
Shells & Shell Programming

(Part A)

Thanks to Karen Reid and Alan J Rosenthal

for material in these slides

Software Tools

EECS2031 Winter 2018

Manos Papagelis

SHELLS

2

3

What is a Shell

• A shell is a command line interpreter that is

the interface between the user and the OS.

• The shell:

– analyzes each command

– determines what actions are to be performed

– performs the actions

• Example:

wc –l file1 > file2

4

Which shell?
• sh – Bourne shell

– Most common, other shells are a superset

– Good for programming

• csh or tcsh – command-line default on EECS labs
– C-like syntax

– Best for interactive use.

• bash – default on Linux (Bourne again shell)
– Based on sh, with some csh features.

• korn – written by David Korn
– Based on sh – Some claim best for programming.

– Commercial product.

5

bash versus sh

• On EECS labs, when you run sh, you

are actually running bash.

• bash is a superset of sh.

• For EECS2031, you will be learning

only the features of the language that
belong to sh.

6

Changing your shell

• I recommend changing your working shell on

EECS to bash

– It will make it easier to test your shell programs.

– You will only need to learn one set of syntax.

• What to do:

– echo $SHELL (to check your current shell)

– chsh <userid> bash

– Logout and log back in.

– .profile is executed every time you log in, so

put your environment variables there

Standard Streams

• Preconnected input and output channels

between a computer program and its

environment. There are 3 I/O connections:
– standard input (stdin)

– standard output (stdout)

– standard error (stderr)

7

8

Common shell facilities
• Input-output redirection

prog < infile > outfile

ls >& outfile # csh and bash stdout and stderr

ls > outfile 2>&1 # sh stdout and stderr

– More redirection examples:

https://www.tutorialspoint.com/unix/unix-io-redirections.htm

https://en.wikipedia.org/wiki/Redirection_(computing)

• Pipelining commands

– send the output of a command to the input of another

ls -l | wc

ps –aux | grep papaggel | sort

https://www.tutorialspoint.com/unix/unix-io-redirections.htm
https://en.wikipedia.org/wiki/Redirection_(computing)

9

Job Control

• A job is a program whose execution has been
initiated by the user

• At any moment, a job can be running or suspended

• Foreground job:
– a program which has control of the terminal

• Background job:
– runs concurrently with the parent shell and does not take

control of the keyboard

• Start a job in the background by appending &

• Commands: ^Z, jobs, fg, bg, kill

• More information:

– https://linuxconfig.org/understanding-foreground-and-
background-linux-processes

https://linuxconfig.org/understanding-foreground-and-background-linux-processes

10

File Name Expansion
ls *.c

rm file[1-6].?

cd ~/bin

ls ~papaggel

ls *.[^oa] - ^ in csh, ! in sh

• * stands in for 0 or more characters

• ? stands in for exactly one character

• [1-6] stands in for one of 1, 2, 3, 4, 5, 6

• [^oa] stands in for any char except o or a

• ~ stands in for your home directory

• ~papaggel stands in for my home directory

SHELL PROGRAMMING

12

13

Shell Programming

(Bourne shell)

• Commands run from a file in a subshell

• A great way to automate a repeated
sequence of commands.

• File starts with #!/bin/sh
– absolute path to the shell program

– not the same on every machine

– for bash it is #!/bin/bash

• Can also write programs interactively by
starting a new shell at the command line.
– Tip: this is a good way to test your shell programs

14

Example: at the command line

% sh

sh-3.2$ echo "Hello World"

Hello World

sh-3.2$ exit

Exit

%

15

Example: in a file

• In a file named “hello_world.sh” write:

#!/bin/sh

echo “Hello World!”

• make the file executable:
chmod 711 hello_world.sh

• run the script:
./hello_world.sh

Shell scripts

Like any programming language:

• Variables

• control structures (if, for, while, …)

• Parameters

• subroutines (functions)

• Plus shell conveniences (I/O redirection,

pipes, built-in commands)

16

Shell scripts advantages

• saves typing if you need to perform the

same thing over and over

• faster

• you can make it quite complex and

debug it before using

Oh! - you mean just like a program! :-)

17

18

Commands

• You can run any program in a shell script by calling it
as you would on the command line

• When you run a program like grep or ls in a shell
script, a new process is created

• There are also some built-in commands where no
new process is created

● echo

● set

● read

● exit

● test

● shift

● wait

"man sh” to
see all builtins.

19

Variables

• local variables – spaces matter

– name=value – assignment

– $name – replaced by value of name

– variables can have a single value or list of values.

• Single value:

bindir="/usr/bin"

• List of values (separated by spaces):

searchdirs="~/tests $HOME/test2 ."

20

Example:
($ or % is the default sh prompt)

$ bindir="/usr/bin"

$ searchdirs="~/tests $HOME/test2 ."

$ echo $searchdirs

~/tests /u/reid/test2 .

$ echo $bindir

/usr/bin

STRING REPLACEMENT &

QUOTING

21

22

String Replacement
• Scripting languages are all about replacing

text or strings (unlike other languages
such as C or Java which are all about data
structures)

• Variables are placeholders where we will
substitute the value of the variable

• Example:

iters="1 2 3 4"

for i in $iters; do

echo $i

done

for i in 1 2 3 4; do

echo $i

done

=

23

Quoting

• Double quotes ("") prevent wildcard replacement

only.

• Single quotes (’’) prevent wildcard replacement,

variable substitution and command substitution.

• Back quotes (``) cause command substitution.

Practice and pay attention. Single and double quotes
are on the same key.

Back quote is often on
the same key as ~.

Double quotes ("")

Use double quotes: " " to prevent wildcard interpretation of *,?, etc.

$ ls

a b c cap.sh whale.sh

$ echo *

a b c cap.sh whale.sh

$ echo "*"

*

$ echo ?

a b c

$ echo "?”

?

24

Single quotes (’’)
Use single quotes: ' ' to prevent pretty much everything:

• wildcards

• variable value substitution

• command substitution (see backquotes, a few slides down)

$ echo * $shell

a b c cap.sh whale.sh /bin/tcsh

$ echo '* $shell’

* $shell

$ echo `whoami`

papange1

$ echo '`whoami`’

`whoami`
25

Backquotes (` `)

• backquote ` - usually on the same key as ~:

the leftmost on the top row on QWERTY

boards

• Known as command substitution - the

meaning is take the expression inside the ` `,

execute it, and substitute the result for the

expression

• Command substitution causes another

process to be created

26

Backquotes (` `)

$ whoami

papaggel

$ grep `whoami` /etc/passwd

papaggel:x:18084:2000:Manos

Papagelis:/cs/home/papaggel:/cs/local/bin/bash

$ grep papaggel /etc/passwd

papaggel:x:18084:2000:Manos

Papagelis:/cs/home/papaggel:/cs/local/bin/bash

27

28

Quoting example

$ echo Today is date

Today is date

$ echo Today is `date`

Today is Thu Sep 19 12:28:55 EST 2002

$ echo "Today is `date`"

Today is Thu Sep 19 12:28:55 EST 2002

$ echo ’Today is `date`’

Today is `date`

" – double quotes

’ – single quote

` - back quote

29

Another Quoting Example

• What do the following statements produce if the
current directory contains the following non-
executable files?

Assume there exist files: a b c

$ echo *

$ echo ls *

$ echo `ls *`

$ echo "ls *"

$ echo ’ls *’

$ echo `*`

" – double quotes

’ – single quote

` - back quote

Answers

$ a b c

$ ls a b c

$ a b c

$ ls *

$ ls *

$ will try to run a (depends on permissions, etc.)

Quoting Summary

• "" double quotes:

prevents wildcards in file names (*, ?) only

• ' ' single quotes:

prevents all replacements: wildcard, variable

substitution, command substitution

• ` ` backquotes:

simply causes command substitution, does

not override anything

30

