
Introduction to

C Programming (Part A)

Copyright © 2008 W. W. Norton & Company. All rights Reserved

Overview (King Ch. 1-7)

• Introducing C (Ch. 1)

• C Fundamentals (Ch. 2)

• Formatted Input/Output (Ch. 3)

• Expressions (Ch. 4)

• Selection Statements (Ch. 5)

• Loops (Ch. 6)

• Basic Types (Ch. 7)

2

Chapter 1

Introducing C

Origins of C

• C was developed at Bell Laboratories by mainly Ken
Thompson & Dennis Ritchie (Turing Award in 1983)

• The language was stable enough by 1973 that UNIX could be
rewritten in C.

• The ‘R’ in K&R C

4

Standardization of C

• K&R C

− Described in Kernighan and Ritchie, The C Programming
Language (1978)

− De facto standard

• C89/C90

− ANSI standard X3.159-1989 (completed in 1988; formally
approved in December 1989)

− International standard ISO/IEC 9899:1990

• C99

− International standard ISO/IEC 9899:1999

− Incorporates changes from Amendment 1 (1995)

5

C-Based Languages

• C++ includes all the features of C, but adds classes and

other features to support object-oriented programming.

• Java is based on C++ and therefore inherits many C

features.

• C# is a more recent language derived from C++ and Java.

• Perl has adopted many of the features of C.

• …

6

C Characteristics

• Properties of C

− Low-level, Small, Permissive (assumes you know what

you’re doing)

• Strengths of C

− Efficiency, Portability, Flexibility, Standard library, Integration

with UNIX

• Weaknesses of C

− Programs can be error-prone, difficult to understand, difficult

to modify

7

Effective Use of C

• Learn how to avoid pitfalls.

• Use software tools (debuggers) to make programs more

reliable.

• Take advantage of existing code libraries.

• Adopt a sensible set of coding conventions.

• Avoid “tricks” and overly complex code.

• Stick to the standard.

8

Chapter 2

C Fundamentals

Program: Printing a Pun

#include <stdio.h>

int main(void){

printf("To C, or not to C: that is the question.\n");

return 0;

}

• This program might be stored in a file named pun.c.

• The file name doesn’t matter, but the .c extension is often

required.

10

The GCC Compiler

• GCC is one of the most popular C compilers.

• GCC is supplied with Linux but is available for many other

platforms as well.

• Using the gcc compiler (similar to using cc):

% gcc -o pun pun.c

11

Directives

• Before a C program is compiled, it is first edited by a

preprocessor.

• Commands intended for the preprocessor are called

directives.

• Example:

#include <stdio.h>

<stdio.h> is a header containing information about C’s

standard I/O library.

12

How the Preprocessor Works

• The preprocessor’s role in the compilation process:

13

Compiling and Linking

• Before a program can be executed, three steps are
usually necessary:

− Preprocessing. The preprocessor obeys commands
that begin with # (known as directives)

− Compiling. A compiler then translates the program
into machine instructions (object code).

− Linking. A linker combines the object code produced
by the compiler with any additional code needed to
yield a complete executable program.

• The preprocessor is usually integrated with the
compiler.

14

Functions

• A function is a series of statements that have been

grouped together and given a name.

• Library functions are provided as part of the C

implementation.

• A function that computes a value uses a return

statement to specify what value it “returns”:

return x + 1;

15

• The C89 standard library is divided into 15 parts, with

each part described by a header.

• C99 has an additional nine headers.

<assert.h> <inttypes.h>† <signal.h> <stdlib.h>

<complex.h>† <iso646.h>† <stdarg.h> <string.h>

<ctype.h> <limits.h> <stdbool.h>† <tgmath.h>†

<errno.h> <locale.h> <stddef.h> <time.h>

<fenv.h>† <math.h> <stdint.h>† <wchar.h>†

<float.h> <setjmp.h> <stdio.h> <wctype.h>†

†C99 only

The Standard Library

16

The main Function

• The main function is mandatory.

• main is special: it gets called automatically when the

program is executed.

• main returns a status code; the value 0 indicates normal

program termination.

• If there’s no return statement at the end of the main

function, many compilers will produce a warning

message.

17

Statements

• A statement is a command to be executed when the

program runs.

• pun.c uses only two kinds of statements

− the return statement

− the function call

• C requires that each statement end with a semicolon.

(two exceptions: compound statements, directives)

• pun.c calls printf to display a string:

printf("To C, or not to C: that is the question.\n");

18

Printing Strings

• The statement

printf("To C, or not to C: that is the question.\n");

could be replaced by two calls of printf:

printf("To C, or not to C: ");

printf("that is the question.\n");

• The new-line character can appear more than once in a

string literal:

printf("Brevity is the soul of wit.\n --Shakespeare\n");

19

Comments

• A comment begins with /* and ends with */.

/* This is a comment */

• Comments may extend over more than one line.

/* Name: pun.c

Purpose: Prints a bad pun.

Author: K. N. King */

• In C99, comments can also be written in the following
way:

// This is a comment

20

Variables and Assignment

• Most programs need a way to store data temporarily

during program execution.

• These storage locations are called variables.

• Variables in C have

− Type

− Name

− Value

− Memory Address

21

Declarations

• Variables must be declared before they are used.

• Variables can be declared one at a time:

int height;

float profit;

• Alternatively, several can be declared at the same time:

int height, length, width, volume;

float profit, loss;

22

Declarations

• When main contains declarations, these must precede

statements:

int main(void)

{

declarations

statements

}

• In C99, declarations don’t have to come before

statements.

23

Assignment

• A variable can be given a value by means of assignment:

height = 8; /*The number 8 is said to be a
constant.*/

• Once a variable has been assigned a value, it can be
used to compute the value of another variable:

height = 8;

length = 12;

width = 10;

vol = height * length * width; /* vol is now 960 */

• The right side of an assignment can be a formula (or
expression, in C terminology) involving constants,
variables, and operators.

24

Initialization

• The initial value of a variable may be included in its

declaration:

int height = 8;

The value 8 is said to be an initializer.

• Any number of variables can be initialized in the same

declaration:

int height = 8, length = 12, width = 10;

• Each variable requires its own initializer.

int height, length, width = 10;

/* initializes only width */

25

Printing the Value of a Variable

• printf can be used to display the current value of a

variable.

• To write the message

Height: h

where h is the current value of the height variable, we’d

use the following call of printf:

printf("Height: %d\n", height);

• %d is a placeholder indicating where the value of height

is to be filled in.

26

Printing the Value of a Variable

• %d is a placeholder for int variables

• %f is a placeholder for float variables

− By default, %f displays a number with six digits after the

decimal point. To force %f to display p digits after the

decimal point, put .p between % and f.

− Example: to print the line

Profit: $2150.48

use the following call of printf:

printf("Profit: $%.2f\n", profit);

27

Printing the Value of Many Variables

• There’s no limit to the number of variables that can be
printed by a single call of printf:

printf("Height: %d Length: %d\n", height, length);

28

Printing Expressions

• printf can display the value of any numeric

expression.

• The statements

volume = height * length * width;

printf("%d\n", volume);

could be replaced by

printf("%d\n", height * length * width);

29

Reading Input

• scanf is the C library’s counterpart to printf.

• scanf requires a format string to specify the

appearance of the input data.

• Example of using scanf to read an int value:

scanf("%d", &i);

/* reads an integer; stores into i */

• The & symbol is usually (but not always) required when

using scanf.

30

Reading Input

• Reading a float value requires a slightly different call of

scanf:

scanf("%f", &x);

• "%f" tells scanf to look for an input value in float

format (the number may contain a decimal point, but

doesn’t have to).

31

Program: Converting from

Fahrenheit to Celsius

• The celsius.c program prompts the user to enter a

Fahrenheit temperature; it then prints the equivalent

Celsius temperature.

• Sample program output:

Enter Fahrenheit temperature: 212

Celsius equivalent: 100.0

• The program will allow temperatures that aren’t

integers.

32

celcius.c

33

/* Converts a Fahrenheit temperature to Celsius */

#include <stdio.h>

#define FREEZING_PT 32.0f

#define SCALE_FACTOR (5.0f / 9.0f)

int main(void)

{

float fahrenheit, celsius;

printf("Enter Fahrenheit temperature: ");

scanf("%f", &fahrenheit);

celsius = (fahrenheit - FREEZING_PT) * SCALE_FACTOR;

printf("Celsius equivalent: %.1f\n", celsius);

return 0;

}

Program: Converting from

Fahrenheit to Celsius

• We can name constants using a feature known
as macro definition:
#define FREEZING_PT 32.0f
#define SCALE_FACTOR (5.0f / 9.0f)

• When a program is compiled, the preprocessor
replaces each macro by the value that it
represents.

• Defining SCALE_FACTOR to be (5.0f / 9.0f)
instead of (5 / 9) is important.

• Note the use of %.1f to display celsius with
just one digit after the decimal point.

34

Chapter 3

Formatted Input/Output

The printf Function

• The printf function must be supplied with a format
string, followed by any values that are to be inserted
into the string during printing:

printf(string, expr1, expr2, …);

• The format string may contain both ordinary
characters and conversion specifications, which
begin with the % character.

• A conversion specification is a placeholder
representing a value to be filled in during printing.
− %d is used for int values

− %f is used for float values

36

The printf Function

• Ordinary characters in a format string are printed as they
appear in the string; conversion specifications are
replaced.

• Example:
int i, j;

float x, y;

i = 10;

j = 20;

x = 43.2892f;

y = 5527.0f;

printf("i = %d, j = %d, x = %f, y = %f\n", i, j, x, y);

• Output:
i = 10, j = 20, x = 43.289200, y = 5527.000000

37

Escape Sequences

• The \n code that is used in format strings is called an
escape sequence.

• A string may contain any number of escape
sequences:
printf("Item\tUnit\tPurchase\n\tPrice\tDate\n");

• Executing this statement prints a two-line heading:

Item Unit Purchase

Price Date

• A partial list of escape sequences:
New line \n Backslash \\

Horizontal tab \t Double Quotation \”

38

The scanf Function

• scanf reads input according to a particular format.

• A scanf format string may contain both ordinary

characters and conversion specifications.

• The conversions allowed with scanf are essentially the

same as those used with printf.

39

The scanf Function

• In many cases, a scanf format string will contain only

conversion specifications:

int i, j;

float x, y;

scanf("%d%d%f%f", &i, &j, &x, &y);

• Sample input:

1 -20 .3 -4.0e3

scanf will assign 1, –20, 0.3, and –4000.0 to i, j, x, and

y, respectively.

40

How scanf Works

• As it searches for a number, scanf ignores white-space

characters (space, horizontal and vertical tab, form-feed, and

new-line).

• A call of scanf that reads four numbers:

scanf("%d%d%f%f", &i, &j, &x, &y);

• The numbers can be on one line or spread over several lines:

1

-20 .3

-4.0e3

• scanf sees a stream of characters (¤ represents new-line):

••1¤-20•••.3¤•••-4.0e3¤
ssrsrrrsssrrssssrrrrrr (s = skipped; r = read)

• scanf “peeks” at the final new-line without reading it.

41

Program: Adding Fractions

• The addfrac.c program prompts the user to enter two

fractions and then displays their sum.

• Sample program output:

Enter first fraction: 5/6

Enter second fraction: 3/4

The sum is 38/24

42

addfrac.c

43

/* Adds two fractions */

#include <stdio.h>

int main(void)

{

int num1, denom1, num2, denom2, result_num, result_denom;

printf("Enter first fraction: ");

scanf("%d/%d", &num1, &denom1);

printf("Enter second fraction: ");

scanf("%d/%d", &num2, &denom2);

result_num = num1 * denom2 + num2 *denom1;

result_denom = denom1 * denom2;

printf("The sum is %d/%d\n",result_num, result_denom);

return 0;

}

Chapter 4

Expressions

Operators

• C emphasizes expressions rather than statements.

• Expressions are built from variables, constants, and
operators.

• C has a rich collection of operators, including
− arithmetic operators (+, -, *, /, %)

− relational operators (==, !=, >, <, >=, <=)

− logical operators (!, &&, ||)

− assignment operators (=, -=, *=, /=, %=)

− increment and decrement operators (++, --)

and others

45

Increment and Decrement Operators

• The increment and decrement operators are tricky:

− They can be used as prefix operators (++i and –-i) or

postfix operators (i++ and i--).

• Example 1:

i = 1;

printf("i is %d\n", ++i); /* prints "i is 2" */

printf("i is %d\n", i); /* prints "i is 2" */

• Example 2:

i = 1;

printf("i is %d\n", i++); /* prints "i is 1" */

printf("i is %d\n", i); /* prints "i is 2" */

46

Increment and Decrement Operators

• ++i means “increment i immediately,” while i++ means

“use the old value of i for now, but increment i later.”

• How much later? The C standard doesn’t specify a
precise time, but it’s safe to assume that i will be

incremented before the next statement is executed.

47

Operator Precedence

• Does i + j * k mean “add i and j, then multiply the

result by k” or “multiply j and k, then add i”?

• One solution to this problem is to add parentheses,
writing either (i + j) * k or i + (j * k).

• If the parentheses are omitted, C uses operator

precedence rules to determine the meaning of the

expression.

48

Expression Evaluation

• Table of operators discussed so far:
Precedence Name Symbol(s) Associativity

1 increment (postfix) ++ left

decrement (postfix) --

2 increment (prefix) ++ right

decrement (prefix) --

unary plus +

unary minus -

3 multiplicative * / % left

4 additive + - left

5 relational < <= > >= == != left

6 logical ! | && left

7 assignment = *= /= %= += -= right

49

Operator Associativity

• Associativity comes into play when an expression
contains two or more operators with equal precedence.

• An operator is said to be left associative if it groups from
left to right and is right associative if it groups from right
to left.

• For example, the binary arithmetic operators (*, /, %, +,
and -) are all left associative, so

i - j – k is equivalent to (i - j) - k
i * j / k is equivalent to (i * j) / k

50

Implementation-Defined Behavior

• The C standard deliberately leaves parts of the language

unspecified.

• Leaving parts of the language unspecified reflects C’s

emphasis on efficiency, which often means matching the

way that hardware behaves.

• It’s best to avoid writing programs that depend on

implementation-defined behavior.

51

Order of Subexpression Evaluation

• Example:

i = 2;

j = i * i++;

• It’s natural to assume that j is assigned 4. However, j

could just as well be assigned 6 instead:

1. The second operand (the original value of i) is fetched, then
i is incremented.

2. The first operand (the new value of i) is fetched.

3. The new and old values of i are multiplied, yielding 6.

52

Undefined Behavior

• Statements such as j = i * i++; cause undefined
behavior.

• Possible effects of undefined behavior:

− The program may behave differently when compiled with
different compilers.

− The program may not compile in the first place.

− If it compiles it may not run.

− If it does run, the program may crash, behave erratically, or
produce meaningless results.

• Undefined behavior should be avoided.

53

Chapter 5

Selection Statements

Statements

• Most of C’s statements fall into three categories:

− Selection statements: if and switch

− Iteration statements: while, do, and for

− Jump statements: break, continue, and goto. (return

also belongs in this category.)

• Other C statements:

− Compound statement

− Null statement

55

Logical Expressions

• Several of C’s statements must test the value of an
expression to see if it is “true” or “false.”

• For example, an if statement might need to test the
expression i < j; a true value would indicate that i is less
than j.

• In many programming languages, an expression such as
i < j would have a special “Boolean” or “logical” type.

• In C, a comparison such as i < j yields an integer: either
0 (false) or 1 (true).

56

Boolean Values in C89

• For many years, the C language lacked a Boolean type,
and there is none defined in the C89 standard.

• Ways to work around this limitation
− declare an int variable and then assign it either 0 or 1:

int flag;
flag = 0;
…
flag = 1;

− define macros with names such as TRUE and FALSE:

#define TRUE 1

#define FALSE 0

flag = FALSE;

…

flag = TRUE;

57

Boolean Values in C99

• C99 provides the _Bool type.

− A Boolean variable can be declared by writing

_Bool flag;

• Or include <stdbool.h> header that:

− defines a macro, bool, that stands for _Bool

− supplies macros named true and false, which
stand for 1 and 0, respectively, so:

bool flag; /* same as _Bool flag;*/

flag = false;

…

flag = true;

58

The if Statement

• The if statement allows a program to choose
between two alternatives by testing an expression.

• Syntax
if (expression) statement

• Example:

if (line_num == MAX_LINES)
line_num = 0;

• Confusing == (equality) with = (assignment) is
perhaps the most common C programming error.

59

Compound Statements

• To make an if statement control two or more statements,
use a compound statement.

• A compound statement has the form

{ statements }

• Example of a compound statement used inside an if
statement:

if (line_num == MAX_LINES) {

line_num = 0;

page_num++;

}

60

The else Clause

• An if statement may have an else clause:

if (expression) statement else statement

• The statement that follows the word else is executed if

the expression has the value 0.

• Example:

if (i > j)

max = i;

else

max = j;

61

Cascaded if Statements

• This layout avoids the problem of excessive indentation

when the number of tests is large:

if (expression)

statement

else if (expression)

statement

…

else if (expression)

statement

else

statement

62

Example Cascaded if Statement

• A cascaded if statement can be used to compare an
expression against a series of values:

if (grade == 4)
printf("Excellent");

else if (grade == 3)
printf("Good");

else if (grade == 2)
printf("Average");

else if (grade == 1)
printf("Poor");

else if (grade == 0)
printf("Failing");

else
printf("Illegal grade");

63

The switch Statement

• The switch statement is an alternative:
switch (grade) {

case 4: printf("Excellent");

break;

case 3: printf("Good");

break;

case 2: printf("Average");

break;

case 1: printf("Poor");

break;

case 0: printf("Failing");

break;

default: printf("Illegal grade");

break;
}

• A switch statement

− may be easier to read than a cascaded if statement

− often faster than if statements. Why?

64

The Role of the break Statement

• Executing a break statement causes the program to
“break” out of the switch statement; execution
continues at the next statement after the switch.

• The switch statement is really a form of “computed
jump.”

• When the controlling expression is evaluated, control
jumps to the case label matching the value of the
switch expression.

• A case label is nothing more than a marker indicating
a position within the switch.

65

The Role of the break Statement

• Without break (or some other jump statement) at the
end of a case, control will flow into the next case.

• Example:
switch (grade) {

case 4: printf("Excellent");

case 3: printf("Good");

case 2: printf("Average");

case 1: printf("Poor");

case 0: printf("Failing");

default: printf("Illegal grade");

}

• If the value of grade is 3, the message printed is
GoodAveragePoorFailingIllegal grade

66

Chapter 6

Loops

Iteration Statements

• C provides three iteration statements:

− The while statement

− The do statement

− The for statement

68

The while Statement

• The while statement has the form

while (expression) statement

• expression is the controlling expression; statement is

the loop body.

• Example:

i = 10;

while (i > 0) {

printf("T minus %d and counting\n", i);

i--;
}

69

The do Statement

• The countdown example rewritten as a do

statement:

i = 10;

do {

printf("T minus %d and counting\n", i);

--i;

} while (i > 0);

• The do statement is often indistinguishable from

the while statement.

• The only difference is that the body of a do

statement is always executed at least once.

70

The for Statement

• The for statement is ideal for loops that have a

“counting” variable, but it’s versatile enough to be used for

other kinds of loops as well.

• General form of the for statement:

for (expr1 ; expr2 ; expr3) statement

expr1, expr2, and expr3 are expressions.

• Example:

for (i = 10; i > 0; i--)

printf("T minus %d and counting\n", i);

71

The for Statement

• The for statement is closely related to the while
statement and can be replaced by an equivalent
while loop:
expr1;
while (expr2) {

statement
expr3;

}

• expr1 is an initialization step that’s performed once

• expr2 controls loop termination

• expr3 is an operation to be performed at the end of
each loop iteration.

72

Infinite Loops

• C programmers sometimes deliberately create an

infinite loop:

− Using while loop

while (1) …

− Using for loop

for (;;) …

73

The Comma Operator

• On occasion, a for statement may need to have two (or
more) initialization expressions or one that increments
several variables each time through the loop.

• This effect can be accomplished by using a comma
expression as the first or third expression in the for
statement.

• Example:

for (sum = 0, i = 1; i <= N; i++)

sum += i;

74

The break Statement

• The break statement can transfer control out of a switch

statement, but it can also be used to jump out of a while,

do, or for loop.

• A loop that checks whether a number n is prime can use a

break statement to terminate the loop as soon as a

divisor is found:

for (d = 2; d < n; d++)

if (n % d == 0)

break;

75

The break Statement

• The break statement is particularly useful for writing
loops in which the exit point is in the middle of the body
rather than at the beginning or end.

• Loops that read user input, terminating when a
particular value is entered, often fall into this category:

for (;;) {

printf("Enter a number (enter 0 to stop): ");

scanf("%d", &n);

if (n == 0)

break;

printf("%d cubed is %d\n", n, n * n * n);

}

76

The break Statement

• A break statement transfers control out of the innermost
enclosing while, do, for, or switch.

• When these statements are nested, the break statement
can escape only one level of nesting.

• Example:
while (…) {

switch (…) {
…

break;
…

}
}

• break transfers control out of the switch statement, but
not out of the while loop.

77

The continue Statement

• The continue statement is similar to break:

− break transfers control just past the end of a loop.

− continue transfers control to a point just before the end of
the loop body.

• With break, control leaves the loop; with continue,
control remains inside the loop.

• There’s another difference between break and
continue: break can be used in switch statements
and loops (while, do, and for), whereas continue is
limited to loops.

78

The continue Statement

• A loop that uses the continue statement:

n = 0;

sum = 0;

while (n < 10) {

scanf("%d", &i);

if (i == 0)

continue;

sum += i;

n++;

/* continue jumps to here */

}

79

Chapter 7

Basic Type

Basic Types

• C’s basic (built-in) types:

− Integer types, including long integers, short integers, signed

and unsigned integers

− Floating types (float, double, and long double) can

have a fractional part as well

− char

− _Bool (C99)

81

Integer Type Specifiers

• Sign (the leftmost bit is reserved for the sign)

− signed (default)

− unsigned (primarily useful for systems programming and low-level,

machine-dependent applications)

• Long/Short (bits to be used)

− long (integers may have more bits than ordinary integers)

− short (integers may have fewer bits)

• Only six combinations produce different types:

short int unsigned short int

int unsigned int

long int unsigned long int

• The order of the specifiers doesn’t matter. Also, the word int

can be dropped (long int can be abbreviated to just long).

82

Integer Types

• Typical ranges on a 32-bit machine:

Type Smallest Value Largest Value
short int –32,768 32,767
unsigned short int 0 65,535
int –2,147,483,648 2,147,483,647
unsigned int 0 4,294,967,295
long int –2,147,483,648 2,147,483,647
unsigned long int 0 4,294,967,295

• The <limits.h> header defines macros that represent
the smallest and largest values of each integer type.

83

Integer Overflow

• When arithmetic operations are performed on integers, it’s

possible that the result will be too large to represent.

• For example, when an arithmetic operation is performed
on two int values, the result must be able to be

represented as an int.

• If the result can’t be represented as an int (because it

requires too many bits), we say that overflow has

occurred.

84

Integer Overflow

• The behavior when integer overflow occurs depends on

whether the operands were signed or unsigned.

− When overflow occurs during an operation on signed

integers, the program’s behavior is undefined.

− When overflow occurs during an operation on unsigned

integers, the result is defined: we get the correct answer

modulo 2n, where n is the number of bits used to store the

result.

85

Floating Types

• C provides three floating types, corresponding to

different floating-point formats:

− float Single-precision floating-point

− double Double-precision floating-point

− long double Extended-precision floating-point

• Most modern computers follow the specifications in

IEEE Standard 754 (also known as IEC 60559).

− Numbers are stored in a form of scientific notation, with

each number having a sign, an exponent, and a fraction.

86

Floating Types

• Characteristics of float and double when implemented

according to the IEEE standard:

Type Smallest Positive ValueLargest Value Precision

float 1.17549  10–38 3.40282  1038 6 digits

double 2.22507  10–308 1.79769  10308 15 digits

• In fact, on some machines, float may have the same

set of values as double, or double may have the same

values as long double.

• Characteristics of the floating types can be found in the
<float.h> header.

87

Character Sets

• The values of type char can vary from one
computer to another, because different machines
may have different underlying character sets.

• Today’s most popular character set is ASCII
(American Standard Code for Information
Interchange), a 7-bit code capable of representing
128 characters.

• ASCII is often extended to a 256-character code
known as Latin-1 that provides the characters
necessary for Western European and many African
languages.

88

Character Types

• A variable of type char can be assigned any single

character:

char ch;

ch = 'a'; /* lower-case a */

ch = 'A'; /* upper-case A */

ch = '0'; /* zero */

ch = ' '; /* space */

• Notice that character constants are enclosed in single

quotes, not double quotes.

89

Operations on Characters

• Working with characters in C is simple, because of one
fact: C treats characters as integers.

• In ASCII, character codes range from 0000000 to 1111111,
which we can think of as the integers from 0 to 127.

• The character 'a' has the value 97, 'A' has the value
65, '0' has the value 48, and ' ' has the value 32.

• Character constants actually have int type rather than
char type.

90

ASCII Table (128 first characters)

91

Operations on Characters

• When a character appears in a computation, C uses its

integer value.

• Consider the following examples, which assume the

ASCII character set:

char ch;

int i;

i = 'a'; /* i is now 97 */

ch = 65; /* ch is now 'A' */

ch = ch + 1; /* ch is now 'B' */

ch++; /* ch is now 'C' */

92

Operations on Characters

• Characters can be compared, just as numbers can.

• An if statement that converts a lower-case letter to upper

case:

if ('a' <= ch && ch <= 'z')

ch = ch - 'a' + 'A';

• Comparisons such as 'a' <= ch are done using the

integer values of the characters involved.

• What is the purpose of the above code snippet?

93

Character-Handling Functions

• The C library provides many useful character-handling

functions. To use them programs need to have the

following directive at the top:

#include <ctype.h>

94

Reading and Writing Characters
Using scanf and printf

• The %c conversion specification allows scanf and

printf to read and write single characters:

char ch;

scanf("%c", &ch); /* reads one character */

printf("%c", ch); /* writes one character */

95

Reading and Writing Characters
Using getchar and putchar

• For single-character input and output, getchar

and putchar are an alternative to scanf and

printf.

− putchar writes a character:

putchar(ch);

− getchar it reads one character, which it returns:

ch = getchar();

• Moving the call of getchar into the controlling

expression allows us to condense a loop that reads

many characters:

while ((ch = getchar()) != '\n')

;

96

Type Conversion

• For a computer to perform an arithmetic operation, the

operands must usually be of the same size (the same

number of bits) and be stored in the same way.

• When operands of different types are mixed in

expressions, the C compiler may have to generate

instructions that change the types of some operands so

that hardware will be able to evaluate the expression.

− If we add a 16-bit short and a 32-bit int, the compiler will

arrange for the short value to be converted to 32 bits.

− If we add an int and a float, the compiler will arrange for the

int to be converted to float format.

97

Type Conversion

• Because the compiler handles these conversions

automatically, without the programmer’s involvement,

they’re known as implicit conversions.

• C also allows the programmer to perform explicit

conversions, using the cast operator.

• The rules for performing implicit conversions are

somewhat complex, primarily because C has so many

different arithmetic types.

98

The Usual Arithmetic Conversions

• The rules for performing the usual arithmetic conversions

can be divided into two cases:

− The type of either operand is a floating type.

 Convert the non-floating type operand to the floating type of

the other operand.

− Neither operand type is a floating type.

 First perform integral promotion on both operands.

 Then use the following diagram to promote the operand whose

type is narrower:

int unsigned int  long int  unsigned long int

99

The Usual Arithmetic Conversions

• Example of the usual arithmetic conversions:
char c;

short int s;

int i;

unsigned int u;

long int l;

unsigned long int ul;

float f;

double d;

long double ld;

i = i + c; /* c is converted to int */

i = i + s; /* s is converted to int */

u = u + i; /* i is converted to unsigned int */

l = l + u; /* u is converted to long int */

ul = ul + l; /* l is converted to unsigned long int */

f = f + ul; /* ul is converted to float */

d = d + f; /* f is converted to double */

ld = ld + d; /* d is converted to long double */

100

Explicit Conversion: Casting

• We sometimes need a greater degree of control
over type conversion. C provides casts.

• A cast expression has the form

(type-name) expression

type-name specifies the type to which the
expression should be converted.

• Example using a cast expression to compute the
fractional part of a float value:

float f, frac_part;

frac_part = f - (int) f;

101

The sizeof Operator

• The value of the expression

sizeof (type-name)

is an unsigned integer representing the number of bytes

required to store a value belonging to type-name.

• sizeof(char) is always 1, but the sizes of the other

types may vary.

• For example, on a 32-bit machine, sizeof(int) is

normally 4.

102

