
Introduction to

C Programming (Part B)

Copyright © 2008 W. W. Norton & Company. All rights Reserved

Overview (King Ch. 8-12)

• Arrays (Ch. 8)

• Functions (Ch. 9)

• Program Organization (Ch. 10)

• Pointers (Ch. 11)

• Pointer Arithmetic (Ch. 12)

2

Chapter 8

Arrays

Scalar Variables vs Aggregate Variables

• So far, the only variables we’ve seen are scalar: capable

of holding a single value.

• C also supports aggregate variables, which can store

collections of values.

• There are two kinds of aggregates in C:

− Arrays

− Structures (later)

4

One-Dimensional Arrays

• An array is a data structure containing a number of

data values, all of which have the same type.

• These values, known as elements, can be

individually selected by their position within the array.

• The simplest kind of array has just one dimension.

• The elements of a one-dimensional array a are

conceptually arranged one after another in a single

row (or column):

5

One-Dimensional Array Declaration

• To declare an array, we must specify the type of the
array’s elements and the number of elements:

int a[10];

• Using a macro to define the length of an array is an
excellent practice:

#define N 10

…

int a[N];

6

Array Subscripting

• To access an array element, write the array name

followed by an integer value in square brackets.

• This is referred to as subscripting or indexing the array.

• The elements of an array of length n are indexed from 0

to n – 1.

• If a is an array of length 10, its elements are designated

by a[0], a[1], …, a[9]:

7

Array elements are lvalues

• Expressions of the form a[i] are lvalues, so they can be

used in the same way as ordinary variables:

a[0] = 1;

printf("%d\n", a[5]);

++a[i];

8

Typical operations on an array

• Many programs contain for loops whose job is to
perform some operation on every element in an array.

• Examples of typical operations on an array a of length
N:

for (i = 0; i < N; i++)

a[i] = 0; /* clears a */

for (i = 0; i < N; i++)

scanf("%d", &a[i]); /* reads data into a */

for (i = 0; i < N; i++)

sum += a[i]; /* sums the elements of a */

9

Array subscript bounds

• C doesn’t require that subscript bounds be checked; if a
subscript goes out of range, the program’s behavior is
undefined.

• A common mistake: forgetting that an array with n
elements is indexed from 0 to n – 1, not 1 to n:

int a[10], i;

for (i = 1; i <= 10; i++)

a[i] = 0;

10

Array Initialization

• The most common form of array initializer is a list of constant

expressions enclosed in braces and separated by commas:

int a[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

• If the initializer is shorter than the array, the remaining

elements of the array are given the value 0:

int a[10] = {1, 2, 3, 4, 5, 6};

/* initial value of a is {1, 2, 3, 4, 5, 6, 0, 0, 0, 0} */

• Using this feature, we can easily initialize an array to all zeros:

int a[10] = {0};

/* initial value of a is {0, 0, 0, 0, 0, 0, 0, 0, 0, 0} */

• The length of the array may be omitted:
int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

11

Multidimensional Arrays

• An array may have any number of dimensions.

• The following declaration creates a two-dimensional array

(a matrix, in mathematical terminology):

int m[5][9];

• m has 5 rows and 9 columns, both indexed from 0

• m[i][j] will access the element in row i, column j

12

Multidimensional Arrays

• Although we visualize two-dimensional arrays as tables,

that’s not the way they’re actually stored in computer

memory.

• C stores arrays in row-major order, with row 0 first, then

row 1, and so forth.

• How the m array is stored:

13

Initializing a Multidimensional Array

• We can create an initializer for a two-dimensional array by
nesting one-dimensional initializers:

int m[5][9] = {{1, 1, 1, 1, 1, 0, 1, 1, 1},

{0, 1, 0, 1, 0, 1, 0, 1, 0},

{0, 1, 0, 1, 1, 0, 0, 1, 0},

{1, 1, 0, 1, 0, 0, 0, 1, 0},

{1, 1, 0, 1, 0, 0, 1, 1, 1}};

• Initializers for higher-dimensional arrays are constructed
in a similar fashion.

• We can omit the inner braces (risky).

• C provides a variety of ways to abbreviate initializers for
multidimensional arrays

14

Multidimensional Arrays

• Nested for loops are ideal for processing
multidimensional arrays.

• Consider the problem of initializing an array for use as
an identity matrix. A pair of nested for loops is perfect:

#define N 10

double ident[N][N];
int row, col;

for (row = 0; row < N; row++)
for (col = 0; col < N; col++)
if (row == col)
ident[row][col] = 1.0;

else
ident[row][col] = 0.0;

15

Chapter 9

Functions

Introduction

• A function is a series of statements that have been
grouped together and given a name.

• Each function is essentially a small program, with
its own declarations and statements.

• Advantages of functions:

− A program can be divided into small pieces that are
easier to understand and modify.

− We can avoid duplicating code that’s used more than
once.

− A function that was originally part of one program can
be reused in other programs.

17

Function Definitions

• General form of a function definition:

return-type function-name (parameters)

{

declarations

statements

}

18

Program: Computing Averages

• A function named average that computes the average of
two double values:

double average(double a, double b){

return (a + b) / 2;

}

− double is the return type of the function.

− The identifiers a and b are the function’s parameters.

19

Function Calls

• A function call (inside main or another function) consists

of a function name followed by a list of arguments,

enclosed in parentheses:

average(x, y)

print_count(i)

print_pun()

20

Function Declarations

• A function declaration provides the compiler with a

brief glimpse at a function whose full definition will

appear later.

• General form of a function declaration:

return-type function-name (parameters) ;

• The declaration of a function must be consistent with

the function’s definition.

• Here’s the average.c program with a declaration of

average added.

21

Function Declarations

#include <stdio.h>

double average(double a, double b); /* DECLARATION */

int main(void)

{
double x, y, z;

printf("Enter three numbers: ");

scanf("%lf%lf%lf", &x, &y, &z);

printf("Average of %g and %g: %g\n", x, y, average(x, y));

printf("Average of %g and %g: %g\n", y, z, average(y, z));

printf("Average of %g and %g: %g\n", x, z, average(x, z));

return 0;
}

double average(double a, double b){ /* DEFINITION */

return (a + b) / 2;
}

22

Arguments

• In C, arguments are passed by value: when a function is

called, each argument is evaluated and its value

assigned to the corresponding parameter.

• Since the parameter contains a copy of the argument’s

value, any changes made to the parameter during the

execution of the function don’t affect the argument.

23

Array Arguments

• When a function parameter is a one-dimensional
array, the length of the array can be left
unspecified:

int f(int a[]){ /* no length specified */

…

}

• If the function needs the length of the array we
have to supply it as argument or compute it inside
the function.

24

Array Arguments

• Example:

int sum_array(int a[], int n)

{
int i, sum = 0;

for (i = 0; i < n; i++)

sum += a[i];

return sum;
}

• Since sum_array needs to know the length of a, we

must supply it as a second argument.

25

Array Arguments

• A function that modifies an array by storing zero
into each of its elements:

void store_zeros(int a[], int n){
int i;

for (i = 0; i < n; i++)
a[i] = 0;

}

int main(void){

int b[100];

store_zeros(b, 100);

}

26

Array Arguments

• The ability to modify the elements of an array argument

may seem to contradict the fact that C passes

arguments by value.

• There’s actually no contradiction. What happens?

− The name of the array serves as a pointer to the first

element of the array (see later).

− The pointer is passed by value

− The array elements are not copied: modifying an array

element inside a function affects the element value in the

original array

27

Multidimensional Array Arguments

• If a parameter is a multidimensional array, only the

length of the first dimension may be omitted.

• If we revise sum_array so that a is a two-dimensional

array, we must specify the number of columns in a:

#define LEN 10

int sum_two_dimensional_array(int a[][LEN], int n)

{
int i, j, sum = 0;

for (i = 0; i < n; i++)

for (j = 0; j < LEN; j++)

sum += a[i][j];

return sum;
}

28

The return Statement

• The return statement has the form

return expression ;

• The expression is often just a constant or variable:

return 0;

return status;

• return may appear in functions who return void,
provided that no expression is given:

return; /* return in a void function */

29

Program Termination

• The value returned by main is a status code that can be

tested when the program terminates.

• main should return:

− 0 if the program terminates normally

− a value other than 0 to indicate abnormal termination

30

The exit Function

• Another way to terminate a program is by calling the exit

function, which belongs to <stdlib.h>.

• To indicate normal termination, we’d pass 0:

exit(0); /* normal termination */

• The difference between return and exit

− exit causes program termination regardless of which

function calls it.

− The return statement causes program termination only

when it appears in the main function.

31

Recursion

• A function is recursive if it calls itself.

• The following function computes n! recursively, using the

formula n! = n× (n – 1)!:

int fact(int n)

{
if (n <= 1)

return 1;

else

return n * fact(n - 1);
}

32

Recursion

• To see how recursion works, let’s trace the execution of
the statement

i = fact(3);

fact(3) finds that 3 is not less than or equal to 1, so it calls

fact(2), which finds that 2 is not less than or equal to 1, so
it calls

fact(1), which finds that 1 is less than or equal to 1, so it
returns 1, causing

fact(2) to return 2 × 1 = 2, causing

fact(3) to return 3 × 2 = 6.

33

Recursion

• We can condense the power function by putting a
conditional expression in the return statement:

int power(int x, int n)

{

return n == 0 ? 1 : x * power(x, n - 1);

}

• Both fact and power are careful to test a
“termination condition” as soon as they’re called.

• All recursive functions need some kind of termination
condition in order to prevent infinite recursion.

34

Recursion and Divide-and-Conquer

• Methods exhibit recursive behavior when they can be

defined by two properties:

− A simple base case

− A set of rules that reduce all other cases toward the base

case

• Recursion often arises as a result of an algorithm design

technique known as divide-and-conquer, in which a

large problem is divided into smaller pieces that are then

tackled by the same algorithm.

35

Chapter 10

Program Organization

Local Variables

• A variable declared in the body of a function is said to be
local to the function:

int sum_digits(int n)

{
int sum = 0; /* local variable */

while (n > 0) {

sum += n % 10;

n /= 10;
}

return sum;
}

37

Local Variables

• Default properties of local variables:

− Automatic storage duration. Storage is “automatically”

allocated when the enclosing function is called and

deallocated when the function returns.

− Block scope. A local variable is visible from its point of

declaration to the end of the compound statement that it
appears in.

38

Local Variables

• Since C99 doesn’t require variable declarations to come

at the beginning of a function, it’s possible for a local

variable to have a very small scope:

• Parameters are treated as local variables:

− automatic storage duration and block scope

− initialized automatically when a function is called

39

External Variables

• Passing arguments is one way to transmit information to a

function.

• Functions can also communicate through external

variables—variables that are declared outside the body

of any function (a.k.a. global variables).

• Properties of external variables:

− Static storage duration – static memory address

− File scope - visible from its point of declaration to the end

of the enclosing file.

40

Scope

• In a C program, the same identifier may have several
different meanings.

• C’s scope rules enable the programmer (and the
compiler) to determine which meaning is relevant at a
given point in the program.

• The most important scope rule: When a declaration
inside a block names an identifier that’s already
visible, the new declaration temporarily “hides” the
old one, and the identifier takes on a new meaning.

• At the end of the block, the identifier regains its old
meaning.

41

Scope Example

42

Scope

• In the example on the previous slide, the identifier i
has four different meanings:
− In Declaration 1, i is a variable with static storage

duration and file scope.

− In Declaration 2, i is a parameter with block scope.

− In Declaration 3, i is an automatic variable with block
scope.

− In Declaration 4, i is also automatic and has block
scope.

• C’s scope rules allow us to determine the meaning
of i each time it’s used (indicated by arrows).

43

Organizing a C Program

• There are several ways to organize a program. One
possible ordering:

− #include directives

− #define directives

− Type definitions

− Declarations of external variables

− Prototypes/declarations of functions other than main

− Definition of main

− Definitions of other functions

44

Chapter 11

Pointers

Pointer Variables

• The first step in understanding pointers is visualizing what

they represent at the machine level.

• In most modern computers, main memory is divided into

bytes, with each byte capable of storing eight bits of

information:

• Each byte has a unique address.

46

Pointer Variables

• If there are n bytes in memory, we can think of addresses

as numbers that range from 0 to n – 1:

47

Pointer Variables

• Each variable in a program occupies one or more bytes of

memory.

• The address of the first byte is said to be the address of

the variable.

• In the following figure, the address of the variable i is

2000:

48

Pointer Variables

• Addresses can be stored in special pointer variables.

• When we store the address of a variable i in the pointer

variable p, we say that p “points to” i.

• A graphical representation:

49

Declaring Pointer Variables

• When a pointer variable is declared, its name must be

preceded by an asterisk:

int *p;

• p is a pointer variable capable of pointing to objects of

type int.

• We use the term object instead of variable since p might

point to an area of memory that doesn’t belong to a

variable.

50

Declaring Pointer Variables

• Pointer variables can appear in declarations along

with other variables:

int i, j, a[10], b[20], *p, *q;

• C requires that every pointer variable point only to

objects of a particular type (the referenced type):

int *p; /* points only to integers */

double *q; /* points only to doubles */

char *r; /* points only to characters */

• There are no restrictions on what the referenced type

may be.

51

The Address and Indirection Operators

• C provides a pair of operators designed specifically for

use with pointers.

− To find the address of a variable, we use the & (address)

operator.

− To gain access to the object that a pointer points to, we use
the * (indirection) operator.

52

The Address Operator

• Declaring a pointer variable sets aside space for a pointer

but doesn’t make it point to an object:

int *p; /* points nowhere in particular */

• To initialize a pointer variable assign it the address of a

variable:

int i, *p;

…

p = &i;

53

The Indirection Operator

• Once a pointer variable points to an object, we can use
the * (indirection) operator to access what’s stored in
the object.

• E.g., we can use the pointer to print the value of i:

p = &i;

printf("%d\n", *p);

• As long as p points to i, *p is an alias for i.

− *p has the same value as i.

− Changing the value of *p changes the value of i.

54

The Indirection Operator

p = &i;

i = 1;

printf("%d\n", i); /* prints 1 */

printf("%d\n", *p); /* prints 1 */

*p = 2;

printf("%d\n", i); /* prints 2 */

printf("%d\n", *p); /* prints 2 */

55

The Indirection Operator

• Applying the indirection operator to an uninitialized pointer

variable causes undefined behavior:

int *p;

printf("%d", *p); /*** WRONG ***/

• Assigning a value to *p is particularly dangerous:

int *p;

*p = 1; /*** WRONG ***/

56

Pointer Assignment

• Assume that the following declaration is in effect:

int i, j, *p, *q;

• Example of pointer assignments:

p = &i;

q = p;

q now points to the same place as p:

58

Pointer Assignment

• If p and q both point to i, we can change i by
assigning a new value to either *p or *q:

*p = 1;

*q = 2;

• Any number of pointer variables may point to the
same object.

59

Pointer Assignment

• Be careful not to confuse

q = p;

with

*q = *p;

• The first statement is a pointer assignment, but the

second is not.

• The example on the next slide shows the effect of the

second statement.

60

Pointer Assignment

p = &i;

q = &j;

i = 1;

*q = *p;

61

Pointers as Arguments

• How to swap the values of two integers?

void swap (int i, int j){

int temp = i;

i = j;

j = temp;

}

int main(void){

int i = 5, j = 7;

swap(i,j);

printf("i:%d, j:%d \n", i, j);

return 0;

}

62

Wrong: arguments

are passed by value

Pointers as Arguments

• How to swap the values of two integers?

void swap (int *p, int *q){

int temp = *p;

*p = *q;

*q = temp;

}

int main(void){

int i = 5, j = 7;

swap(&i,&j);

printf("i:%d, j:%d \n", i, j);

return 0;

}

63

Correct

Pointers as Arguments

• Arguments in calls of scanf are pointers:

int i;

…

scanf("%d", &i);

Without the &, scanf would be supplied with the value of

i.

64

Chapter 12

Pointers and Arrays

Introduction

• C allows us to perform arithmetic—addition and

subtraction—on pointers to array elements.

• This leads to an alternative way of processing arrays in

which pointers take the place of array subscripts.

• The relationship between pointers and arrays in C is a

close one.

• Understanding this relationship is critical for mastering C.

66

Pointer Arithmetic

• We know that pointers can point to array elements:

int a[10], *p;

p = &a[0];

• A graphical representation:

67

Pointer Arithmetic

• We can now access a[0] through p; for example, we can

store the value 5 in a[0] by writing

*p = 5;

• An updated picture:

68

Pointer Arithmetic

• If p points to an element of an array a, the other elements

of a can be accessed by performing pointer arithmetic

(or address arithmetic) on p.

• C supports three (and only three) forms of pointer

arithmetic:

− Adding an integer to a pointer

− Subtracting an integer from a pointer

− Subtracting one pointer from another

69

Adding an Integer to a Pointer

• Adding an integer j to a pointer p yields a pointer to the

element j places after the one that p points to.

• More precisely, if p points to the array element a[i], then

p + j points to a[i+j].

• Assume that the following declarations are in effect:

int a[10], *p, *q, i;

70

Adding an Integer to a Pointer

• Example of pointer addition:

p = &a[2];

q = p + 3;

p += 6;

71

Subtracting an Integer from a Pointer

• If p points to a[i], then p - j points to a[i-j].

• Example:
p = &a[8];

q = p - 3;

p -= 6;

72

Subtracting One Pointer from Another

• When one pointer is subtracted from another, the result
is the distance (measured in array elements) between
the pointers.

• If p points to a[i] and q points to a[j], then p - q is
equal to i - j.

• Example:
p = &a[5];

q = &a[1];

i = p - q; /* i is 4 */

i = q - p; /* i is -4 */

73

Comparing Pointers

• Pointers can be compared using the relational
operators (<, <=, >, >=) and the equality operators
(== and !=).

− Using relational operators is meaningful only for pointers to
elements of the same array.

• The outcome of the comparison depends on the
relative positions of the two elements in the array.

• After the assignments
p = &a[5];
q = &a[1];

the value of p <= q is 0 and the value of p >= q is 1.

74

Using Pointers for Array Processing

• Pointer arithmetic allows us to visit the elements of an
array by repeatedly incrementing a pointer variable.

• A loop that sums the elements of an array a:

#define N 10

…

int a[N], sum, *p;

…

sum = 0;

for (p = &a[0]; p < &a[N]; p++)

sum += *p;

75

Using Pointers for Array Processing

At the end of the first iteration:

At the end of the second iteration:

At the end of the third iteration:

76

Combining the * and ++ Operators

• The most common combination of * and ++ is *p++,

which is handy in loops.

• Instead of writing

for (p = &a[0]; p < &a[N]; p++)

sum += *p;

to sum the elements of the array a, we could write

p = &a[0];

while (p < &a[N])

sum += *p++;

77

Using an Array Name as a Pointer

• Pointer arithmetic is one way in which arrays and pointers

are related.

• Another key relationship:

The name of an array can be used as a pointer to the

first element in the array.

− This relationship simplifies pointer arithmetic and makes

both arrays and pointers more versatile.

78

Using an Array Name as a Pointer

• Suppose that a is declared as follows:

int a[10];

• Examples of using a as a pointer:

a = 7; / stores 7 in a[0] */

(a+1) = 12; / stores 12 in a[1] */

• In general, a + i is the same as &a[i].

− Both represent a pointer to element i of a.

• Also, *(a+i) is equivalent to a[i].

− Both represent element i itself.

79

Using an Array Name as a Pointer

• The fact that an array name can serve as a pointer makes

it easier to write loops that step through an array.

• Original loop:

for (p = &a[0]; p < &a[N]; p++)

sum += *p;

• Simplified version:

for (p = a; p < a + N; p++)

sum += *p;

80

Array Arguments (Revisited)

• When passed to a function, an array name is treated as a
pointer.

• Example:
int find_largest(int a[], int n)
{

int i, max;

max = a[0];
for (i = 1; i < n; i++)
if (a[i] > max)
max = a[i];

return max;
}

• A call of find_largest:
largest = find_largest(b, N);

This call causes a pointer to the first element of b to be
assigned to a; the array itself isn’t copied.

81

Array Arguments (Revisited)

• Consequence 1: An array used as an argument isn’t

protected against change.

− For example, the following function modifies an array by

storing zero into each of its elements:

void store_zeros(int a[], int n)

{

int i;

for (i = 0; i < n; i++)

a[i] = 0;

}

82

Array Arguments (Revisited)

• Consequence 2: The time required to pass an array to a

function doesn’t depend on the size of the array.

− There’s no penalty for passing a large array, since no copy

of the array is made.

83

Array Arguments (Revisited)

• Consequence 3: An array parameter can be declared as a

pointer if desired.

• find_largest could be defined as follows:

int find_largest(int *a, int n)

{

…

}

• Declaring a to be a pointer is equivalent to declaring it to

be an array; the compiler treats the declarations as

though they were identical.

84

Array Arguments (Revisited)

• Although declaring a parameter to be an array is the

same as declaring it to be a pointer, the same isn’t true for

a variable.

• The following declaration causes the compiler to set aside

space for 10 integers:

int a[10];

• The following declaration causes the compiler to allocate

space for a pointer variable:

int *a;

85

Array Arguments (Revisited)

• In the latter case, a is not an array; attempting to use it as

an array can have disastrous results.

• For example, the assignment

*a = 0; /*** WRONG ***/

will store 0 where a is pointing.

• Since we don’t know where a is pointing, the effect on the

program is undefined.

86

Array Arguments (Revisited)

• Consequence 4: A function with an array parameter can

be passed an array “slice”—a sequence of consecutive

elements.

− An example that applies find_largest to elements 5

through 14 of an array b:

largest = find_largest(&b[5], 10);

87

