
COURSE INTRODUCTION

Software Tools

EECS2031 Winter 2018

Manos Papagelis

Thanks to Karen Reid and Alan J Rosenthal

for material in these slides

What EECS2031 is about?

 A useful way to think about this course is that it is

about the environment in which your programs run

 understanding the environment

 developing tools:

 for interacting with the environment

 for getting information about it

 for influencing it

 learning a new language (or two) to help us

Course Overview

 Part I (UNIX, Shell Programming) ~3 Weeks

 UNIX

 Understanding the Shell and Shell Programming

 Part II (C Programming) ~7 Weeks

 C Fundamentals, Input/Output

 Expressions, Selection Statements, Loops, Types

 Arrays, Functions

 Pointers, Arrays, Strings

 Structures, Dynamic Memory Management

 Part III (UNIX Programming) ~2 Weeks

 Processes, Signals, Pipes

Self Study Topics

 Using Unix - some tutorial coverage

 Using software tools

 an editor – vi, emacs, nedit, …

 a debugger – gdb, …

 an IDE – eclipse, …

 Readings

Environment

 Environment: EECS Computing Facility

 UNIX/LINUX system

 SSH to eecs.yorku.ca

 Use your EECS login and password

Windows & Mac Users

 Windows: If you want to do some of your work on

your own machine, you will need to install cygwin:

http://www.cygwin.com/

 MacOS: Use the “Terminal” application

http://www.cygwin.com/

For my interest

 How many of you have UNIX/LINUX knowledge?

 How many of you have done some shell scripting?

 How many of you have programmed in C or had attended an

introductory course in C?

 How many of you have understanding of processes, pipes,

signals in UNIX environment?

Today’s Overview

 Course Administrivia

 Unix & Unix as a File System

 The Big Picture

EECS2031 Administrivia

Course Information

 Lectures (CLH E):
 Tue, 9:30-10:30am

 Thu, 9:30-10:30am

 Tutorials/labs (LAS1006):
 Lab01: Tue, 13:00-15:00

 Lab02: Wed, 13:00-15:00

 Course Website (soon online):

https://www.eecs.yorku.ca/~papaggel/courses/eecs2031/

Communication

 Office hours:

 TR 10:30am – 11:30am

 by appointment in special cases

 Email:

 Subject must include EECS2031

 Email is a formal method of communication:

 State your question clearly, with enough context

 Sign it (Name, login and student # are the most useful)

Course Textbooks

• C Programming: A Modern Approach, Second Ed., K.N. King. W. W. Norton and

Company, 2008.

• (optional) Unix System Programming Second Edition, Keith Haviland, Dina Gray, Ben

Salama. Addison-Wesley, 1998.

• (optional) The Linux Programming Interface, Michael Kerrisk. No Starch Press, 2010.

Assignments

 A1: Shell Use and Programming

 A2: Tools in C (Loops, Arrays, Strings)

 A3: More tools in C (Dynamic Memory Management,
Files, Linked Lists)

All assignments, tests and exam are individual work

Assignment Policies

 Assignments are due at 11:59 p.m. on the due date
- check website for final due dates

 Late Assignment Policy: 3 grace days

 Code must work on EECS servers

 Marking

 assignment 1, 2, 3: (mostly) based on auto-markers

 Code that does not compile gets zero

Did you catch that?

Code that does not compile

will receive a grade of 0

Submitting Assignments

 You will be using the submit tool to manage and

submit your assignments

 Details will be provided on how to submit your

assignments

 Do not wait until the last minute to try to commit

your assignment for the first time

Plagiarism

 “The work you submit must be your own, done

without participation by others. It is an academic

offense to hand in anything written by someone

else without acknowledgement.”

 You are not helping your friend when you give

them a copy of your assignment

 You are hurting your friend when you ask them to

give you a copy of their assignment

What is Cheating?

 Cheating is

 copying parts or all of another student’s assignment

 including code from books, web sites, other courses without
attribution

 getting someone else to do substantial parts of your
assignment

 giving someone else your solution

 Cheating is not

 helping to find a bug in a friend’s code (be careful)

 helping each other understand man pages or example code

A few do’s and don’ts

 Do

 ask questions if you don’t understand something

 work together to understand concepts/assignments

 use tutorials/labs and office hours

 read textbook or provided online material before class

 Don’t

 hand in other peoples’ work (it’s cheating)

 harass others (see the University’s policies)

 distract or disrupt the class (it’s immature)

Course Marking Scheme

Work Weight Comment

3 Assignments 45% 15% each

Midterm Test 15% In-class, paper-based

Final Exam 40%
You must get >=40% in the

final exam to pass the course

UNIX

Unix History

 Developed in 1969 (in assemply) by a group of AT&T
employees at Bell Labs, including Ken Thompson,
Dennis Ritchie, Brian Kernighan, Douglas McIlroy,
Michael Lesk and Joe Ossanna.

 Dennis Ritchie and Ken Thompson ported an enhanced
version to a PDP-11/20 in 1970.

 Ritchie and Rudd Canaday ported a cut down version of
the BCPL language to Unix, calling it B.

 Pipes and C (successor of B) were added in 1971-73

 “License to universities, but no support.”, BTL Lawyers

 This led to extensive sharing

More Unix History

 Canadian connection: Brian Kernighan, Rob Pike, Bill
Reeves, ...

 Berkeley Software Distribution grew out of collecting
and distributing bug fixes (Led to FreeBSD, NetBSD)

 Bill Joy started at Berkeley but joined the startup Sun
Microsystems in 1982

 1991, Linus Torvalds (Linux kernel initiator) posts a
note describing his experimental OS modeled on
Minix (Unix-like OS)

Evolution of Unix and Unix-like Systems

Minix Linux MacOSX FreeBSD …Android

Why Unix?

 Multi-user, multi-tasking computer operating
system

 Available on a number of platforms

 Shares computer resources sensibly

 Permits manipulation of files, processes, and
programs

 Allows inter-process and inter-machine
communication

 Permits access to its operating features

The Unix Philosophy

 Write programs that do one thing and do it well

 Write programs to work together

 Write programs that handle text streams, because

that is a universal interface

Ways of Looking at a System

 Some of the ways we look at UNIX:

 As an end user

 As an environment for programs to run

 As a file system - part of the overall environment

UNIX: End-user Interaction

 Unix has a rich set of tools for dealing with its own

structures and data:

 need to be familiar with them to manage (your portion

of) the system

 you may already know some (i.e., move around

filesystem, list, copy and remove files, run programs

and performing other tasks)

 Involves learning how to write UNIX shell scripts

UNIX: Environment for Programs

 How programs get ready to run

 What happens when a program is run

 What happens when your program writes to/reads

from a file

 How your code can start other pieces of code and

interact with them

 how programs "talk" to each other

 how programs "talk" to the outside world (networks)

UNIX: As a File System

 What are files? what are directories?

 how are they organized, maintained?

 what information is accessible about them?

 What different file types are there?

 How to access them?

Unix as a File System

Files and Directories

 “Everything is a file.”

 Unix provides a file interface for all Input/Output.

 regular files

 directories

 devices

 video (block)

 keyboard (character)

 sound (audio)

 network (block)

 File interface = open, read, write, close

Try ls –l /dev and look
at the permissions string.

crw-------

brw-------

c = character, b = block

File System Hierarchy

 Everything starts in the “root” directory whose
name is “/”

 A directory is a file that contains directory entries

 A directory entry maps a file name to an inode

 An inode is the data structure that contains
information about a file, including which disk blocks
contain the file data

File System Hierarchy

/

h usru

binu1 u2 u3 lib

reid
csc209h

c4reidka

symbolic

links

hard link

Use df to see all

the different disk

partitions on

EECS servers.

01

c4

winter

pub

repo

File Systems and Links

 One file system per disk partition

 A file system can be mounted at any point in the directory

tree of another file system

 A hard link is an entry in a directory file which specifies an

inode

 There can be several hard links to a file, but hard links cannot

cross file systems

 A soft link (symbolic link) is a small file containing the path

name of the linked file or directory

 Soft links work across file systems

Haviland

Ch. 4.5,

4.3, 3.2

Directories and Links

% ls –l /

drwxr-xr-x 2 root root 4096 Nov 8 17:56 bin/

drwxr-xr-x 2 root root 4096 Aug 10 14:46 cdrom/

drwxrwsr-x 2 root staff 4096 Feb 8 2002 home/

drwxr-xr-x 6 root root 4096 Sep 2 15:26 lib/

lrwx------ 1 root root 6 Sep 2 15:32 u -> /cdf/u/

2 .

2 ..

14 u

46505 home

139412 cdrom

201345 lib

directory file

Inodes and Directory Entries

12345 afile

size

owner UID, GID

access time

modified time

creation time

link and block counts

permissions

direct pointers

to file blocks

single indirect pointer

double indirect pointer

triple indirect pointer

pointers to

next file

blocks

12345
Inode

Directory Entry

Stat

greywolf% stat csc209h

File: `csc209h'

Size: 512 Blocks: 2 IO
Block: 8192 directory

Device: 16h/22d Inode: 27612 Links: 7

Access: (0755/drwxr-xr-x) Uid: (0/
root) Gid: (517/ csc209h)

Access: 2010-01-06 11:32:44.293409000 -0500

Modify: 2010-01-04 12:06:15.987312000 -0500

Change: 2010-01-04 12:06:15.987312000 -0500

Haviland
Ch 3.3

stat(): A Unix system call that returns useful data
about a file inode

-rwxr-xr-x 1 reid 0 Jan 6 11:35 allexec*

-r--r--r-- 1 reid 0 Jan 6 11:35 allread

dr-xr-xr-x 2 reid 512 Jan 6 11:36 dir-read/

dr-x--x--x 2 reid 512 Jan 6 11:36 dir-search/

-rw------- 1 reid 0 Jan 6 11:35 ownerread

-r--r--r-- 1 reid 0 Jan 6 11:35 readonly

Permissions

 File permissions
 read, write, execute – pretty much what you think

 Directory permissions
 read: you can “read” the file (run ls, cat, etc.)
 write: you can “write” (create/edit/delete) the file
 execute: you can “execute” the file

 Use chmod to change file permissions
 e.g.: % chmod 664 myfile

-rwxr-xr-x

Ch 3.1

THE BIG PICTURE

The Big Picture

Compile it

% gcc –o hw hw.c

Run it

% hw

Process

Source code file

#include <stdio.h>

void

main()

{

printf("Hello world");

}

hw.c
Object file

hw

Source Code Files

 What is a file?

 Sequence of bytes

 A file system?

 A hierarchy of files + tools

 How does the system know where

to find hw.c?

 paths, working directories, …

 What is the meaning of

#include<stdio.h> ?

 What does printf really do?

#include <stdio.h>

void

main()

{

printf("Hello world");

}

hw.c

Compiling a program

 A compiler is a program that

translates source code into object

(machine) code

 Here we are running the compiler

at the command line

% gcc –o hw hw.c

The Shell

 The % is a shell prompt

 The shell is a program that can
execute another program

 The shell
 accepts commands (programs) as input

 finds the executable

 interprets the arguments

 starts executing the command

 The shell also has some “built-in”
commands

% gcc –o hw hw.c

Running a program

 After we have compiled the program,

we can run it

 load a program into memory and

hand it off to the OS that takes

control of running it

% hw

% gcc –o hw hw.c

A Different Big Picture

sh less perl gcc grep dddvi nedit

Unix system services (system calls)

Unix kernel (in C)

computer

libc – C Interface to Unix system services

Processes

 A process is an executing instance of a program

 The OS keeps track of information about the
process

 process ID – a unique non-negative integer

 process state – “running”, “ready”, “blocked”

 program counter – which instruction is being executed

 a list of open files

 etc.

Object Files/Executables

 Typical memory layout

of programs.

 The kernel keeps a

PCB for each process

text

init. data

uninit. data

heap

stack

low address

high address

Process control block (PCB)

pc (program counter)

sp (stack pointer)

...

What is Next?

 Shell & Shell Programming

 Tutorial about UNIX (next week)

 Tutorial about Shell scripting (week after)

