
Introduction to

C Programming (Part C)

Copyright © 2008 W. W. Norton & Company. All rights Reserved

Overview (King Ch. 13, 22, 16-17)

• Strings (Ch. 13)

• Input/Output (Ch. 22)

• Structures (Ch. 16)

• Dynamic memory Management/Linked Lists (Ch. 17)

• Makefile (Ch. 15)

2

Chapter 13

Strings

Introduction

• This chapter covers

− string constants (or literals)

− string variables

• Strings are arrays of characters

• The C library provides a collection of functions for working
with strings: <string.h>

4

How String Literals Are Stored

• The string literal "abc" is stored as an array of four

characters:

• A special character—the null character—marks the end

of a string (i.e., a byte whose bits are all zero)

• The string "" is stored as a single null character:

5

Operations on String Literals

• We can use a string literal wherever C allows a char *
pointer:

char *p;

p = "abc";

This assignment makes p point to the first character of the
string.

• String literals can be subscripted:

char ch;

ch = "abc"[1];

The new value of ch will be the letter b

6

Operations on String Literals

• Attempting to modify a string literal causes undefined

behavior:

char *p = "abc";

*p = 'd'; /*** WRONG ***/

• A program that tries to change a string literal may crash or

behave erratically.

7

String Variables

• If a string variable needs to hold 80 characters, it must be

declared to have length 81:

#define STR_LEN 80

…

char str[STR_LEN+1];

• Adding 1 to the desired length allows room for the null

character at the end of the string.

8

Initializing a String Variable

• A string variable can be initialized at the same time it’s

declared:

char date1[8] = "June 14";

• The compiler will automatically add a null character so
that date1 can be used as a string:

• We may omit its length:

char date1[] = "June 14";

9

Initializing a String Variable

• If the initializer is too short to fill the string variable, the

compiler adds extra null characters:

char date2[9] = "June 14";

• An initializer can’t be longer than the variable size:

char date3[7] = "June 14”;

10

Character Arrays vs Character Pointers

• The declaration

char date[] = "June 14";

declares date to be an array,

• The similar-looking

char *date = "June 14";

declares date to be a pointer.

• Thanks to the close relationship between arrays and

pointers, either version can be used as a string.

11

• However, there are significant differences between the
two versions of date.

− In the array version, the characters stored in date can be

modified. In the pointer version, date points to a string

literal that shouldn’t be modified.

 String literals are stored at read-only memory and trying to

modify this memory leads to undefined behavior (memory

access violation)

− In the array version, date is an array name. In the pointer

version, date is a pointer variable that can point to other

strings.

12

Character Arrays vs Character Pointers

• The declaration

char *p;

does not allocate space for a string.

• Before we can use p as a string, it must point to an
array of characters.

• One possibility is to make p point to a string variable:

char str[STR_LEN+1], *p;

p = str;

• Another possibility is to make p point to a dynamically
allocated string.

13

Character Arrays vs Character Pointers

• Using an uninitialized pointer variable as a string is a

serious error.

• An attempt at building the string "abc":

char *p;

p[0] = 'a'; /*** WRONG ***/

p[1] = 'b'; /*** WRONG ***/

p[2] = 'c'; /*** WRONG ***/

p[3] = '\0'; /*** WRONG ***/

• Since p hasn’t been initialized, this causes undefined

behavior.

14

Character Arrays vs Character Pointers

Reading and Writing Strings

• Writing a string is easy using printf or puts.

• Reading a string is easy using scanf or gets.

• We can read strings one character at a time, using a

function that

− (1) doesn’t skip white-space characters

− (2) stops reading at the first new-line character (which isn’t

stored in the string)

− (3) discards extra character

15

Reading Strings Char. by Char.

• read_line consists primarily of a loop that calls
getchar to read a character and then stores the
character in str, provided that there’s room left:
int read_line(char str[], int n)

{
int ch, i = 0;

while ((ch = getchar()) != '\n')

if (i < n)

str[i++] = ch;

str[i] = '\0'; /* terminates string */

return i; /* number of characters stored */
}

• ch has int type rather than char type because
getchar returns an int value.

16

Accessing the Characters in a String

• Since strings are stored as arrays, we can use

subscripting to access the characters in a string.

• To process every character in a string s, we can set up a

loop that increments a counter i and selects characters

via the expression s[i].

17

Accessing the Characters in a String

• A function that counts the number of spaces in a string:

int count_spaces(const char s[])

{

int count = 0, i;

for (i = 0; s[i] != '\0'; i++)

if (s[i] == ' ')

count++;

return count;

}

18

Accessing the Characters in a String

• A version that uses pointer arithmetic instead of array

subscripting :

int count_spaces(const char *s)

{

int count = 0;

for (; *s != '\0'; s++)

if (*s == ' ')

count++;

return count;

}

19

Accessing the Characters in a String

• Questions raised by the count_spaces example:

− Q1: Is it better to use array operations or pointer operations

to access the characters in a string?

 A1: We can use either or both. Traditionally, C programmers

lean toward using pointer operations.

− Q2: Should a string parameter be declared as an array or

as a pointer?

 A2: There’s no difference between the two.

− Q3: Does the form of the parameter (s[] or *s) affect what

can be supplied as an argument?

 A3: No.

20

Array of

Strings

Array of Strings

• There is more than one way to store an array of strings.

• One option is to use a two-dimensional array of

characters, with one string per row:

char planets[][8] = {"Mercury", "Venus", "Earth",

"Mars", "Jupiter", "Saturn",

"Uranus", "Neptune", "Pluto"};

• The number of rows in the array can be omitted, but we

must specify the number of columns.

22

Arrays of Strings

• Unfortunately, the planets array contains a fair bit of

wasted space (extra null characters):

23

Arrays of Strings

• Most collections of strings will have a mixture of long

strings and short strings.

• What we need is a ragged array, whose rows can have

different lengths.

• We can simulate a ragged array in C by creating an array

whose elements are pointers to strings:

char *planets[] = {"Mercury", "Venus", "Earth",

"Mars", "Jupiter", "Saturn",

"Uranus", "Neptune", "Pluto"};

24

Arrays of Strings

• This small change has a dramatic effect on how planets

is stored:

25

Arrays of Strings

• To access one of the planet names, all we need do is
subscript the planets array.

• Accessing a character in a planet name is done in the

same way as accessing an element of a two-dimensional

array.

• A loop that searches the planets array for strings

beginning with the letter M:

for (i = 0; i < 9; i++)

if (planets[i][0] == 'M')

printf("%s begins with M\n", planets[i]);

26

Command-Line Arguments

• When we run a program, we’ll often need to supply it with

information.

• This may include a file name or a switch that modifies the

program’s behavior.

• Examples of the UNIX ls command:

ls

ls –l

ls -l remind.c

27

Command-Line Arguments

• Command-line information is available to all programs,

not just operating system commands.

• To obtain access to command-line arguments, main

must have two parameters:

int main(int argc, char *argv[])

{
…

}

• Command-line arguments are called program

parameters in the C standard.

28

Command-Line Arguments

• argc (“argument count”) is the number of command-line

arguments.

• argv (“argument vector”) is an array of pointers to the

command-line arguments (stored as strings).

• argv[0] points to the name of the program, while

argv[1] through argv[argc-1] point to the remaining

command-line arguments.

• argv[argc] is always a null pointer—a special pointer

that points to nothing.

− The macro NULL represents a null pointer.

29

Command-Line Arguments

• If the user enters the command line

ls -l remind.c

then argc will be 3, and argv will have the following

appearance:

30

Command-Line Arguments

• Since argv is an array of pointers, accessing command-

line arguments is easy.

• Typically, a program that expects command-line

arguments will set up a loop that examines each

argument in turn.

• One way to write such a loop is to use an integer variable
as an index into the argv array:

int i;

for (i = 1; i < argc; i++)

printf("%s\n", argv[i]);

31

Command-Line Arguments

• Another technique is to set up a pointer to argv[1], then

increment the pointer repeatedly:

char **p;

for (p = &argv[1]; *p != NULL; p++)

printf("%s\n", *p);

32

Program: Checking Planet Names

• The planet.c program illustrates how to access
command-line arguments.

• The program is designed to check a series of strings to
see which ones are names of planets.

• The strings are put on the command line:
$./planet Jupiter venus Earth fred

• The program will indicate whether each string is a
planet name and, if it is, display the planet’s number:
Jupiter is planet 5

venus is not a planet

Earth is planet 3

fred is not a planet

33

planet.c

/* Checks planet names */

#include <stdio.h>

#include <string.h>

#define NUM_PLANETS 9

int main(int argc, char *argv[])

{

char *planets[] = {"Mercury", "Venus", "Earth",

"Mars", "Jupiter", "Saturn",

"Uranus", "Neptune", "Pluto"};

int i, j;

34

planet.c (cont.)

for (i = 1; i < argc; i++) {

for (j = 0; j < NUM_PLANETS; j++)

if (strcmp(argv[i], planets[j]) == 0) {

printf("%s is planet %d\n", argv[i], j + 1);

break;

}

if (j == NUM_PLANETS)

printf("%s is not a planet\n", argv[i]);

}

return 0;

}

35

C String

Library

&

Code

Examples

Chapter 22

Input/Output

Streams

• In C, the term stream means any source of input or any

destination for output.

• Many small programs obtain all their input from one

stream (the keyboard) and write all their output to another

stream (the screen).

• Larger programs may need additional streams.

• Streams often represent files stored on various media.

• However, they could just as easily be associated with

devices such as network ports and printers.

38

File Pointers

• Accessing a stream is done through a file pointer, which
has type FILE *.

• The FILE type is declared in <stdio.h>.

• Certain streams are represented by file pointers with

standard names.

• Additional file pointers can be declared as needed:

FILE *fp1, *fp2;

39

Standard Streams and Redirection

• <stdio.h> provides three standard streams:

File Pointer Stream Default Meaning

stdin Standard input Keyboard

stdout Standard output Screen

stderr Standard error Screen

• These streams are ready to use—we don’t declare them,

and we don’t open or close them.

• File operations are provided by <stdio.h>.

40

File

Operations

Opening a File

• Opening a file for use as a stream requires a call of the
fopen function. Prototype for fopen:

FILE *fopen(const char * filename,

const char * mode);

• filename is the name of the file to be opened.

− This argument may include information about the file’s

location, such as a drive specifier or path.

• mode is a “mode string” that specifies what operations we

intend to perform on the file.

42

Opening a File

• fopen returns a file pointer that the program saves in a

variable or returns a null pointer.

fp = fopen("in.dat", "r");

/* opens in.dat for reading */

• Or combined with the declaration of fp:

FILE *fp = fopen(FILE_NAME, "r");

• Or combined with test against NULL:

if ((fp = fopen(FILE_NAME, "r")) == NULL) …

43

Opening a File

• In Windows, be careful when the file name in a
call of fopen includes the \ character.

• The following call will fail:

fopen("c:\project\test1.dat", "r”)

• One way to avoid the problem is to use \\ instead

of \:

fopen("c:\\project\\test1.dat", "r")

• An alternative is to use the / character instead of

\:

fopen("c:/project/test1.dat", "r")

44

Modes

• Factors that determine which mode string to pass to
fopen:

− Which operations are to be performed on the file

− Whether the file contains text or binary data

45

Modes

• Mode strings for text files:

String Meaning

"r" Open for reading

"w" Open for writing (file need not exist)

"a" Open for appending (file need not exist)

"r+" Open for reading and writing, starting at beginning

"w+" Open for reading and writing (truncate if file exists)

"a+" Open for reading and writing (append if file exists)

46

Closing a File

• The fclose function allows a program to close a file that

it’s no longer using.

• The argument to fclose must be a file pointer obtained

from a call of fopen or freopen.

• fclose returns zero if the file was closed successfully.

• Otherwise, it returns the error code EOF (a macro defined

in <stdio.h>).

47

Opening/Closing a File

• The outline of a program that opens a file for reading:
#include <stdio.h>
#include <stdlib.h>

#define FILE_NAME "example.dat"

int main(void)

{
FILE *fp;

fp = fopen(FILE_NAME, "r");
if (fp == NULL) {
printf("Can't open %s\n", FILE_NAME);

exit(EXIT_FAILURE);
}
…
fclose(fp);

return 0;
}

48

Writing to a File

• The fprintf and printf functions write a variable

number of data items to an output stream, using a

format string to control the appearance of the output.

• The prototypes for both functions end with the ...

symbol (an ellipsis), which indicates a variable number

of additional arguments:

int fprintf(FILE * restrict stream,

const char * restrict format, ...);

int printf(const char * restrict format, ...);

• Both functions return the number of characters written;

a negative return value indicates that an error occurred.

49

Writing to a File

• printf always writes to stdout, whereas fprintf

writes to the stream indicated by its first argument:

printf("Total: %d\n", total);

/* writes to stdout */

fprintf(fp, "Total: %d\n", total);

/* writes to fp */

• A call of printf is equivalent to a call of fprintf with

stdout as the first argument.

50

Writing to a File

• fprintf works with any output stream.

• One of its most common uses is to write error
messages to stderr:

fprintf(stderr, "Error: data file can't be opened.\n");

• Writing a message to stderr guarantees that it will

appear on the screen even if the user redirects
stdout.

51

Reading from a File

• fscanf and scanf read data items from an input stream,

using a format string to indicate the layout of the input.

• After the format string, any number of pointers—each

pointing to an object—follow as additional arguments.

• Input items are converted (according to conversion

specifications in the format string) and stored in these

objects.

52

Detecting End-of-File (EOF) and Error

Conditions

• If we ask a …scanf function to read and store n data

items, we expect its return value to be n.

• If the return value is less than n, something went wrong:

− End-of-file. The function encountered end-of-file before

matching the format string completely.

− Read error. The function was unable to read characters

from the stream.

− Matching failure. A data item was in the wrong format.

53

Detecting End-of-File and Error Conditions

• Every stream has two indicators associated with it: an

error indicator and an end-of-file indicator.

• These indicators are cleared when the stream is opened.

• Encountering end-of-file sets the end-of-file indicator, and

a read error sets the error indicator.

− The error indicator is also set when a write error occurs on

an output stream.

• A matching failure doesn’t change either indicator.

54

Code

Examples

Chapter 16

Structures

Structure Variables

• The properties of a structure are different from those of

an array.

− The elements of a structure (its members) aren’t required

to have the same type.

− The members of a structure have names; to select a

particular member, we specify its name, not its position.

57

Declaring Structure Variables

• A structure is a logical choice for storing a collection of

related data items.

• A declaration of two structure variables that store

information about parts in a warehouse:

struct {

int number;

char name[NAME_LEN+1];

int on_hand;

} part1, part2;

58

Declaring Structure Variables

• The members of a structure are

stored in memory in the order in

which they’re declared.

• Appearance of part1

• Assumptions:

− part1 is located at address 2000.

− Integers occupy four bytes.

− NAME_LEN has the value 25.

− There are no gaps between the

members.

59

Declaring Structure Variables

• Abstract representations of a structure:

• Member values will go in the boxes later.

60

Declaring Structure Variables

• Each structure represents a new scope.

• Any names declared in that scope won’t conflict with other

names in a program.

• In C terminology, each structure has a separate name

space for its members.

61

Declaring Structure Variables

• For example, the following declarations can appear in the
same program:

struct {

int number;

char name[NAME_LEN+1];

int on_hand;

} part1, part2;

struct {

char name[NAME_LEN+1];

int number;

char sex;

} employee1, employee2;

62

Initializing Structure Variables

• A structure declaration may include an initializer:
struct {

int number;

char name[NAME_LEN+1];

int on_hand;

} part1 = {528, "Disk drive", 10},

part2 = {914, "Printer cable", 5};

• Appearance of part1 after initialization:

63

Operations on Structures

• To access a member within a structure, we write the

name of the structure first, then a period, then the

name of the member.

• Statements that display the values of part1’s

members:

printf("Part number: %d\n", part1.number);

printf("Part name: %s\n", part1.name);

printf("Quantity on hand: %d\n", part1.on_hand);

65

Operations on Structures

• The members of a structure are lvalues.

• They can appear on the left side of an assignment or as

the operand in an increment or decrement expression:

part1.number = 258;

/* changes part1's part number */

part1.on_hand++;

/* increments part1's quantity on hand */

66

Operations on Structures

• The period used to access a structure member is actually

a C operator.

• It takes precedence over nearly all other operators.

• Example:

scanf("%d", &part1.on_hand);

The . operator takes precedence over the & operator, so

& computes the address of part1.on_hand.

67

Operations on Structures

• The other major structure operation is assignment:

part2 = part1;

• The effect of this statement is to copy part1.number

into part2.number, part1.name into part2.name,

and so on.

68

Operations on Structures

• Arrays can’t be copied using the = operator, but an array

embedded within a structure is copied when the enclosing

structure is copied.

• Some programmers exploit this property by creating

“dummy” structures to enclose arrays that will be copied

later:

struct { int a[10]; } a1, a2;

a1 = a2;

/* legal, since a1 and a2 are structures */

69

Structure Types

• Suppose that a program needs to declare several

structure variables with identical members.

• We need a name that represents a type of structure, not a

particular structure variable.

• Ways to name a structure:

− Declare a “structure tag”

− Use typedef to define a type name

70

Declaring a Structure Tag

• A structure tag is a name used to identify a particular

kind of structure.

• The declaration of a structure tag named part:

struct part {

int number;

char name[NAME_LEN+1];

int on_hand;

};

• Note that a semicolon must follow the right brace.

71

Declaring a Structure Tag

• The part tag can be used to declare variables:

struct part part1, part2;

• We can’t drop the word struct:

part part1, part2; /*** WRONG ***/

part isn’t a type name; without the word struct, it is

meaningless.

72

Declaring a Structure Tag

• The declaration of a structure tag can be combined with

the declaration of structure variables:

struct part {

int number;

char name[NAME_LEN+1];

int on_hand;

} part1, part2;

73

Defining a Structure Type

• As an alternative to declaring a structure tag, we can use
typedef to define a genuine type name.

• A definition of a type named Part:

typedef struct {

int number;

char name[NAME_LEN+1];

int on_hand;

} Part;

• Part is used in the same way as the built-in types:

Part part1, part2;

74

Nested Arrays and Structures

• Structures and arrays can be combined without

restriction.

• Arrays may have structures as their elements, and

structures may contain arrays and structures as

members.

75

Nested Structures

• Nesting one structure inside another is often useful.

• Suppose that person_name is the following structure:

struct person_name {

char first[FIRST_NAME_LEN+1];

char middle_initial;

char last[LAST_NAME_LEN+1];

};

76

Nested Structures

• We can use person_name as part of a larger structure:

struct student {

struct person_name name;

int id, age;

char sex;

} student1, student2;

• Accessing student1’s first name, middle initial, or last

name requires two applications of the . operator:

strcpy(student1.name.first, "Fred");

77

Arrays of Structures

• One of the most common combinations of arrays and

structures is an array whose elements are structures.

• This kind of array can serve as a simple database.

• An array of part structures capable of storing information

about 100 parts:

struct part inventory[100];

78

Arrays of Structures

• Accessing a part in the array is done by using
subscripting:
print_part(inventory[i]);

• Accessing a member within a part structure
requires a combination of subscripting and member
selection:
inventory[i].number = 883;

• Accessing a single character in a part name
requires subscripting, followed by selection,
followed by subscripting:
inventory[i].name[0] = '\0';

79

Structures as Arguments

• Functions may have structures as arguments and return

values.

• A function with a structure argument:

void print_part(struct part p)

{

printf("Part number: %d\n", p.number);

printf("Part name: %s\n", p.name);

printf("Quantity on hand: %d\n", p.on_hand);

}

• A call of print_part:

print_part(part1);

80

• A function that returns a part structure:

struct part build_part(int number,

const char *name,

int on_hand)
{

struct part p;

p.number = number;

strcpy(p.name, name);

p.on_hand = on_hand;

return p;
}

• A call of build_part:

part1 = build_part(528, "Disk drive", 10);

81

Structures as Arguments

• Passing a structure to a function and returning a structure

from a function both require making a copy of all

members in the structure.

• To avoid this overhead, it’s sometimes advisable to pass

a pointer to a structure or return a pointer to a structure.

• Chapter 17 gives examples of functions that have a

pointer to a structure as an argument and/or return a

pointer to a structure (see tutorial).

82

Structures as Arguments

Pointers to Structures

• When we create a new part, we’ll need a variable that can

point to the new part temporarily:

struct part *new_part;

• We’ll use malloc to allocate memory for the new node,

saving the return value in new_part:

new_part = malloc(sizeof(struct part));

• new_part now points to a block of memory just large

enough to hold a part structure:

83

• Next, we’ll store data in the number member of the new

node:

(*new_part).number = 10;

• The parentheses around *new_part are mandatory

because the . operator would otherwise take precedence

over the * operator.

84

Pointers to Structures

The -> Operator

• Accessing a member of a structure using a pointer is so

common that C provides a special operator for this

purpose.

• This operator, known as right arrow selection, is a
minus sign followed by >.

• Using the -> operator, we can write

new_part->number = 10;

instead of

(*new_part).number = 10;

85

The -> Operator

• The -> operator produces an lvalue, so we can use it

wherever an ordinary variable would be allowed.

• A scanf example:

scanf("%d", &new_part->number);

• The & operator is still required, even though new_part is

a pointer.

86

Chapter 17

Dynamic Memory Management and Linked Lists

Dynamic Storage Allocation

• C’s data structures, including arrays, are normally fixed in

size.

• Fixed-size data structures can be a problem, since we’re

forced to choose their sizes when writing a program.

• Fortunately, C supports dynamic storage allocation: the

ability to allocate storage during program execution.

• Using dynamic storage allocation, we can design data

structures that grow (and shrink) as needed.

88

Dynamic Storage Allocation

• Dynamic storage allocation is used most often for strings,

arrays, and structures.

• Dynamically allocated structures can be linked together to

form lists, trees, and other data structures.

• Dynamic storage allocation is done by calling a memory

allocation function.

89

Memory Allocation Functions

• The <stdlib.h> header declares three memory

allocation functions:

malloc—Allocates a block of memory but doesn’t

initialize it.

calloc—Allocates a block of memory and clears it.

realloc—Resizes a previously allocated block of

memory.

• These functions return a value of type void * (a “generic”

pointer).

90

Null Pointers

• If a memory allocation function can’t locate a memory

block of the requested size, it returns a null pointer.

• A null pointer is a special value that can be distinguished

from all valid pointers.

• After we’ve stored the function’s return value in a pointer

variable, we must test to see if it’s a null pointer.

91

Null Pointers

• An example of testing malloc’s return value:

p = malloc(10000);

if (p == NULL) {

/* allocation failed; take appropriate action */

}

• NULL is a macro (defined in various library headers)

that represents the null pointer.

• Some programmers combine the call of malloc with

the NULL test:

if ((p = malloc(10000)) == NULL) {

/* allocation failed; take appropriate action */

}

92

Dynamically

Allocated

Strings

Dynamically Allocated Strings

• Dynamic storage allocation is often useful for working with

strings.

• Strings are stored in character arrays, and it can be hard

to anticipate how long these arrays need to be.

• By allocating strings dynamically, we can postpone the

decision until the program is running.

95

• Prototype for the malloc function:

void *malloc(size_t size);

• malloc allocates a block of size bytes and returns a

pointer to it.

• size_t is an unsigned integer type defined in the library.

96

Using malloc to Allocate Storage for a String

• A call of malloc that allocates memory for a string of n

characters:

char * p;

p = malloc(n + 1);

• Some programmers prefer to cast malloc’s return value,

although the cast is not required:

p = (char *) malloc(n + 1);

97

Using malloc to Allocate Storage for a String

• Memory allocated using malloc isn’t cleared, so p will

point to an uninitialized array of n + 1 characters:

98

Using malloc to Allocate Storage for a String

• Calling strcpy is one way to initialize this array:

strcpy(p, "abc");

• The first four characters in the array will now be a, b, c,

and \0:

99

Using malloc to Allocate Storage for a String

Example function: concat

• Dynamic storage allocation makes it possible to write

functions that return a pointer to a “new” string.

• Consider the problem of writing a function that

concatenates two strings without changing either

one.

• The function will measure the lengths of the two
strings to be concatenated, then call malloc to

allocate the right amount of space for the result.

100

Example function: concat

char *concat(const char *s1, const char *s2)

{
char *result;

result = malloc(strlen(s1) + strlen(s2) + 1);

if (result == NULL) {

printf("Error: malloc failed in concat\n");

exit(EXIT_FAILURE);
}

strcpy(result, s1);

strcat(result, s2);

return result;
}

101

Example function: concat

• A call of the concat function:

p = concat("abc", "def");

• After the call, p will point to the string "abcdef",

which is stored in a dynamically allocated array.

102

Dynamically

Allocated

Arrays

Dynamically Allocated Arrays

• Dynamically allocated arrays have the same advantages

as dynamically allocated strings.

• The close relationship between arrays and pointers

makes a dynamically allocated array as easy to use as an

ordinary array.

• Although malloc can allocate space for an array, the

calloc function is sometimes used instead, since it

initializes the memory that it allocates.

• The realloc function allows us to make an array “grow”

or “shrink” as needed.

105

• Suppose a program needs an array of n integers, where n

is computed during program execution.

• We’ll first declare a pointer variable:

int *a;

• Once the value of n is known, the program can call

malloc to allocate space for the array:

a = malloc(n * sizeof(int));

• Always use the sizeof operator to calculate the amount

of space required for each element.

106

Using malloc to Allocate Storage for an Array

• We can now ignore the fact that a is a pointer and use it

instead as an array name, thanks to the relationship

between arrays and pointers in C.

• For example, we could use the following loop to initialize
the array that a points to:

for (i = 0; i < n; i++)

a[i] = 0;

107

Using malloc to Allocate Storage for an Array

The calloc Function

• The calloc function is an alternative to malloc.

• Prototype for calloc:

void *calloc(size_t nmemb, size_t size);

• Properties of calloc:

− Allocates space for an array with nmemb elements, each of

which is size bytes long.

− Returns a null pointer if the requested space isn’t available.

− Initializes allocated memory by setting all bits to 0.

108

The calloc Function

• A call of calloc that allocates space for an array of n

integers:

a = calloc(n, sizeof(int));

109

The realloc Function

• The realloc function can resize a dynamically allocated

array.

• Prototype for realloc:

void *realloc(void *ptr, size_t size);

• ptr must point to a memory block obtained by a previous

call of malloc, calloc, or realloc.

• size represents the new size of the block, which may be

larger or smaller than the original size.

110

The realloc Function

• Properties of realloc:

− When it expands a memory block, realloc doesn’t

initialize the bytes that are added to the block.

− If realloc can’t enlarge the memory block as requested, it

returns a null pointer; the data in the old memory block is

unchanged.

− If realloc is called with a null pointer as its first argument,

it behaves like malloc.

− If realloc is called with 0 as its second argument, it frees

the memory block.

111

The realloc Function

• We expect realloc to be reasonably efficient:

− When asked to reduce the size of a memory block,
realloc should shrink the block “in place.”

− realloc should always attempt to expand a memory
block without moving it.

• If it can’t enlarge a block, realloc will allocate a
new block elsewhere, then copy the contents of the
old block into the new one.

• Once realloc has returned, be sure to update all
pointers to the memory block in case it has been
moved.

112

Deallocating Storage

• malloc and the other memory allocation functions obtain

memory blocks from a storage pool known as the heap.

• Calling these functions too often—or asking them for large

blocks of memory—can exhaust the heap, causing the

functions to return a null pointer.

• To make matters worse, a program may allocate blocks of

memory and then lose track of them, thereby wasting

space.

113

Deallocating Storage

• Example:

p = malloc(…);

q = malloc(…);

p = q;

• A snapshot after the first two statements have been

executed:

114

Deallocating Storage

• After q is assigned to p, both variables now point to the

second memory block:

• There are no pointers to the first block, so we’ll never be

able to use it again.

115

Deallocating Storage

• A block of memory that’s no longer accessible to a

program is said to be garbage.

• A program that leaves garbage behind has a memory

leak.

• Some languages provide a garbage collector that

automatically locates and recycles garbage, but C

doesn’t.

• Instead, each C program is responsible for recycling its
own garbage by calling the free function to release

unneeded memory.

116

The free Function

• Prototype for free:

void free(void *ptr);

• free will be passed a pointer to an unneeded memory

block:

p = malloc(…);

q = malloc(…);

free(p);

p = q;

• Calling free releases the block of memory that p points

to.

117

The “Dangling Pointer” Problem

• Using free leads to a new problem: dangling pointers.

• free(p) deallocates the memory block that p points to,

but doesn’t change p itself.

• If we forget that p no longer points to a valid memory

block, chaos may ensue:

char *p = malloc(4);
…
free(p);
…
strcpy(p, "abc"); /*** WRONG ***/

• Modifying the memory that p points to is a serious error.

118

The “Dangling Pointer” Problem

• Dangling pointers can be hard to spot, since several

pointers may point to the same block of memory.

• When the block is freed, all the pointers are left dangling.

119

Linked

Lists

Makefile
(Extra Topic -

No exam material)

121

Makefiles

Makefiles were originally designed to support separate

compilation of C files.

122

FLAGS = -g

all: query printlog

query: query.o message.o queue.o

gcc ${FLAGS} -o $@ $^

printlog: printlog.o message.o queue.o

gcc ${FLAGS} -o $@ $^

Separately compile each C file

%.o : %.c message.h

gcc ${FLAGS} -c $<

clean :

-rm *.o query

Terminology

reverse : reverse.c

gcc -Wall -o reverse reverse.c

• May be many prerequisites

• Rule may have many actions (one per line)

123

Target

Rule

Actions(s)

Prerequiste(s)

Running make

• make

− with no options looks for a file called Makefile, and

evaluates the first rule

• make query

− Looks for a file called Makefile and looks for a rule with the

target query and evaluates it

124

How it works

• Make looks at the target and when its prerequisites were
last modified

− It assumes targets are files and checks the dates of
the files

• Make does nothing…

− If the target exists, and

− Is more recent than all its prerequisites

• Make executes the actions…

− If the target doesn’t exist, or

− If any prerequisite is more recent than the target

125

Variables

CFLAGS= -g -Wall

reverse: reverse.c

gcc ${CFLAGS} -o reverse reverse.c

Make defines variables to represent parts of rules

126

$@ Target

$< First prerequisite

$? All out of date prerequisites

$^ All prerequisites

Pattern rules

Most files are compiled the same way

We can write a pattern rule for the general case

%.o: %.c

gcc ${CFLAGS} –c $<

Use % to mark the stem of the file’s name

Like using * in commands in Unix

-c flag in gcc does compilation of file without linking

127

Multiple Targets and Phony Targets

• Often you want one command to build a number of other
targets

all: query printlog

printlog: …

…

query: …

• Or targets aren’t building anything

clean:

rm *.o query printlog

128

