions...
— If the target doesn't exist, or
— If any prerequisite is more recent than the target

IIIIIIIIII

Variables

CFLAGS= —-g -Wall
reverse: reverse.cC

gce S{CFLAGS} -0 reverse reverse.cC

Make defines variables to represent parts of rules

s@ |Target

$< |First prerequisite

$? | All out of date prerequisites
$ |All prerequisites ~ |L 5o :

IIIIIIIIII

Pattern rules

Most files are compiled the same way
We can write a pattern rule for the general case

©) @)

6.0: 6.C

gcce S{CFLAGS} -c $<
Use % to mark the stem of the file’'s name
Like using * in commands in Unix

-c flag in gcc does compilation of file without linking

IIIIIIIIII

Multiple Targets and Phony Targets

« Often you want one command to build a number of other
targets

all: query printlog
printlog: ..

query: ..

* Or targets aren’t building anything
clean:
rm *.0 query printlog

IIIIIIIIII

