Introduction to
C Programming (Part B)

Overview (King Ch. 8-12)

« Arrays (Ch. 8)

* Functions (Ch. 9)

* Program Organization (Ch. 10)
* Pointers (Ch. 11)

« Pointer Arithmetic (Ch. 12)

IIIIIIIIII

Chapter 8

Arrays

IIIIIIIIII
IIIIIIIIII

Scalar Variables vs Aggregate Variables

« So far, the only variables we've seen are scalar: capable
of holding a single value.

« C also supports aggregate variables, which can store
collections of values.

« There are two kinds of aggregates in C:
— Arrays
— Structures (later)

IIIIIIIIII

One-Dimensional Arrays

« An array is a data structure containing a number of
data values, all of which have the same type.

e These va
individual
 The simp

ues, known as elements, can be
y selected by their position within the array.

est kind of array has just one dimension.

* The elements of a one-dimensional array a are

conceptually arranged one after another in a single
row (or column):

IIIIIIIIII

One-Dimensional Array Declaration

« To declare an array, we must specify the type of the
array’'s elements and the number of elements:

int al[l0];

« Using a macro to define the length of an array is an
excellent practice:

#define N 10

int a[N];

IIIIIIIIII

Array Subscripting

« To access an array element, write the array name
followed by an integer value in square brackets.

« This is referred to as subscripting or indexing the array.

* The elements of an array of length n are indexed from O
ton-1.

« If ais an array of length 10, its elements are designated
by a[0],a[l],...,a[9]:

al0] all] al2] al3] al4] al5] ale] al7] al8] al9] YORK '

IIIIIIIIII

Array elements are Ivalues

« Expressions of the form a[i] are lvalues, so they can be
used in the same way as ordinary variables:

al0] = 1;
printf ("$d\n", alb5]):;
++al1i];

IIIIIIIIII

Typical operations on an array

« Many programs contain for loops whose job is to
perform some operation on every element in an array.

« Examples of typical operations on an array a of length
N:

for (i = 0; 1 < N; i++)
ali] = 0; /* clears a */

for (i1 = 0; 1 < N; i++)
scanf ("%d", &alil): /* reads data into a */

for (1 = 0

; 1 < N; 1++)
sum += al[i];

/* sums the elements of a */

YORKJ

Array subscript bounds

« C doesn’t require that subscript bounds be checked; if a

subscript goes out of range, the program’s behavior is
undefined.

« A common mistake: forgetting that an array with n
elements is indexed fromOton—-1, not 1to n:

int al[l0], 1;

i 1; 1 <= 10; 1++)
] 0;

(1
alil

IIIIIIIIII

Array Initialization

« The most common form of array initializer is a list of constant
expressions enclosed in braces and separated by commas:

int af[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
 If the initializer is shorter than the array, the remaining
elements of the array are given the value O:
int a[l10] = {1, 2, 3, 4, 5, 6};
/* initial value of a is {1, 2,3,4,5,6,0,0,0,0} */
« Using this feature, we can easily initialize an array to all zeros:
int af[l0] = {0};
/* initial value of a is {0, 0,0, 0,0,0,0,0, 0,0} */
« The length of the array may be omitted:
int al] = {1/ 2/ 3/ 4/ 5/ 6/ 7/ 8/ 9/ 10}/

Multidimensional Arrays

« An array may have any number of dimensions.

« The following declaration creates a two-dimensional array
(a matrix, in mathematical terminology):

int m[5][9];
« m has 5 rows and 9 columns, both indexed from O
e m[i] [J] will access the element in row i, column ;

0 1 2 3 4 5 6 7 8

IIIIIIIIII

Multidimensional Arrays

« Although we visualize two-dimensional arrays as tables,

that’s not the way they’re actually stored in computer
memory.

« C stores arrays in row-major order, with row O first, then
row 1, and so forth.

« How the m array is stored:

Initializing a Multidimensional Array

« We can create an initializer for a two-dimensional array by
nesting one-dimensional initializers:

int m(5](%] = {{1, 1, 1, 1, 1, O, 1, 1, 1},
{6, 1, o, 1, 0, 1, O, 1, O},
{6, 1, o, 1, 1, 0, O, 1, O},
{1, 1, o, 1, 0, O, O, 1, O},
{1, 1, o, 1, 0, O, 1, 1, 1}};

* Initializers for higher-dimensional arrays are constructed
In a similar fashion.

« We can omit the inner braces (risky).

« C provides a variety of ways to abbreviate initializers for
multidimensional arrays

UNIVERSITY

Multidimensional Arrays

* Nested for loops are ideal for processing
multidimensional arrays.

« Consider the problem of initializing an array for use as
an identity matrix. A pair of nested for loops Is perfect:

#define N 10

double ident[N] [N];
int row, col;

for (row = 0; row < N; rowt++)
for (col = 0; col < N; col++)
if (row == col)
ident[row] [col] = 1.0;
else
ident[row] [col] = 0.0;

Chapter 9

Functions

IIIIIIIIII

Introduction

A function is a series of statements that have been
grouped together and given a name.

« Each function is essentially a small program, with
Its own declarations and statements.
« Advantages of functions:

— A program can be divided into small pieces that are
easier to understand and modify.

— We can avoid duplicating code that's used more than
once.

— A function that was originally part of one program can
be reused In other programs.

IIIIIIIIII

Function Definitions

 General form of a function definition:

return-type function-name (parameters)

{
declarations

statements

IIIIIIIIII

Program: Computing Averages

« Afunction named average that computes the average of
two double values:

double average (double a, double b) {
return (a + b) / 2;

}

— double iIs the return type of the function.
— The identifiers a and b are the function’s parameters.

IIIIIIIIII

Function Calls

« A function call (inside main or another function) consists
of a function name followed by a list of arguments,
enclosed in parentheses:

average (x, V)
print count (1)
print pun ()

IIIIIIIIII

Function Declarations

« Afunction declaration provides the compiler with a
brief glimpse at a function whose full definition will
appear later.

* General form of a function declaration:
return-type function-name (parameters) ;

 The declaration of a function must be consistent with
the function’s definition.

* Here's the average.c program with a declaration of
average added.

IIIIIIIIII

Function Declarations

#include <stdio.h>

double average (double a, double b); /* DECLARATION */

int main(void)

{
double x, vy, z;

printf ("Enter three numbers: ");
scanf ("$1£f%1£%1f", &x, &y, &z);
printf ("Average of %g and %g: %g\n", x, y, average(x, V));
printf ("Average of %g and %g: %g\n", vy, z, average(y, z));
printf ("Average of %g and %g: %g\n", x, z, average(x, z));

return 0;

double average (double a, double b) { /* DEFINITION */
return (a + b) / 2;

Arguments

* In C, arguments are passed by value: when a function is
called, each argument is evaluated and its value
assigned to the corresponding parameter.

« Since the parameter contains a copy of the argument’s

value, any changes made to the parameter during the
execution of the function don’t affect the argument.

IIIIIIIIII

Array Arguments

* When a function parameter is a one-dimensional
array, the length of the array can be left

unspecified:
int f£(int all){ /* no length specified */

}

* |f the function needs the length of the array we

have to supply it as argument or compute it inside
the function.

IIIIIIIIII

Array Arguments

« Example:
int sum array(int a[], 1int n)

{

int 1, sum = 0;

for (1 = 0

;1 < n; 1++4)
sum += al[i];

return sum;

J
« Since sum array needs to know the length of a, we

must supply it as a second argument.

IIIIIIIIII

Array Arguments

« A function that modifies an array by storing zero
Into each of its elements:

vold store zeros(int af[], 1int n) {
int 1; —

for 1 < n; 1++4)

int main (void) {
int b[100];
store zeros (b, 100);

IIIIIIIIII

Array Arguments

« The ablility to modify the elements of an array argument
may seem to contradict the fact that C passes
arguments by value.

« There's actually no contradiction. What happens?

— The name of the array serves as a pointer to the first
element of the array (see later).

— The pointer is passed by value

— The array elements are not copied: modifying an array
element inside a function affects the element value in the
original array

IIIIIIIIII

Multidimensional Array Arguments

 If a parameter is a multidimensional array, only the
length of the first dimension may be omitted.

« If we revise sum array So that a is a two-dimensional
array, we must specify the number of columns in a:

#define LEN 10

int sum two dimensional array(int a[] [LEN], int n)

{

int i, j, sum = 0;

for (i = 0; i < n; 1i++)

return sum;

UNIVERSITY

The return Statement

e The return statement has the form
return expression ;

« The expression is often just a constant or variable:

return 0;
return status;

 return may appear in functions who return void,
provided that no expression is given:

return; /* return in a void function */

Program Termination

« The value returned by main Is a status code that can be
tested when the program terminates.

* main should return:

— 0 if the program terminates normally
— a value other than 0O to indicate abnormal termination

IIIIIIIIII

The exit Function

« Another way to terminate a program is by calling the exit
function, which belongs to <stdlib.h>.

« To indicate normal termination, we’'d pass O:
exit (0) ; /* normal termination */
The difference between return and exit

exit causes program termination regardless of which
function calls it.

The return statement causes program termination only
when it appears in the main function.

Recursion

A function is recursive if it calls itself.

* The following function computes n! recursively, using the
formulan!=n X (n—1)!
int fact(int n)

{
1f (n <= 1)

return 1;
else
return n * fact(n - 1);

IIIIIIIIII

Recursion

 To see how recursion works, let’s trace the execution of
the statement

1 = fact (3);

fact (3) finds that 3 is not less than or equal to 1, so it calls

fact (2), which finds that 2 is not less than or equal to 1, so
it calls

fact (1), which finds that 1 is less than or equal to 1, so it
returns 1, causing

fact (2) toreturn 2 X 1 = 2, causing
fact (3) toreturn 3 X 2 = 6.

Recursion

« We can condense the power function by putting a
conditional expression in the return statement:

int power (int x, 1nt n)

{

return n == 0?2 1 : x * power(x, n - 1);
}

 Both fact and power are careful to test a
“termination condition” as soon as they're called.

 All recursive functions need some kind of termination
condition in order to prevent infinite recursion.

UNIVERSITY

Recursion and Divide-and-Conquer

« Methods exhibit recursive behavior when they can be
defined by two properties:
— Asimple base case
— A set of rules that reduce all other cases toward the base
case
* Recursion often arises as a result of an algorithm design
technique known as divide-and-conquer, in which a
large problem is divided into smaller pieces that are then

tackled by the same algorithm.

IIIIIIIIII

Chapter 10

Program Organization

IIIIIIIIII

Local Variables

« Avariable declared in the body of a function is said to be
local to the function:

int sum digits(int n)

{

int sum = 0; /* local variable */

while (n > 0)
sum += n %
n /= 10;

}

return sum;

}

IIIIIIIIII

Local Variables

« Default properties of local variables:

— Automatic storage duration. Storage is “automatically”
allocated when the enclosing function is called and
deallocated when the function returns.

— Block scope. Alocal variable is visible from its point of
declaration to the end of the compound statement that it
appears in.

UNIVERSITY

Local Variables

« Since C99 doesn’t require variable declarations to come
at the beginning of a function, it's possible for a local
variable to have a very small scope:

void f (void)

{
.:i_‘l’lt 1; —
} —_—
« Parameters are treated as local variables:

— automatic storage duration and block scope
— Initialized automatically when a function is called

— scope of 1

External Variables

« Passing arguments is one way to transmit information to a
function.

* Functions can also communicate through external
variables—variables that are declared outside the body
of any function (a.k.a. global variables).

* Properties of external variables:

— Static storage duration — static memory address

— File scope - visible from its point of declaration to the end
of the enclosing file.

IIIIIIIIII

Scope

* In a C program, the same identifier may have several
different meanings.

* C’s scope rules enable the programmer (and the
compiler) to determine which meaning is relevant at a
given point in the program.

« The most important scope rule: When a declaration
inside a block names an identifier that's already
visible, the new declaration temporarily “hides” the
old one, and the identifier takes on a new meaning.

« At the end of the block, the identifier regains its old
meaning.

IIIIIIIIII

Scope Example

void £ (int)
{

/*
/*

/-k

/*

Declaration

Declaration

Declaration

Declaration

*/

*/

Scope

* In the example on the previous slide, the identifier i
has four different meanings:

— In Declaration 1, i is a variable with static storage
duration and file scope.

— In Declaration 2, i is a parameter with block scope.

— In Declaration 3, i IS an automatic variable with block
scope.

— In Declaration 4, i Is also automatic and has block
scope.

» C’s scope rules allow us to determine the meaning
of 1 each time it's used (indicated by arrows).

IIIIIIIIII

Organizing a C Program

« There are several ways to organize a program. One
possible ordering:

— #include directives

- #define directives

— Type definitions

— Declarations of external variables

— Prototypes/declarations of functions other than main
— Definition of main

— Definitions of other functions

UNIVERSITY

Chapter 11

Pointers

IIIIIIIIII
IIIIIIIIII

Pointer Variables

* The first step in understanding pointers is visualizing what
they represent at the machine level.

* In most modern computers, main memory is divided into
bytes, with each byte capable of storing eight bits of
Information:

« Each byte

IIIIIIIIII

Pointer Variables

 If there are n bytes in memory, we can think of addresses
as numbers that range from O to n — 1:

Address Contents

0 01010011
1 01110101
2 01110011
3 01100001
4 01101110
n-1 01000011 YORK

Pointer Variables

« Each variable in a program occupies one or more bytes of
memory.

« The address of the first byte Is said to be the address of
the variable.

 In the following figure, the address of the variable i is
2000:

2000

2001

IIIIIIIIII

Pointer Variables

« Addresses can be stored in special pointer variables.

 When we store the address of a variable i in the pointer
variable p, we say that p “points to” 1.

« A graphical representation:

I A

IIIIIIIIII

Declaring Pointer Variables

 When a pointer variable is declared, its name must be
preceded by an asterisk:

int *p;
e p IS a pointer variable capable of pointing to objects of
type int.

* We use the term object instead of variable since p might

point to an area of memory that doesn’t belong to a
variable.

IIIIIIIIII

Declaring Pointer Variables

* Pointer variables can appear in declarations along
with other variables:

int i, j, al[l0], b[20], *p, *qg;

« C requires that every pointer variable point only to
objects of a particular type (the referenced type):

int *p; /* points only to integers */
double *qg; /* points only to doubles */
char *r; /* points only to characters */

« There are no restrictions on what the referenced type
may be.

IIIIIIIIII

The Address and Indirection Operators

« C provides a pair of operators designed specifically for
use with pointers.
— To find the address of a variable, we use the & (address)
operator.

— To gain access to the object that a pointer points to, we use
the * (indirection) operator.

IIIIIIIIII

The Address Operator

« Declaring a pointer variable sets aside space for a pointer
but doesn’t make it point to an object:

int *p; /* points nowhere in particular */

« To initialize a pointer variable assign it the address of a
variable:

int 1, *p;

p = &1;

IIIIIIIIII

The Indirection Operator

« Once a pointer variable points to an object, we can use
the * (indirection) operator to access what's stored in

the object.
« E.g., we can use the pointer to print the value of i:

p = &1;
printf ("$d\n", *p);

« Aslong as p points to i, *p is an alias for 1.
— *p has the same value as 1.
— Changing the value of *p changes the value of i.

IIIIIIIIII

The Indirection Operator

p = &1;
i = 1;
printf ("$d\n", 1i); /* prints 1 */

printf ("%d\n", *p); /* prints 1 */
*p = 2;

printf ("$d\n", 1i); /* prints 2 */
printf ("$d\n", *p); /* prints 2 */

IIIIIIIIII

The Indirection Operator

« Applying the indirection operator to an uninitialized pointer
variable causes undefined behavior:

int *p;

printf ("sd", *p); /*** WRONG ***/
« Assigning a value to *p Is particularly dangerous:

int *p;

*p — 1; /*** WRONG ***/

IIIIIIIIII

Pointer Assignment

« Assume that the following declaration is in effect:
int 1, 3, *p, *qg;
« Example of pointer assignments:
p = &1;
qd = Pr
g now points to the same place as p:

IIIIIIIIII

Pointer Assignment

* If p and g both point to i, we can change i by
assigning a new value to either *p or *q:

*p:]_;

* Any number of pointer variables may point to the
same object. YORK

IIIIIIIIII

Pointer Assignment

 Be careful not to confuse

qa = pPr
with
*q e *p;

« The first statement is a pointer assignment, but the
second is not.

« The example on the next slide shows the effect of the
second statement.

IIIIIIIIII

Pointer Assignment

p = &1;
qa = &J;
1 = 1;
P i
*q:*p,

A0 L
L LL

IIIIIIIIII

Pointers as Arguments

 How to swap the values of two integers?

void swap (int i, int 7J) {

int temp = i; Wrong: arguments

i=173;
S - iemp, are passed by value

}

int main(void) {
int i =5,] =17;
swap (i,) ;
printf("i:%d, j:%d \n", i, J);
return 0O;

Pointers as Arguments

 How to swap the values of two integers?

volid swap (int *p, int *q) {

int temp = *p; Correct
*p — *q;
*q = temp;

int main (void) {
int i =5,] =17;
swap (&i, &7) ;
printf("i:%d, j:%d \n", i, J);
return 0O;

Pointers as Arguments

« Arguments in calls of scanf are pointers:

int 1;

scanf ("sd", &i);

Without the &, scanf would be supplied with the value of
1.

IIIIIIIIII

Chapter 12

Pointers and Arrays

IIIIIIIIII

Introduction

C allows us to perform arithmetic—addition and
subtraction—on pointers to array elements.

This leads to an alternative way of processing arrays in
which pointers take the place of array subscripts.

The relationship between pointers and arrays in C is a
close one.

Understanding this relationship is critical for mastering C.

IIIIIIIIII

Pointer Arithmetic

« We know that pointers can point to array elements:

int af[l1l0], *p;
p = &al0];

« A graphical representation:

IIIIIIIIII

Pointer Arithmetic

« We can now access a [0] through p; for example, we can
store the value 5in a[0] by writing

*p = 5;
« An updated picture:

g

IIIIIIIIII

Pointer Arithmetic

 If p points to an element of an array a, the other elements
of a can be accessed by performing pointer arithmetic
(or address arithmetic) on p.

« C supports three (and only three) forms of pointer
arithmetic:
— Adding an integer to a pointer
— Subtracting an integer from a pointer
— Subtracting one pointer from another

IIIIIIIIII

Adding an Integer to a Pointer

« Adding an integer j to a pointer p yields a pointer to the
element ;j places after the one that p points to.

* More precisely, if p points to the array element a[i], then
p+ Jjpointstoali+j].

« Assume that the following declarations are in effect:
int afl0], *p, *q, 1;

IIIIIIIIII

Adding an Integer to a Pointer

« Example of pointer addition:

p = &al2]; .
0 1 7 8 9
qQ=p 3 .
0 1 7 8 9
p += 6;
p
0 1 7 8 9
I U ININ

IIIIIIIIII

Subtracting an Integer from a Pointer

e Ifppointstoa[i],thenp - jpointstoali-j].

« Example:
p = &al8]; ’
g =P - 3;
d p
p R 6, 0 1 2 3 4 5 6 7 8 9

p d

Subtracting One Pointer from Another

« When one pointer is subtracted from another, the result
IS the distance (measured in array elements) between
the pointers.

 Ifppointstoa[i] and gpointstoa([j],thenp -qgis
equalto i - j.

« Example:
p = &ald]; q_i] Pl
a = &alll]; 7 T

a

SIS
Il

P - g /* i 1s 4 */
q - p; /* 1 1is -4 */

IIIIIIIIII

Comparing Pointers

* Pointers can be compared using the relational
operators (<, <=, >, >=) and the equality operators
(==and !=).

— Using relational operators is meaningful only for pointers to
elements of the same array.

* The outcome of the comparison depends on the
relative positions of the two elements in the array.

« After the assignments

P &al[d];
q &aflll];

the value of p <= gis 0 and the value of p >= g is 1.

IIIIIIIIII

Using Pointers for Array Processing

* Pointer arithmetic allows us to visit the elements of an
array by repeatedly incrementing a pointer variable.

« Aloop that sums the elements of an array a:
fdefine N 10

int a[N], sum, *p;

IIIIIIIIII

Using Pointers for Array Processing

At the end of the first iteration:

At the end of the second iteration:

At the end of the third iteration:

P
a|ll | 34 |82 7 64 | 98 |47 |18 |79 | 20
0 1 2 3 4 5 6 7 8 9
sum 11
p
al|ll | 34 |82 7 64 | 98 | 47 |18 | 79 | 20
0 1 2 3 4 5 6 7 8 9
um 45
P
a|1ll | 34 |82 7 64 | 98 | 47 | 18 | 79 | 20
0 1 2 3 4 5 6 7 8 9
um 127

Combining the * and ++ Operators

 The most common combination of * and ++ IS *p++,
which is handy in loops.
 Instead of writing
for (p = &a[0]; p < &a[N]; p++)
sum += *p;
to sum the elements of the array a, we could write
p = &al0];

while (p < &al[N])
sum += *p++;

IIIIIIIIII

Using an Array Name as a Pointer

« Pointer arithmetic is one way in which arrays and pointers
are related.

* Another key relationship:
The name of an array can be used as a pointer to the

first element in the array.

— This relationship simplifies pointer arithmetic and makes
both arrays and pointers more versatile.

IIIIIIIIII

Using an Array Name as a Pointer

e Suppose that a is declared as follows:

int a[l0];

« Examples of using a as a pointer:
xg = 7: /* stores 7 in a[0] */
(a+l) = 12; / stores 12 in al[l] */

 Ingeneral, a + i isthe same as ¢a[i].

— Both represent a pointer to element i of a.
e Also, * (a+1) IS equivalenttoa[i].

— Both represent element i itself.

IIIIIIIIII

Using an Array Name as a Pointer

« The fact that an array name can serve as a pointer makes
It easier to write loops that step through an array.

 QOriginal loop:
for (p = &a[0]; p < &al[N]; pt++)
sum += *p;
« Simplified version:
for (p = a; p < a + N; pt++)
sum += *p;

IIIIIIIIII

Array Arguments (Revisited)

 When passed to a function, an array name Iis treated as a
pointer.

« Example:
int find largest(int a[], int n)

{

int i, max;

max = al[0];
for (1 = 1; 1 < n; 1++)
if (a[i] >
= al

max a
return max;

}
 Acallof find largest:
largest = find largest (b, N);

This call causes a pointer to the first element of b to be
assigned to a; the array itself isn’t copied.

Array Arguments (Revisited)

« Conseguence 1: An array used as an argument isn’t
protected against change.

— For example, the following function modifies an array by
storing zero into each of its elements:

volid store zeros(int al[], 1nt n)

{

int 1i;

for (i = 0; 1 < n; i++)
ali] = 0;

IIIIIIIIII

Array Arguments (Revisited)

« Conseguence 2: The time required to pass an array to a
function doesn’t depend on the size of the array.

— There’s no penalty for passing a large array, since no copy
of the array is made.

IIIIIIIIII

Array Arguments (Revisited)

« Conseguence 3: An array parameter can be declared as a
pointer if desired.

« find largest could be defined as follows:

int find largest (int *a, 1nt n)

{

}

« Declaring a to be a pointer is equivalent to declaring it to

be an array; the compiler treats the declarations as
though they were identical.

IIIIIIIIII

Array Arguments (Revisited)

« Although declaring a parameter to be an array is the
same as declaring it to be a pointer, the same isn’t true for
a variable.

« The following declaration causes the compiler to set aside
space for 10 integers:

int al[l0];

« The following declaration causes the compiler to allocate
space for a pointer variable:

int *a;

IIIIIIIIII

Array Arguments (Revisited)

* In the latter case, a is not an array; attempting to use it as
an array can have disastrous results.

* For example, the assighment
*a = 0; /*** WRONG ***/
will store O where a is pointing.

« Since we don’t know where a is pointing, the effect on the
program is undefined.

IIIIIIIIII

Array Arguments (Revisited)

« Consequence 4: A function with an array parameter can

be passed an array “slice™—a sequence of consecutive
elements.

— An example that applies find largest to elements 5
through 14 of an array b:

largest = find largest (&b[5], 10);

IIIIIIIIII

