UNIVERSITE [|"
UNIVERSITY

Introduction to
C Programming (Part A)

Overview (King Ch. 1-7)

 Introducing C (Ch. 1)

 C Fundamentals (Ch. 2)

* Formatted Input/Output (Ch. 3)
« Expressions (Ch. 4)

« Selection Statements (Ch. 5)

* Loops (Ch. 6)

« Basic Types (Ch. 7)

IIIIIIIIII

Chapter 1

Introducing C

IIIIIIIIII

Origins of C

SECOND EDITION

THE

Dennis Ritchie
‘ 1941-2011

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

PRENTICE HALL SOFTWARE SERES

C was developed at Bell Laboratories by mainly Ken
Thompson & Dennis Ritchie (Turing Award in 1983)

The language was stable enough by 1973 that UNIX could be
rewritten in C.

The ‘R’in K&R C
YORKJ I

UNIVER SITE
UNIVERSITY

Standardization of C

« K&R C

— Described in Kernighan and Ritchie, The C Programming
Language (1978)
— De facto standard
« C89/C90

— ANSI standard X3.159-1989 (completed in 1988; formally
approved in December 1989)

— International standard ISO/IEC 9899:1990

 C99
— International standard ISO/IEC 9899:1999
— Incorporates changes from Amendment 1 (1995)

IIIIIIIIII

C-Based Languages

« C++ includes all the features of C, but adds classes and
other features to support object-oriented programming.

« Java is based on C++ and therefore inherits many C
features.

« C#is a more recent language derived from C++ and Java.
« Perl has adopted many of the features of C.

IIIIIIIIII

C Characteristics

* Properties of C
— Low-level, Small, Permissive (assumes you know what

you're doing)

« Strengths of C

— Efficiency, Portabllity, Flexibility, Standard library, Integration
with UNIX

« Weaknesses of C

— Programs can be error-prone, difficult to understand, difficult
to modify

IIIIIIIIII

Effective Use of C

« Learn how to avoid pitfalls.

« Use software tools (debuggers) to make programs more
reliable.

« Take advantage of existing code libraries.

« Adopt a sensible set of coding conventions.
« Avoid “tricks” and overly complex code.

« Stick to the standard.

IIIIIIIIII

Chapter 2

C Fundamentals

IIIIIIIIII

Program: Printing a Pun

#include <stdio.h>

int main (void) {
printf ("To C, or not to C: that is the question.\n");
return 0O;

}

« This program might be stored in a file named pun. c.

 The file name doesn’t matter, but the . c extension is often
required.

UNIVERSITY

The GCC Compiler

« GCC is one of the most popular C compilers.

« GCC is supplied with Linux but is available for many other
platforms as well.

« Using the gcc compiler (similar to using cc) :

o

$ gcc -0 pun pun.c

IIIIIIIIII

Directives

« Before a C program is compiled, it is first edited by a
preprocessor.

« Commands intended for the preprocessor are called
directives.

« Example:
#include <stdio.h>

<stdio.h>Is a header containing information about C’s
standard I/O library.

IIIIIIIIII

How the Preprocessor Works

« The preprocessor’s role in the compilation process:

C program
y

Preprocessor

v

Modified C program

v

Compiler

Object code

IIIIIIIIII

Compiling and Linking

- Before a program can be executed, three steps are
usually necessary:

— Preprocessing. The preprocessor obeys commands
that begin with # (known as directives)

— Compiling. A compiler then translates the program
Into machine instructions (object code).

— Linking. A linker combines the object code produced
by the compiler with any additional code needed to
yield a complete executable program.

* The preprocessor is usually integrated with the
compiler.

IIIIIIIIII

Functions

« Afunction is a series of statements that have been
grouped together and given a name.

« Library functions are provided as part of the C
Implementation.

« A function that computes a value uses a return
statement to specify what value it “returns™:

return x + 1;

IIIIIIIIII

The Standard Library

« The C89 standard library is divided into 15 parts, with
each part described by a header.

e C99 has an additional nine headers.

<assert.h> <inttypes.h>T <signal.h> <stdlib.h>
<complex.h>T <iso646.h>T <stdarg.h> <string.h>
<ctype.h> <limits.h> <stdbool.h>T <tgmath.h>t
<errno.h> <locale.h> <stddef.h> <time.h>

<fenv.h>T <math.h> <stdint.h>t <wchar.h>T
<float.h> <setjmp.h> <stdio.h> <wctype.h>T

tC99 only

UNIVERSITE '
UNIVERSITY

The main Function

 The main function is mandatory.

 main IS special: it gets called automatically when the
program is executed.

 main returns a status code; the value O indicates normal
program termination.

 |fthere’s no return statement at the end of the main

function, many compilers will produce a warning
message.

IIIIIIIIII

Statements

« A statement is a command to be executed when the
program runs.

 pun.c uses only two kinds of statements
— the return statement
— the function call

« Crequires that each statement end with a semicolon.
(two exceptions: compound statements, directives)

 pun.c calls printf to display a string:

printf ("To C, or not to C: that is the question.\n");

UNIVERSITY

Printing Strings

* The statement
printf ("To C, or not to C: that is the question.\n");
could be replaced by two calls of printf:

printf ("To C, or not to C: ");
printf ("that is the question.\n");

« The new-line character can appear more than once in a
string literal:

printf ("Brevity is the soul of wit.\n --Shakespeare\n");

Comments

« Acomment begins with /* and ends with * /.
/* This is a comment */
« Comments may extend over more than one line.

/* Name: pun.c
Purpose: Prints a bad pun.
Author: K. N. King */

« In C99, comments can also be written in the following
way:
// This is a comment

UNIVERSITY

Variables and Assignment

« Most programs need a way to store data temporarily
during program execution.

« These storage locations are called variables.
« Variables in C have

- Type

— Name

— Value

— Memory Address

IIIIIIIIII

Declarations

« Variables must be declared before they are used.
« Variables can be declared one at a time:
int height;
float profit;
« Alternatively, several can be declared at the same time:

int height, length, width, volume;
float profit, loss;

Declarations

 When main contains declarations, these must precede
statements:

int main (void)

{
declarations

statements
J

 |In C99, declarations don’t have to come before
statements.

IIIIIIIIII

Assignment

« Avariable can be given a value by means of assignment:

height = 8; /*The number 8 is said to be a
constant.*/

« Once a variable has been assigned a value, it can be
used to compute the value of another variable:

height = 8;
length = 12;
width = 10;

vol = height * length * width; /* vol is now 960 */

« The right side of an assignment can be a formula (or
expression, in C terminology) involving constants,
variables, and operators.

UNIVERSITE '
UNIVERSITY

Initialization

« The initial value of a variable may be included in its
declaration:

int height = 8§;
The value 8 iIs said to be an initializer.

« Any number of variables can be initialized in the same
declaration:

int height = 8, length = 12, width = 10;
« Each variable requires its own initializer.

int height, length, width = 10;
/* initializes only width */

UNIVERSITY

Printing the Value of a Variable

 printf can be used to display the current value of a

variable.
« To write the message
Height: h

where h is the current value of the height variable, we'd
use the following call of printf:

printf ("Height: %d\n", height);

e %d is a placeholder indicating where the value of height
IS to be filled in.

IIIIIIIIII

Printing the Value of a Variable

* %d is a placeholder for int variables

« %f is a placeholder for f1oat variables

— By default, £ displays a number with six digits after the
decimal point. To force % £ to display p digits after the
decimal point, put . p between % and £.

— Example: to print the line
Profit: $2150.48

use the following call of printf:
printf ("Profit: $%.2f\n", profit);

IIIIIIIIII

Printing the Value of Many Variables

 There’s no limit to the number of variables that can be
printed by a single call of printf:

printf ("Height: %d Length: %d\n", height, length);

IIIIIIIIII

Printing Expressions

 printf can display the value of any numeric
expression.

 The statements

volume = height * length * width;
printf ("$d\n", volume) ;

could be replaced by
printf ("$d\n", height * length * width);

UNIVERSITY

Reading Input

 scanf is the C library’s counterpart to printf.

* scanf requires a format string to specify the
appearance of the input data.

« Example of using scanf to read an int value:
scant ("%d", &1i);
/* reads an integer; stores into i */

« The & symbol is usually (but not always) required when
using scanft.

IIIIIIIIII

Reading Input

 Reading a float value requires a slightly different call of
scanft:

scanf ("Sf", &x);
« "3f" tells scanf to look for an input value in float

format (the number may contain a decimal point, but
doesn’t have to).

IIIIIIIIII

Program: Converting from
Fahrenheit to Celsius

« The celsius.c program prompts the user to enter a

Fahrenheit temperature; it then prints the equivalent
Celsius temperature.

« Sample program output:

Enter Fahrenhelt temperature: 212
Celsius equivalent: 100.0

* The program will allow temperatures that aren’t
Integers.

IIIIIIIIII

celcius.c

/* Converts a Fahrenheit temperature to Celsius */
#include <stdio.h>

#define FREEZING PT 32.0f
#define SCALE FACTOR (5.0f / 9.0f)

int main (void)

{

float fahrenheit, celsius;

printf ("Enter Fahrenheilit temperature: ");
scanf ("%f", &fahrenheit);

celsius = (fahrenheit - FREEZING PT) * SCALE FACTOR;
printf ("Celsius equivalent: %.1f\n", celsius);

return 0O; '

Program: Converting from
Fahrenheit to Celsius

* We can name constants using a feature known
as macro definition:
#define FREEZING PT 32.0f
#define SCALE FACTOR (5.0f / 9.0f)

 When a program is compiled, the preprocessor
replaces each macro by the value that it
represents.

* Defining SCALE FACTORtobe (5.0f / 9.0f)
iInstead of (5 / 9) Is important.

* Note the use of $.1f to display celsius with
just one digit after the decimal point.

IIIIIIIIII

Chapter 3

Formatted Input/Output

IIIIIIIIII

The printf Function

 The printf function must be supplied with a format
string, followed by any values that are to be inserted
Into the string during printing:
printf (string, exprl, expr2, ..):;

« The format string may contain both ordinary

characters and conversion specifications, which
begin with the % character.

« A conversion specification is a placeholder
representing a value to be filled in during printing.
- %dis used for int values
— %f Isused for float values

IIIIIIIIII

The printf Function

 Ordinary characters in a format string are printed as they
appear in the string; conversion specifications are
replaced.

« Example:
int i, 7;
float x, vy;

i = 10;

3 = 20;

x = 43.2892f;
y = 5527.0f;

printf ("1 = %d, j = %d, x = %f, y = $f\n", i, J, x, V)
* Output:
i =10, jJ = 20, x = 43.289200, y = 5527.000000

Escape Sequences

 The \n code that is used in format strings is called an
escape seqguence.

« A string may contain any number of escape
seqguences:

printf ("Item\tUnit\tPurchase\n\tPrice\tDate\n");
« Executing this statement prints a two-line heading:

Item Unit Purchase
Price Date
« A partial list of escape sequences:
New line \n Backslash \\
Horizontal tab \t Double Quotation \”

UNIVERSITY

The scanf Function

« scanf reads input according to a particular format.

* A scanf format string may contain both ordinary
characters and conversion specifications.

« The conversions allowed with scanf are essentially the
same as those used with printf.

IIIIIIIIII

The scanf Function

* In many cases, a scanf format string will contain only
conversion specifications:

int 1, 7J;

float x, vy;

scanf ("%d%d%£%sL", &1, &3, &x, &y);
« Sample input:

1 -20 .3 -4.0e3

scanf will assign 1, -20, 0.3, and —4000.0 to i, j, %, and
y, respectively.

UNIVERSITY

How scanf Works

« As it searches for a number, scanf ignores white-space
characters (space, horizontal and vertical tab, form-feed, and
new-line).

« Acall of scanf that reads four numbers:
scanf ("$d%d$fef", &i, &3, &x, &y);

« The numbers can be on one line or spread over several lines:

1
-20 .3
-4 .0e3
 scanf sees a stream of characters (x represents new-line):

ee]lu—-20eee 3neee—-4 (e3xn _
ssrsrrrsssrrssssrrrrrr (s = skipped; r =read)

 scanf “peeks” at the final new-line without reading it.

Program: Adding Fractions

 The addfrac.c program prompts the user to enter two
fractions and then displays their sum.

« Sample program output:

Enter first fraction: 5/6
Enter second fraction: 3/4
The sum 1is 38/24

IIIIIIIIII

addfrac.c

/* Adds two fractions */
#include <stdio.h>

int main (void)
{

int numl, denoml, num2, denom2, result num, result denom;

printf ("Enter first fraction: ");
scanf ("%$d/%d", &numl, &denoml) ;

printf ("Enter second fraction: ");
scanf ("%$d/%d", &num2, &denom?2) ;

result num = numl * denom? + num?2 *denoml;
result denom = denoml * denom?2;

printf ("The sum is %d/%d\n",result num, result denom);

} return 0; \(()I(I(

Chapter 4

Expressions

IIIIIIIIII

Operators

« C emphasizes expressions rather than statements.

« EXxpressions are built from variables, constants, and
operators.

« C has arich collection of operators, including
— arithmetic operators (+, -, *, /, %)

- relational operators (==, !=, >, <, >=, <=)
- logical operators (!, &&, ||)

— assignment operators (=, -=, *=, /=, %=)
- Increment and decrement operators (++, --)
and others

IIIIIIIIII

Increment and Decrement Operators

« The increment and decrement operators are tricky:

— They can be used as prefix operators (++1i and —-1) or
postfix operators (i++ and i--).

« Example 1:
i = 1;
printf ("1 1is
printf ("1 1is

« Example 2:
i = 1;
printf ("1 1is
printf ("1 1is

sd\n",
sd\n",

sd\n",
sd\n",

++1);
i);

i+4);

1);

/*
/*

/*
/*

prints
prints

prints
prints

is

-

"1 1s

"1 1s
"1 1s

2!1 */
2!1 */
111 */
211 */

UNIVERSITY

Increment and Decrement Operators

 ++1 means “increment i immediately,” while i++ means
“use the old value of i for now, but increment i later.”

« How much later? The C standard doesn’t specify a
precise time, but it's safe to assume that i will be

Incremented before the next statement is executed.

IIIIIIIIII

Operator Precedence

« Does i+ j * kmean “add i and 7, then multiply the
result by k” or “multiply j and k, then add 1™?

« One solution to this problem is to add parentheses,
writing either (1 +) *kori + (3 * k).
 If the parentheses are omitted, C uses operator

precedence rules to determine the meaning of the
expression.

IIIIIIIIII

Expression Evaluation

» Table of operators discussed so far:

Precedence Name Symbol(s) Associativity
1 increment (postfix) ++ left
decrement (postfix) --
2 increment (prefix) ++ right
decrement (prefix) —-
unary plus +
unary minus -
3 multiplicative * /% left
4 additive + - left
5 relational < <= > >= == |= left
6 logical] && left
7 assignment = *= /= %= += -= right

Operator Associativity

« Associativity comes into play when an expression
contains two or more operators with equal precedence.

« An operator is said to be left associative if it groups from

left to right and is right associative if it groups from right
to left.

* For example, the binary arithmetic operators (*, /, %, +
and -) are all left associative, so
i-7J -k Isequivalentto (1 -3) -k
i*3 /k isequivalentto (i *3j) / k

IIIIIIIIII

Implementation-Defined Behavior

 The C standard deliberately leaves parts of the language
unspecified.

« Leaving parts of the language unspecified reflects C’s
emphasis on efficiency, which often means matching the
way that hardware behaves.

 It's best to avoid writing programs that depend on
Implementation-defined behavior.

IIIIIIIIII

Order of Subexpression Evaluation

« Example:
1 = 2;
J =1 * 1++;

 It's natural to assume that j is assigned 4. However, j
could just as well be assigned 6 instead:

1. The second operand (the original value of i) is fetched, then
i IS Incremented.

2. The first operand (the new value of i) is fetched.
3. The new and old values of i are multiplied, yielding 6.

IIIIIIIIII

Undefined Behavior

« Statements such as j =1 * 1++; cause undefined
behavior.
» Possible effects of undefined behavior:

— The program may behave differently when compiled with
different compilers.

— The program may not compile in the first place.
— If it compiles it may not run.

— If it does run, the program may crash, behave erratically, or
produce meaningless results.

 Undefined behavior should be avoided.

IIIIIIIIII

Chapter 5

Selection Statements

IIIIIIIIII

Statements

* Most of C’s statements fall into three categories:
— Selection statements: if and switch
— lteration statements: while, do, and for
— Jump statements: break, continue, and goto. (return
also belongs in this category.)
* Other C statements:
— Compound statement
— Null statement

Logical Expressions

 Several of C’s statements must test the value of an
expression to see if it is “true” or “false.”

 For example, an if statement might need to test the
expression i < j; a true value would indicate that i Is less
than 7.

* In many programming languages, an expression such as
i < j would have a special “Boolean” or “logical” type.

* In C, a comparison such as i < j yields an integer: either
O (false) or 1 (true).

IIIIIIIIII

Boolean Values in C89

* For many years, the C language lacked a Boolean type,
and there Is none defined in the C89 standard.

« Ways to work around this limitation
— declare an int variable and then assign it either O or 1:

int flag;
flag = 8;
flag = 1;
— define macros with names such as TRUE and FALSE:
#define TRUE 1
#define FALSE 0

flag = FALSE;

flag = TRUE;

Boolean Values in C99

« C99 provides the Bool type.
— A Boolean variable can be declared by writing
_Bool flag;
* Orinclude <stdbool.h> header that:
— defines a macro, bool, that stands for Bool

— supplies macros named true and false, which
stand for 1 and O, respectively, so:

bool flag; /* same as Bool flag;*/
flag = false;

flag = true;

IIIIIIIIII

The if Statement

 The if statement allows a program to choose
between two alternatives by testing an expression.

¢ Syntax
1t expression) Statement

« Example:

1f (line num == MAX LINES)
line num = 0;

« Confusing == (equality) with = (assignment) is
perhaps the most common C programming error.

IIIIIIIIII

Compound Statements

 To make an if statement control two or more statements,
use a Compound statement.

« A compound statement has the form

{ statements }

« Example of a compound statement used inside an if
statement:
1f (line num == MAX LINES) {
line_nam = 0; B
page numt+;

}

IIIIIIIIII

The else Clause

« An if statement may have an else clause:

if (expression) statement else statement
 The statement that follows the word else Is executed if
the expression has the value O.
« Example:
if (1 >)
max = 1;
else
max = 7J;

IIIIIIIIII

Cascaded if Statements

« This layout avoids the problem of excessive indentation
when the number of tests is large:

if (expression)
statement

else 1f (expression)
statement

else 1f (expression)
statement

else
statement

IIIIIIIIII

Example Cascaded if Statement

* Acascaded if statement can be used to compare an
expression against a series of values:

1f (grade == 4)
printf ("Excellent");
else 1f (grade == 3)
printf ("Good") ;
else 1f (grade == 2)

(
(
(
printf ("Average");
else 1f (grade == 1)
printf ("Poor") ;

(

(

else 1f (grade == 0)
printf ("Failing");
else

printf ("Illegal grade");

The switch Statement

* The switch statement is an alternative:
switch (grade) {

case 4 printf ("Excellent");
break;

case 3: printf ("Good");
break;

case 2: printf ("Average");
break;

case 1: printf ("Poor");
break;

case 0: printf("Failing");
break;

default: printf("Illegal grade");
break;

}

* A switch statement
— may be easier to read than a cascaded if statement
— often faster than if statements. Why?

The Role of the break Statement

« EXxecuting a break statement causes the program to
“break” out of the switch statement; execution
continues at the next statement after the switch.

 The switch statement is really a form of “computed
jump.”
« When the controlling expression is evaluated, control

jumps to the case label matching the value of the
switch expression.

« A case label is nothing more than a marker indicating
a position within the switch.

IIIIIIIIII

The Role of the break Statement

« Without break (or some other jump statement) at the
end of a case, control will flow Iinto the next case.

« Example:
switch (grade) {
case 4: printf ("Excellent");

(

4 (
case 3: printf ("Good");
case 2: printf ("Average");
case 1: printf ("Poor");
case 0: printf("Failing");

lt: printf("Illegal grade");

}

 If the value of grade Is 3, the message printed Is
GoodAveragePoorFailingIllegal grade

UNIVERSITY

Chapter 6

Loops

IIIIIIIIII
IIIIIIIIII

lteration Statements

« C provides three iteration statements:
— The while statement
— The do statement
— The for statement

IIIIIIIIII

The while Statement

 The while statement has the form
while (expression) statement

e expression is the controlling expression; statement is
the loop body.

« Example:
1 = 10;
while (1 > 0) {

printf ("T minus %d and counting\n", 1i);
1-=7

}

IIIIIIIIII

The do Statement

* The countdown example rewritten as a do
statement:
1 = 10;
do {
printf ("T minus %d and counting\n", 1i);
__i;
} while (1 > 0);

* The do statement is often indistinguishable from
the while statement.

* The only difference is that the body of a do
statement is always executed at least once.

IIIIIIIIII

The for Statement

 The for statement is ideal for loops that have a

“counting” variable, but it's versatile enough to be used for
other kinds of loops as well.

* General form of the for statement:
for (exprl ; expr2 ; expr3) statement
exprl, expr2, and expr3 are expressions.
« Example:
for (1 = 10; 1 > 0; i--)
printf ("T minus %d and counting\n", 1i);

IIIIIIIIII

The for Statement

 The for statement is closely related to the while

statement and can be replaced by an equivalent
while loop:
exprl;
while (expr2) {
Statement
expr3;
}
« exprl is an initialization step that's performed once

« expr2 controls loop termination

 expr3 is an operation to be performed at the end of
each loop iteration.

IIIIIIIIII

Infinite Loops

« C programmers sometimes deliberately create an
infinite loop:
— Using while loop
while (1)

— Using for loop

for (;;) ..

IIIIIIIIII

The Comma Operator

 On occasion, a for statement may need to have two (or
more) initialization expressions or one that increments
several variables each time through the loop.

« This effect can be accomplished by using a comma
expression as the first or third expression in the for

statement.
« Example:

for (sum = 0, 1 = 1; 1 <= N; i++)
sum += 1;

IIIIIIIIII

The break Statement

* The break statement can transfer control out of a switch
statement, but it can also be used to jump out of a while,
do, or for loop.

* Aloop that checks whether a number n is prime can use a
break statement to terminate the loop as soon as a
divisor is found:
for (d = 2; d < n; d++)

1f (n 3 d == 0)
break;

IIIIIIIIII

The break Statement

 The break statement is particularly useful for writing

loops in which the exit point is in the middle of the body
rather than at the beginning or end.

* Loops that read user input, terminating when a
particular value is entered, often fall into this category:
for (;7) A

printf ("Enter a number (enter 0 to stop): ");
scanf ("sd", &n);
if (n == 0)
break;
printf ("%d cubed is %d\n", n, n * n * n);

IIIIIIIIII

The break Statement

* Abreak statement transfers control out of the innermost
enclosing while, do, for, Or switch.

 When these statements are nested, the break statement
can escape only one level of nesting.

« Example:

while (...) |
switch (..) {

break;

-
}

 break transfers control out of the switch statement, but
not out of the while loop.

IIIIIIIIII

The continue Statement

 The continue statement is similar to break:
— break transfers control just past the end of a loop.

— continue transfers control to a point just before the end of
the loop body.
* With break, control leaves the loop; with continue,
control remains inside the loop.

 There’s another difference between break and
continue: break can be used in switch statements
and loops (while, do, and for), whereas continue IS
limited to loops.

UNIVERSITY

The continue Statement

* Aloop that uses the continue statement:
n = 0;
sum = 0O;
while (n < 10) {
scanf ("%d", &i);

1f (1 == 0)

continue;
sum += 1;
n++;

/* continue jumps to here */

UNIVERSITY

Chapter 7

Basic Type

IIIIIIIIII

Basic Types

« C’s basic (built-in) types:
— Integer types, including long integers, short integers, signed
and unsigned integers

— Floating types (float, double, and long double) can
have a fractional part as well

— char

- Bool (C99)

IIIIIIIIII

Integer Type Specifiers

Sign (the leftmost bit is reserved for the sign)
— signed (default)

— unsigned (primarily useful for systems programming and low-level,
machine-dependent applications)

Long/Short (bits to be used)
— long (integers may have more bits than ordinary integers)
— short (integers may have fewer bits)

Only six combinations produce different types:

short int unsigned short int
int unsigned int
long int unsigned long int

The order of the specifiers doesn’t matter. Also, the word int
can be dropped (1ong int can be abbreviated to just 1ong).

YORKJ

Integer Types

 Typical ranges on a 32-bit machine:

Type Smallest Value Largest Value
short int -32,768 32,767
unsigned short int 0) 65,535
int -2,147,483,648 2,147,483,647
unsigned int 0 4,294,967,295
long int -2,147,483,648 2,147,483,647
unsigned long int 0 4,294967,295

« The <limits.h> header defines macros that represent
the smallest and largest values of each integer type.

UNIVERSITY

Integer Overflow

« When arithmetic operations are performed on integers, it's
possible that the result will be too large to represent.

* For example, when an arithmetic operation is performed
on two int values, the result must be able to be

represented as an int.

 If the result can’t be represented as an int (because it
requires too many bits), we say that overflow has
occurred.

IIIIIIIIII

Integer Overflow

« The behavior when integer overflow occurs depends on
whether the operands were signed or unsigned.

— When overflow occurs during an operation on signed
integers, the program’s behavior is undefined.

— When overflow occurs during an operation on unsigned
Integers, the result is defined: we get the correct answer
modulo 2", where n is the number of bits used to store the
result.

UNIVERSITY

Floating Types

« C provides three floating types, corresponding to
different floating-point formats:

- float Single-precision floating-point
- double Double-precision floating-point
— long double Extended-precision floating-point

« Most modern computers follow the specifications In
IEEE Standard 754 (also known as IEC 60559).

— Numbers are stored in a form of scientific notation, with
each number having a sign, an exponent, and a fraction.

IIIIIIIIII

Floating Types

« Characteristics of f1oat and double when implemented
according to the IEEE standard:
Type Smallest Positive ValueLargest Value Precision
float 1.17549 x 1038 3.40282 x 1038 6 digits
double 2.22507 x 107308 1.79769 x 10308 15 digits

« In fact, on some machines, f1oat may have the same
set of values as double, or double may have the same
values as 1long double.

« Characteristics of the floating types can be found in the
<float.h> header.

UNIVERSITY

Character Sets

* The values of type char can vary from one

computer to another, because different machines
may have different underlying character sets.

« Today’s most popular character set is ASCII
(American Standard Code for Information
Interchange), a 7-bit code capable of representing
128 characters.

« ASCII is often extended to a 256-character code
known as Latin-1 that provides the characters
necessary for Western European and many African
languages.

IIIIIIIIII

Character Types

« Avariable of type char can be assigned any single

character:
char ch;
ch = 'a'; /* lower—-case a */
ch = "A'; /* upper-case A */
ch = '0"'; /* zero * /
ch ="' "'; /* space */

* Notice that character constants are enclosed in single
guotes, not double gquotes.

IIIIIIIIII

Operations on Characters

« Working with characters in C is simple, because of one
fact: C treats characters as integers.

« In ASCII, character codes range from 0000000 to 1111111,
which we can think of as the integers from 0 to 127.

 The character 'a' has the value 97, 'A"' has the value
65, '0' has the value 48, and ' ' has the value 32.

« Character constants actually have int type rather than
char type.

IIIIIIIIII

ASCII Table (128 first characters)

Dec Hex Char Dec Hex Char Deo Hex Char Dec Heax Char
(] [mm Plall 32 =10 Space &3 30] 95 &0 -
1 [R Start of heading 33 =1 ! 55 31 B a7 (= =
= o= Start of text 53 =22 e 55 g = E =R 52 i =
S a3z Ernd of text 35 =3 ## = 335 [o9 53 (]
<3 O3 End of tran=mit 56 =<3 3 55 3 g] 100 53 [§
= [Encyuirys 57 =5 = [=3="} 3 5 E 1031 55 =
= 05 A cknowledoe 35 =5 &= g = F 10z = £
- o7 Adible bell 9 =77 ! i B 37 = 105 &7 o
S oS Backspace 30 =5 I 72 35 H 103 [=F=1 i1
= o9 Horizontal tak 31 =9 1 73 39 I 105 [=3=] i

10 o2 Line feed 3= =B - T3 b - fu) 106 (== A
11 O E wertical tak 335 =B + 5 1 E K 1077 & B k
1= [Farm fesed e =1z - TG 3z L 10s = 1
13 I Carrimge return g5 =D — w7 3T M 109 oI T
13 OFE Shift out = = E - = 3 E I-T 110 (= s L
15 OF Shift im 37 =F ra = 3 F L 111 & F (]
168 10 Diata link escape 35 S0 O S0 S50 P 11= O =]
17 11 Dewvice control 1 1= =1 1 (=1 B 51 L] 115 71 =
15 1= Oewice corntral 2 S0 5= = 52 5= R 1143 7=)
1= 135 Dewice cantral 5 51 535 S [53 = 115 73S =
=0 13 Cewice contral 4 5= 53 3 E= e 53 T 116 73 =
=1 15 Meg. acknowwledoge 53 S5 = a5 55 T 1177 75 11
=2 1a =vwrnchronous idle 5 pe N = b= 55 AT 11= i = g
=3 17 End tran=. block 55 37 i [= I 57 r 11= i Loy
=1 1= Cancel 556 35 b= 55 55 = 1z=z0 = =
=5 1= End of medium 57 39 =9 59 59 w 1=1 = hTd
=B 12 Sub=titution 58 S5 H S0 55 = 1z= - =
=27 1B Escape 59 S B z =21 5E C 123 i = i
28 1 File ==eparastor (=] 3 £ 9= 5 * 1=43 L |
=9 1T SGroup =eparatar [= I = 95 =] 1i=5 I ¥
S0 1E Fecord separatar == ZE = =R 2 5E - 1=&5 TE -
31 1F Linit s=eparator 55 S F * =L S5F 1="7 TF O

Operations on Characters

 When a character appears in a computation, C uses its
Integer value.

« Consider the following examples, which assume the
ASCII character set:

char ch;

int 1;

i = "a'; /* 1 1s now 97 */
ch = 65; /* ch is now 'A' */
ch = ch + 1; /* ch is now 'B' */
ch++; /* ch 1s now 'C' */

IIIIIIIIII

Operations on Characters

« Characters can be compared, just as numbers can.

« An if statement that converts a lower-case letter to upper
case:

1f ('a' <= ch && ch <= "'z")
ch = ch - 'a' + A",
« Comparisons such as 'a' <= ch are done using the
Integer values of the characters involved.

« What is the purpose of the above code snippet?

IIIIIIIIII

Character-Handling Functions

« The C library provides many useful character-handling
functions. To use them programs need to have the
following directive at the top:

#include <ctype.h>

IIIIIIIIII

Reading and Writing Characters
Using scanf and printf

 The %c conversion specification allows scanf and
printf to read and write single characters:
char ch;

scanf ("%c", &ch); /* reads one character */
printf ("%c", ch); /* writes one character */

IIIIIIIIII

Reading and Writing Characters
Using getchar and putchar

* For single-character input and output, getchar
and putchar are an alternative to scanf and

printtf.
— putchar writes a character:

putchar (ch) ;
— getchar It reads one character, which it returns:

ch = getchar () ;

* Moving the call of getchar into the controlling
expression allows us to condense a loop that reads
many characters:
while ((ch = getchar()) !'= "\n')

; YORKJ I

IIIIIIIIII

Type Conversion

« For a computer to perform an arithmetic operation, the
operands must usually be of the same size (the same
number of bits) and be stored in the same way.

« When operands of different types are mixed in
expressions, the C compiler may have to generate
Instructions that change the types of some operands so
that hardware will be able to evaluate the expression.

- If we add a 16-bit short and a 32-bit int, the compiler will
arrange for the short value to be converted to 32 bits.

- Ifwe add an int and a float, the compiler will arrange for the
int to be converted to float format.

UNIVERSITE '
UNIVERSITY

Type Conversion

« Because the compiler handles these conversions
automatically, without the programmer’s involvement,
they’re known as implicit conversions.

« C also allows the programmer to perform explicit
conversions, using the cast operator.

* The rules for performing implicit conversions are
somewhat complex, primarily because C has so many
different arithmetic types.

IIIIIIIIII

The Usual Arithmetic Conversions

« The rules for performing the usual arithmetic conversions
can be divided into two cases:
— The type of either operand is a floating type.

= Convert the non-floating type operand to the floating type of
the other operand.

— Neither operand type is a floating type.
= First perform integral promotion on both operands.

* Then use the following diagram to promote the operand whose
type is narrower:

int 2 unsigned int = long int =2 unsigned long int

UNIVERSITE '
UNIVERSITY

The Usual Arithmetic Conversions

« Example of the usual arithmetic conversions:

char c;

short int s;

int 1i;

unsigned 1int u;

long int 1;

unsigned long int ul;

float f£f;

double d;

long double 1d;

i i+ c; /* ¢ 1s converted to int

i i+ s; /* s 1s converted to int

u=u + i; /* 1 1is converted to unsigned int
1 1+ u; /* u is converted to long int

ul = ul + 1; /* 1 is converted to unsigned long int
f=1f 4+ ul; /* ul is converted to float

d=d + £; /* f is converted to double

1d = 1d + d; /* d is converted to long double

Explicit Conversion: Casting

 We sometimes need a greater degree of control
over type conversion. C provides casts.

« A cast expression has the form
(type-name) expression

type-name specifies the type to which the
expression should be converted.

« Example using a cast expression to compute the
fractional part of a f1oat value:

float f, frac part;

frac part = £ - (int) £;

IIIIIIIIII

The sizeof Operator

« The value of the expression
sizeof (type-name)
IS an unsigned integer representing the number of bytes
required to store a value belonging to type-name.

« sizeof (char) Is always 1, but the sizes of the other
types may vary.

« For example, on a 32-bit machine, sizeof (int) IS
normally 4.

IIIIIIIIII

