
Shells & Shell Programming

(Part B)

Thanks to Karen Reid and Alan J Rosenthal

for material in these slides

Software Tools

EECS2031 Winter 2018

Manos Papagelis

CONTROL STATEMENTS

2

Control Statements

• Conditional statements

– if/then/else

– test

– case

• Loops - Repetitive task statements

– for

– while

3

if/then/else

if TEST-COMMANDS; then

CONSEQUENT-COMMANDS;

else

ALTERNATE-CONSEQUENT-COMMANDS

fi

4

5

Test

• The built-in
command
test is
used to
construct
conditional
statements
in Bourne
shell (sh)

• Equivalent

to […] in
bash

And, or-a, -o

-ne, -gt, -lt, -le

True if int1 equals int2int1 -eq int2

True if str1 not equal to str2str1 != str2

True if str1 equals str2str1 = str2

True if empty string-z string

Exists as an executable file-x filename

Exists as a writable file-w filename

Exists as a readable file-r filename

Exists as a regular file-f filename

Exists as a directory-d filename

test arguments

test: example

#!/bin/bash

if test -z "$1"; then

echo "No command-line arguments."

else

echo "First command-line argument is $1."

fi

6

[…]: example

#!/bin/bash

directory="./BashScripting"

bash check if directory exists

if [-d $directory]; then

echo "Directory exists"

else

echo "Directory does not exists"

fi

7

8

if/test relationship

• test is a command that returns a value

• If statements check the return value of the
command

• test equivalent (brackets): []

if test ! –d notes

then

echo not found

else

echo found

fi

if [! –d notes]

then

echo not found

else

echo found

fi

=

case

case EXPRESSION in

PATTERN1) COMMAND-LIST;;

PATTERN2) COMMAND-LIST;;

...

PATTERNN) COMMAND-LIST;;

esac

9

case: example

#!/bin/bash

echo "What is your preferred programming /

scripting language"

echo "1) bash"

echo "2) perl"

echo “3) I do not know !"

read choice;

case $choice in

1) echo "You selected bash";;

2) echo "You selected perl";;

3) exit

esac
10

for

for NAME [in LIST]; do

COMMANDS;

done

11

for: example

#!/bin/bash

for f in $(ls /var/); do

echo $f

done

12

for: example 2

Assume that:

% ls *.xml

% file1.xml file2.xml file3.xml

Then:

% ls *.xml > list

% for i in `cat list`; do cp "$i" "$i".bak ; done

% ls *.xml*

What would the output be?

13

OUTPUT:

% file1.xml file1.xml.bak file2.xml file2.xml.bak file3.xml file3.xml.bak

while

while CONTROL-COMMAND; do

CONSEQUENT-COMMANDS;

done

14

while: example

#!/bin/bash

COUNT=6

while [$COUNT -gt 0]; do

echo Value of count is: $COUNT

let COUNT=COUNT-1

done

15

Note: let is used (as one way) to evoke arithmetic evaluation of an

expression.

while: example 2

#!/bin/bash

This script opens 4 terminal windows.

i="0"

while [$i -lt 4]; do

xterm &

i=$[$i+1]

done

16

COMMAND LINE ARGUMENTS

17

18

Command line arguments

• positional parameters: variables that are

assigned according to position in a string

• Command line arguments are placed in

positional parameters:

%chmod u+x myscript

$0 $1 $2

$*

19

Positional Parameters

• Example:

(Remember to run chmod u+x giant or chmod 711 giant)

#!/bin/sh

echo arg1: $1

echo arg2: $2

echo name: $0

echo all: $*

giant

$ giant fee fie fo fum

arg1: fee

arg2: fie

name: giant

all: fee fie fo fum

20

Positional Parameters

Variable What it references

$0 Name of the script

$# Number of positional parameters

$* Lists all positional parameters

$@ Same as $* except when in quotes

“$*” Expands to a single argument (“$1 $2 $3”)

“$@” Expands to separate arguments (“$1” “$2” “$3”)

$1 .. $9 First 9 positional parameters

${10} 10th positional parameter (need to use braces)

21

set and shift
• set – assigns positional parameters to its

arguments.

$ set `date`

$ echo "The date today is $2 $3, $6"

The date today is May 25, 2006

• shift – change the meaning of the positional
parameters

#!/bin/sh

while test "$1"

do

echo $1

shift

done

$ giant2 fee fie fo fum

fee

fie

fo

fum

giant2

22

Iterating over arguments

• Don’t use this one

unless you know that

the argument list will

always be short

• sh allows only 9

positional parameters

• The method below is

more portable.

• Use this one.

#!/bin/sh

while test "$1"

do

echo $1

shift

done

#!/bin/sh

for arg in "$@"

do

echo $arg

done

23

Even more on quotes

• Getting the quotes right on a loop or similar
commands can be a bit tricky.

• The following 4 loops do different things:

for arg in "$*"

do

echo $arg

done

for arg in $*

do

echo $arg

done

for arg in $@

do

echo $arg

done

for arg in "$@"

do

echo $arg

done

Quotes mean arguments

are all in one string.

One element for each

argument.

Blanks in the arg

list are preserved

Does not preserve

blanks in arg list.

EXPRESSIONS

24

25

• Since shell scripts work by text replacement, we

need a special function for arithmetic. Strings may

be evaluated as numbers using expr

x=1

expr $x #evaluates to 1

expr $x + 3 #evaluates to 4

x=`expr $x + 3`#evaluates to x=4

y=`expr 3 * 5` #doesn’t work

expr

expr: more examples

% a=3

% b=$a" + 9" # string concatenation

% echo $b

3 + 9

% expr $b

12

% expr $a * $a # wrong! - need to escape *

expr: syntax error

% expr $a * $a

9
26

27

String matching using expr

expr $string : $substring

• Returns the length of matching substring at the
beginning of string. Example:

% string="hello"

% substring="hel"

% expr $string : $substring

3

• It returns 0 if the substring is not found at the
beginning of string.

• Useful in some simple cases. If you need anything
more complicated use Python, Perl, sed or awk.

READING USER INPUT

28

29

read

• reads one line from standard input and
assigns successive words to the
specified variables. Leftover words are
assigned to the last variable.

#!/bin/sh

echo "Enter your name:"

read fName lName

echo "First: $fName"

echo "Last: $lName"

$ name

Enter your name:

Alexander Graham Bell

First: Alexander

Last: Graham Bell

name

Reading User Input: example

#!/bin/bash

echo "Hi, please type a word:"

read word

echo "The word you entered is: $word"

echo "Can you please enter two words? "

read word1 word2

echo "Here is your input: \"$word1\" \"$word2\"“

echo "What are your three favorite colours ? "

-a makes read command to read into an array

read -a colours

echo "My favorite colours are ${colours[0]},

${colours[1]} and ${colours[2]}:-)"
30

31

Reading from a file

while read line

do

echo $line

done < $file

• Reads one line at a time from a file.

• $file contains the name of the file that

will be read from.

FUNCTIONS

32

functions

function FUNCTION {

COMMANDS;

}

or

FUNCTION () {

COMMANDS;

}

33

34

functions (more)

• You can create your own

functions or subroutines:

% myfunc() {

arg1=$1

arg2=$2

echo $arg1 $arg2 $globalvar

return 0

}

% globalvar="I am global"

% myfunc num1 num2

% num1 num2 I am global

• Notes:

– Arguments are passed

through positional

parameters.

– Variables defined outside

the function are visible

within.

– Return value is the value

of the last executed

command in the function.

functions: example

#!/bin/bash

BASH FUNCTIONS DECLARATION

function function_B {

COMMANDS;

}

function function_A {

echo $1

}

FUNCTION CALLS

% function_A "Function A."

% function_A.
36

37

find [path…] [expression]

• Expression
– Options:

• -maxdepth level

– Tests:
• -name pattern

– Base of file name matches shell pattern pattern

• -newer file

– File was modified more recently the file.

– Actions
• -print

• -exec

38

find: example

Displays the names of all the Java files in

directories in and below the current working

directory.

find . -name "*.java" –print

USING PIPES

39

40

The power of pipelines

• Question 1:

How many people with EECS accounts are using
the bash shell as their default shell?

(We need to know that the default shell is stored in
/etc/passwd)

papaggel:x:18084:2000:Manos Papagelis:/cs/home/papaggel:/cs/local/bin/bash

paras273:x:15708:10000:Parastoo Baghaei Ravari:/cs/home/paras273:/bin/false

pareto:x:9733:7000:Park Search Engine:/cs/home/pareto:/buonly

parham71:x:17252:10000:Parham Amani:/cs/home/parham71:/bin/false

paria:x:12757:3000:Paria Mehrani:/cs/home/paria:/cs/local/bin/tcsh

...

41

The power of pipelines

• Solution:

grep bash /etc/passwd | wc -l

Answer: 10

42

The power of pipelines

• Question 2:

How many EECS accounts are there?

43

The power of pipelines

• Solution:

wc -l /etc/passwd

Answer: 2924

44

Another problem

• Question 3:

How many people are running bash or
tcsh right now?

45

More on grep and pipes

• Solution Steps:

– Step 1: Display active processes using ps
•man ps

•ps normally shows processes associated with
your terminal

• use the options aux to display all processes

46

More on grep and pipes

– Step 2: Extract the processes running bash.

– Step 3: Weed out the grep process itself (man grep)

root 917 0.0 0.0 115640 1116 ? S Jan05 0:56 /bin/bash

papaggel 1623 0.0 0.0 116964 3756 pts/0 Ss+ 09:10 0:00 -bash

papaggel 23113 0.1 0.0 116836 3516 pts/14 Ss 10:37 0:00 -bash

papaggel 23309 0.0 0.0 112664 976 pts/14 S+ 10:38 0:00 grep

ps aux | grep bash | grep -v grep

ps aux | grep bash

47

More on grep and pipes

– Step 4: Keep only info about user names

• Strip out only the name

• Use cut to break each line into fields.

• Two ways to do it:

– cut -d " " -f 1

» Set the delimiter to be a space and select the

first field.

– cut -c -8

» Select characters from beginning to the 8th one

ps aux | grep bash | grep -v grep | cut -d " " -f 1

man cut

48

NAME

cut - remove sections from each line of files

SYNOPSIS

cut [OPTION]... [FILE]...

DESCRIPTION

Print selected parts of lines from each FILE to standard output.

-c, --characters=LIST output only these characters

-d, --delimiter=DELIM use DELIM instead of TAB for field delimiter

-f, --fields=LIST output only these fields

Use one, and only one of -b, -c or -f. Each LIST is made up of one range,

or many ranges separated by commas. Each range is one of:

N N'th byte, character or field, counted from 1

N- from N'th byte, character or field, to end of line

N-M from N'th to M'th (included) byte, character or field

The order of bytes, characters or fields in the output will be identical to

those in the input. With no FILE, or when FILE is -, read standard input.

More on grep and pipes

– Step 5: Sort them

– Step 6: Get rid of duplicates (if any)

– Step 7: And finally, count them…

ps aux | grep bash |grep -v grep | cut -d " " -f 1 | sort | uniq

ps aux | grep bash |grep -v grep | cut -d " " -f 1 | sort

ps aux | grep bash |grep -v grep | cut -d " " -f 1 | sort | uniq | wc -l

EXAMPLE SHELL SCRIPTS

50

