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Preface
Fuzzy logic has revolutionized the way we approach uncertainty, imprecision, and
ambiguity in complex systems. From its inception as a mathematical framework
for reasoning about vagueness, fuzzy systems have grown into a versatile tool used
across engineering, artificial intelligence, decision-making, and beyond. As we advance
into an era dominated by intelligent systems and transformative technologies, the
integration of fuzzy logic with neural networks and deep learning paradigms has
unlocked a new realm of possibilities.

This book, ”Modern Fuzzy Systems: Neural Inference, Transformative
Approaches, and Advanced Applications”, serves as a comprehensive guide to
understanding and implementing fuzzy systems in modern contexts. Whether you
are a student, researcher, or practitioner, this book provides an in-depth exploration
of the theoretical foundations of fuzzy logic, practical techniques, and cutting-edge
developments in hybrid systems that combine fuzzy logic with neural networks and
transformers.

The content is structured to cater to readers with varying levels of expertise. We
begin with an introduction to fuzzy logic and fuzzy set theory, providing essential
concepts and principles that lay the groundwork for more advanced topics. Subsequent
chapters delve into the design and application of fuzzy systems, including Mamdani,
Sugeno, and Takagi-Sugeno inference systems, o�ering practical insights and real-
world examples.

For those seeking to push the boundaries of fuzzy logic, this book explores the
integration of neural networks and fuzzy systems, such as Adaptive Neuro-Fuzzy
Inference Systems (ANFIS), and their applications in robotics, control systems, and
data-driven decision-making. The interplay between fuzzy logic and emerging tech-
nologies like transformers is also discussed, showcasing the transformative potential
of these hybrid approaches.

One of the most exciting frontiers is the application of fuzzy logic and ANFIS in
artificial intelligence, particularly in domains like autonomous vehicles and self-driving
cars. By combining the interpretability of fuzzy systems with the computational
power of transformers and neural networks, ANFIS can enhance decision-making
processes under uncertainty, such as obstacle avoidance, route optimization, and
adaptive behavior in dynamic environments. These hybrid approaches enable more
reliable, explainable AI systems that can tackle the complex, real-world challenges
faced by autonomous vehicles, accelerating their safe and scalable deployment.

Throughout the book, emphasis is placed on clarity, practical implementation,
and bridging the gap between theory and application. Code examples, case studies,

© 2024 Navid Mohaghegh. All rights reserved. 10



and step-by-step guides ensure that readers not only understand the concepts but
also gain the confidence to apply them in their own domains.

It is my hope that this book serves as a valuable resource for anyone seeking to
harness the power of fuzzy systems in solving complex problems in today’s rapidly
evolving technological landscape.

I extend my gratitude to the pioneers of fuzzy logic and the researchers who
continue to expand its horizons. May this book inspire readers to contribute to this
vibrant and impactful field.

Navid Mohaghegh
December 2024
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Chapter 1

Introduction to Fuzzy Logic

Fuzzy Logic is a form of multi-valued logic derived from fuzzy set theory, introduced
by Lotfi Zadeh in 1965. Unlike classical binary logic (true or false, 0 or 1), fuzzy
logic allows variables to have a degree of truth ranging from 0 to 1, representing the
uncertainty inherent in real-world phenomena. For example:

• In classical boolean logic: A temperature of 60°C is either considered “hot” (1)
or “not hot” (0).

• In fuzzy logic: A temperature of 60°C might be 0.6 “hot” and 0.4 “cold”.

Fuzzy logic is particularly useful in control systems due to its ability to handle
imprecise, noisy, or incomplete data. This makes it ideal for systems where precise
mathematical modeling is challenging, such as robotics and digital control systems.
The key benefits of fuzzy logic in control systems are:

1. Robustness: Tolerates imprecision in input and provides smooth control
outputs.

2. Flexibility: Easy to add or modify rules without changing the entire system.

3. Human-Like Reasoning: Uses linguistic variables (e.g., “hot,” “fast”) to
mimic expert decision-making in complex, uncertain systems

Fuzzy logic has become a essential in robotics and digital control systems, o�ering
robust, adaptive, and intelligent solutions to tackle complex and dynamic problems. In
robotics, it plays an important role in navigation and obstacle avoidance through fuzzy
inference systems, empowering robots to make real-time decisions in uncertain and
ever-changing environments. Moreover, robotic arms employ fuzzy logic for adaptive
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decision-making, allowing them to perform precise operations even in unpredictable
conditions, such as those encountered in industrial automation or surgical robotics.

In industrial systems, fuzzy logic is applied to optimize and automate a wide
array of processes. For example, washing machines leverage fuzzy control to regulate
parameters such as water levels, temperature, cycle times, and load size, ensuring
optimal performance tailored to each load’s specific requirements. Elevators use fuzzy
logic to achieve seamless acceleration and deceleration, dynamically adjusting based
on passenger load to enhance ride comfort and e�ciency.

Small consumer electronics also benefit significantly from fuzzy logic’s capabilities.
Cameras utilize it for accurate and responsive focus adjustments, improving image
clarity under varying conditions. Similarly, air conditioners, heating systems, and
other climate control devices incorporate fuzzy control to regulate temperature
intelligently, providing an optimal balance of comfort, energy e�ciency, and user
satisfaction.
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Chapter 2

Fuzzy Set Theory

2.1 Fuzzy Sets vs. Classical Sets

Classical sets, also known as crisp sets, have precise boundaries, and an element
either belongs to the set or does not. In contrast, fuzzy sets allow partial membership,
where an element’s inclusion is defined by a degree of membership ranging from 0 to
1.

Examplex:

• Classical Set: A = {x|x > 5}. An element x = 6 is in A, while x = 5 is not.

• Fuzzy Set: A = {(x, µA(x))|x œ X}, where µA(x) is the membership function
defining the degree of membership. For x = 5.5, µA(x) = 0.8, indicating 80%
membership. A membership function can defines how each element in the
universe of discourse is mapped to a membership value between 0 and 1. It
embodies the fuzziness of a set.

2.2 Types of Fuzzy Membership Functions

Fuzzy membership functions define how each input in the universe of discourse is
mapped to a membership value (degree of truth) between 0 and 1. Below are several
types of commonly used membership functions, their mathematical definitions, and
when they are typically applied:
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1. Triangular (trimf):

µA(x) =

Y
_____]

_____[

0 x Æ a
x≠a

b≠a
a Æ x Æ b

c≠x

c≠b
b Æ x Æ c

0 x Ø c

This is a simple and widely used membership function defined by three parameters
(a, b, c) forming a triangle. It is computationally e�cient and is often used in
real-time applications where simplicity is critical.

2. Trapezoidal (trapmf):

µA(x) =

Y
________]

________[

0 x Æ a
x≠a

b≠a
a Æ x Æ b

1 b Æ x Æ c
d≠x

d≠c
c Æ x Æ d

0 x Ø d

This membership function is similar to the triangular one but includes a flat
top. It is defined by four parameters (a, b, c, d) and is used in cases where a
range of values has full membership.

3. Gaussian (gaussmf):

µA(x) = e≠ (x≠m)2
2‡2

A smooth, bell-shaped curve characterized by a center m and a standard
deviation ‡. It is ideal for applications requiring smooth transitions, such as
modeling uncertainty or noise.

4. Generalized Bell (gbellmf):

µA(x) = 1

1 +
---x≠c

a

---
2b

This function provides flexibility in shaping the curve through three parameters:
a (width), b (slope), and c (center). It is commonly used in systems where
varying degrees of smoothness are required.
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5. Sigmoidal (sigmf):
µA(x) = 1

1 + e≠a(x≠c)

This S-shaped curve is defined by parameters a (steepness) and c (center). It is
often used for threshold-based applications where a gradual transition is needed.

6. Z-Shaped (zmf):

µA(x) =

Y
______]

______[

1 x Æ a

1 ≠ 2
1

x≠a

b≠a

22
a Æ x Æ a+b

2

2
1

b≠x

b≠a

22
a+b

2 Æ x Æ b

0 x Ø b

The Z-shaped membership function decreases gradually from 1 to 0 and is used
to model decreasing phenomena or thresholds.

7. Pi-Shaped (pimf):

µA(x) =

Y
________________]

________________[

0 x Æ a

2
1

x≠a

b≠a

22
a Æ x Æ a+b

2

1 ≠ 2
1

b≠x

b≠a

22
a+b

2 Æ x Æ b

1 b Æ x Æ c

1 ≠ 2
1

x≠c

d≠c

22
c Æ x Æ c+d

2

2
1

d≠x

d≠c

22
c+d

2 Æ x Æ d

0 x Ø d

This smooth curve resembles a flattened bell shape and is useful for applications
requiring smooth transitions between two ranges.

8. S-Shaped (smf):

µA(x) =

Y
______]

______[

0 x Æ a

2
1

x≠a

b≠a

22
a Æ x Æ a+b

2

1 ≠ 2
1

b≠x

b≠a

22
a+b

2 Æ x Æ b

1 x Ø b

The S-shaped membership function increases gradually from 0 to 1. It is
commonly used for systems with smooth, increasing transitions.
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Figure 2.1: Visualization of Fuzzy Membership Functions: Triangular, Trapezoidal,
Gaussian, Bell-Shaped, Sigmoidal, Z-Shaped, Pi-Shaped, and S-Shaped functions.
Each function demonstrates how input values map to membership degrees.

For illustration purpose, the Figure 2.1 shows various fuzzy membership functions
that we discussed. Of course you can make your own function as long as you consider
the properties of fuzzy membership functions (will be discussed shortly).
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2.3 Basic Terms in Fuzzy Sets

2.3.1 Membership Function
The membership function, denoted as µA(x) for a fuzzy set A, maps each element x in
the universe of discourse X to a value in [0, 1], representing the degree of membership.
For example:

µA(x) =

Y
__]

__[

1, if x = 5,

0.5, if x = 4,

0, otherwise.

This function quantifies the ”fuzziness” of an element belonging to a fuzzy set.

2.3.2 Support
The support of a fuzzy set A is the set of elements in X where µA(x) > 0. Mathematically:

Support(A) = {x œ X | µA(x) > 0}.

For µA(x) = max(0, 1 ≠ |x ≠ 5|), the support is {x | |x ≠ 5| < 1}.

2.3.3 Core
The core of a fuzzy set A is the set of elements in X where µA(x) = 1. Formally:

Core(A) = {x œ X | µA(x) = 1}.

For the example µA(x) above, the core is {5}.

2.3.4 Height
The height of a fuzzy set A is the maximum membership value:

Height(A) = max
xœX

µA(x).

For µA(x) = max(0, 1 ≠ |x ≠ 5|), the height is 1.
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2.3.5 Normality
A fuzzy set is normal if its height is 1. For instance:

µB(x) =

Y
__]

__[

1, if x = 3,

0.5, if x = 4,

0, otherwise.

Set B is normal because Height(B) = 1.

2.3.6 Convexity
A fuzzy set A is convex if:

µA(⁄x1 + (1 ≠ ⁄)x2) Ø min(µA(x1), µA(x2)) ’x1, x2 œ X, ⁄ œ [0, 1].

For example, µA(x) = max(0, 1 ≠ |x ≠ 5|) is convex, as the membership function
forms a ”peak.”

2.3.7 –-cuts
An –-cut of a fuzzy set A, denoted A–, is the crisp set of elements with membership
degree at least –:

A– = {x œ X | µA(x) Ø –}.

For µA(x) = max(0, 1 ≠ |x ≠ 5|) and – = 0.5, A0.5 = [4.5, 5.5].

2.3.8 Boundary
The boundary of a fuzzy set A consists of elements where 0 < µA(x) < 1. For
instance:

Boundary(A) = {x œ X | 0 < µA(x) < 1}.

For µA(x) = max(0, 1 ≠ |x ≠ 5|), the boundary is {4, 6}.

2.3.9 Empty Fuzzy Set
A fuzzy set A is empty if µA(x) = 0 ’x œ X. For instance:

µA(x) = 0 ’x œ X

represents an empty fuzzy set.
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2.3.10 Equality
Two fuzzy sets A and B are equal if:

µA(x) = µB(x) ’x œ X.

For example, if µA(x) = max(0, 1 ≠ |x ≠ 5|) and µB(x) = max(0, 1 ≠ |x ≠ 5|), then
A = B.

2.3.11 Subset
A fuzzy set A is a subset of another fuzzy set B, denoted A ™ B, if:

µA(x) Æ µB(x) ’x œ X.

For example, if µA(x) = max(0, 1 ≠ |x ≠ 3|) and µB(x) = 1 for all x, then A ™ B.

2.3.12 Union (Max Operator)
The union of two fuzzy sets A and B is defined using the max operator:

µAfiB(x) = max(µA(x), µB(x)).

For example, if µA(x) = 0.5 and µB(x) = 0.7, then µAfiB(x) = 0.7.

2.3.13 Intersection (Min Operator)
The intersection of two fuzzy sets A and B is defined using the min operator:

µAflB(x) = min(µA(x), µB(x)).

For example, if µA(x) = 0.5 and µB(x) = 0.7, then µAflB(x) = 0.5.

2.3.14 Complement
The complement of a fuzzy set A is defined as:

µ¬A(x) = 1 ≠ µA(x).

For example, if µA(x) = 0.3, then µ¬A(x) = 0.7.
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2.3.15 De Morgan’s Laws
De Morgan’s laws for fuzzy sets A and B are:

µ¬(AfiB)(x) = min(1 ≠ µA(x), 1 ≠ µB(x)),

µ¬(AflB)(x) = max(1 ≠ µA(x), 1 ≠ µB(x)).

These properties generalize classical De Morgan’s laws to fuzzy logic.

2.3.16 t-norms and t-conorms
A t-norm is a generalization of intersection, satisfying commutativity, associativity,
monotonicity, and having 1 as the identity. A common t-norm is the min operator:

T (µA(x), µB(x)) = min(µA(x), µB(x)).

A t-conorm generalizes union and satisfies similar properties, with 0 as the identity.
A common t-conorm is the max operator:

S(µA(x), µB(x)) = max(µA(x), µB(x)).

2.3.17 Cardinality
The cardinality of a fuzzy set A is the sum of its membership degrees:

|A| =
ÿ

xœX

µA(x).

For a discrete fuzzy set A with µA(1) = 0.5, µA(2) = 1, µA(3) = 0.2, the cardinality
is:

|A| = 0.5 + 1 + 0.2 = 1.7.

2.3.18 Cartesian Product
The Cartesian product of fuzzy sets A ™ X and B ™ Y is defined as:

µA◊B(x, y) = min(µA(x), µB(y)).

For µA(x) = 0.5 and µB(y) = 0.7, µA◊B(x, y) = 0.5.
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2.3.19 Projection
The projection of a fuzzy set C ™ X ◊ Y onto X is defined as:

µProjX(C)(x) = max
yœY

µC(x, y).

If µC((x, y)) = min(µA(x), µB(y)), the projection simplifies to:
µProjX(C)(x) = µA(x).

2.3.20 Linguistic Hedges
Linguistic hedges modify membership functions to express qualifiers such as ”very” or
”more or less.” For example: - ”Very A” can be represented as µvery A(x) = (µA(x))2.
- ”More or less A” can be represented as µmore or less A(x) =

Ò
µA(x).

For µA(x) = 0.6, ”very A” gives µvery A(x) = 0.36, and ”more or less A” gives
µmore or less A(x) = 0.774.

2.3.21 Defuzzification
Defuzzification is the process of converting a fuzzy set into a crisp value. Common
methods include: - Centroid Method: Computes the center of gravity:

xú =
s

xµA(x)dx
s

µA(x)dx
.

- Maximum Membership Principle: Selects the value with the highest membership:
xú = arg max

x
µA(x).

2.3.22 Reflexivity (Relation Properties)
A fuzzy relation R ™ X ◊ X is reflexive if:

µR(x, x) = 1 ’x œ X.

For example, µR(x, y) = min(1, 1 ≠ |x ≠ y|) is reflexive since µR(x, x) = 1.

2.3.23 Symmetry (Relation Properties)
A fuzzy relation R ™ X ◊ X is symmetric if:

µR(x, y) = µR(y, x) ’x, y œ X.

For instance, µR(x, y) = 1 ≠ |x ≠ y| is symmetric because µR(x, y) = µR(y, x).
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2.3.24 Transitivity (Relation Properties)
A fuzzy relation R ™ X ◊ X is transitive if:

µR(x, z) Ø min(µR(x, y), µR(y, z)) ’x, y, z œ X.

For example, µR(x, y) = 1 ≠ |x ≠ y| is transitive under certain constraints.

2.3.25 Fuzzy Equivalence Relation
A fuzzy equivalence relation is a fuzzy relation that is reflexive, symmetric, and
transitive. For example, if µR(x, y) = exp(≠|x ≠ y|), then R satisfies these properties
and is a fuzzy equivalence relation.

2.3.26 Fuzzy Similarity Relation
A fuzzy similarity relation is a fuzzy equivalence relation used to measure similarity
between elements. For instance, µR(x, y) = exp(≠–|x ≠ y|), where – > 0, quantifies
the similarity between x and y.

2.3.27 Normalization
Normalization adjusts the membership function to ensure the maximum membership
value is 1. For a fuzzy set A, the normalized membership function is:

µÕ
A

(x) = µA(x)
maxxœX µA(x) .

For µA(x) = 0.5, 0.7, 1.0, normalization results in µÕ
A

(x) = 0.5, 0.7, 1.0 (no change
since max value is already 1).

2.3.28 Overlap
Overlap measures the degree to which two fuzzy sets share common elements. It is
given by:

Overlap(A, B) =
ÿ

xœX

min(µA(x), µB(x)).

For µA(x) = 0.5, 0.7 and µB(x) = 0.4, 0.6, overlap is:

Overlap(A, B) = min(0.5, 0.4) + min(0.7, 0.6) = 0.4 + 0.6 = 1.0.
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2.3.29 Resolution Identity
The resolution identity expresses a fuzzy set A as the union of its –-cuts:

µA(x) = sup
–œ[0,1]

min(–, µA(x)).

This property shows how –-cuts decompose a fuzzy set into crisp intervals.

2.3.30 Aggregation Operators
Aggregation operators combine membership values of multiple fuzzy sets into a single
value. Common operators include: - Maximum: µagg(x) = max(µA(x), µB(x)).
- Minimum: µagg(x) = min(µA(x), µB(x)). - Arithmetic Mean: µagg(x) =
µA(x)+µB(x)

2 . For µA(x) = 0.6, µB(x) = 0.4, the maximum is 0.6, the minimum
is 0.4, and the mean is 0.5.

2.3.31 Implication Operators
Implication operators define the degree to which a fuzzy proposition A æ B holds.
Common implication operators include: - Zadeh’s Implication:

µAæB(x) = max(1 ≠ µA(x), µB(x)).

- Lukasiewicz Implication:

µAæB(x) = min(1, 1 ≠ µA(x) + µB(x)).

For µA(x) = 0.6 and µB(x) = 0.4, Zadeh’s implication gives µAæB(x) = 0.6, while
Lukasiewicz’s implication gives µAæB(x) = 0.8.

2.3.32 Fuzzy Entropy
Fuzzy entropy measures the fuzziness or uncertainty of a fuzzy set. One definition is:

H(A) = ≠
ÿ

xœX

µA(x) log µA(x) ≠ (1 ≠ µA(x)) log(1 ≠ µA(x)).

For a fuzzy set A with µA(x) = 0.5 for all x, H(A) is maximized, representing
maximum fuzziness.
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2.3.33 Support Intersection
The support intersection of fuzzy sets A and B is the intersection of their supports:

Support(A fl B) = {x œ X | µA(x) > 0 and µB(x) > 0}.

For µA(x) supported on [0, 5] and µB(x) on [3, 7], the support intersection is [3, 5].

2.3.34 Continuity of Membership Functions
A membership function µA(x) is continuous if small changes in x result in small
changes in µA(x). For example:

µA(x) = x

10 , x œ [0, 10]

is continuous because µA(x) changes smoothly with x.

2.3.35 –-Level Operations
Operations on –-cuts simplify fuzzy set computations. For fuzzy sets A and B:
- Union: A– fi B– = {x œ X | µA(x) Ø – or µB(x) Ø –}. - Intersection:
A– fl B– = {x œ X | µA(x) Ø – and µB(x) Ø –}.

2.3.36 Hamming Distance
The Hamming distance between fuzzy sets A and B is:

dH(A, B) =
ÿ

xœX

|µA(x) ≠ µB(x)|.

For µA(x) = 0.5, 0.7 and µB(x) = 0.4, 0.6, dH(A, B) = |0.5 ≠ 0.4| + |0.7 ≠ 0.6| = 0.2.

2.3.37 Euclidean Distance
The Euclidean distance between fuzzy sets A and B is:

dE(A, B) =
Û ÿ

xœX

(µA(x) ≠ µB(x))2.

For µA(x) = 0.5, 0.7 and µB(x) = 0.4, 0.6, dE(A, B) =
Ò

(0.5 ≠ 0.4)2 + (0.7 ≠ 0.6)2 =Ô
0.02 = 0.141.
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2.3.38 Fuzzy Rules
Fuzzy rules describe relationships between fuzzy sets. A typical rule is:

IF x is A THEN y is B,

where A and B are fuzzy sets. For example:

IF temperature is high THEN fan speed is fast.

The degree of rule activation is determined by the membership of x in A.

2.3.39 Composition of Relations
The composition of two fuzzy relations R ™ X ◊ Y and S ™ Y ◊ Z is:

µR¶S(x, z) = sup
yœY

min(µR(x, y), µS(y, z)).

For example, if µR(x, y) and µS(y, z) are defined as triangular membership functions,
the composition provides a fuzzy relation on X ◊ Z.

2.3.40 Lukasiewicz Operators
Lukasiewicz operators generalize fuzzy logic operations: - Lukasiewicz t-norm
(intersection):

T (x, y) = max(0, x + y ≠ 1).

- Lukasiewicz t-conorm (union):

S(x, y) = min(1, x + y).

For x = 0.6 and y = 0.5, T (x, y) = max(0, 0.6 + 0.5 ≠ 1) = 0.1 and S(x, y) =
min(1, 0.6 + 0.5) = 1.

2.3.41 Generalized Modus Ponens
Generalized Modus Ponens (GMP) is an extension of classical modus ponens for fuzzy
logic. If:

Rule: IF x is A THEN y is B,
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and x is AÕ, where AÕ is similar to A, then y is inferred as BÕ, where BÕ is modified
accordingly:

µBÕ(y) = sup
xœX

min(µAÕ(x), µB(y)).

For example, if µA(x) and µB(y) are triangular, the output BÕ will also follow a fuzzy
set shape.

2.3.42 Generalized Modus Tollens
Generalized Modus Tollens (GMT) extends the classical inference method:

IF x is A THEN y is B, y is not BÕ, THEN x is not AÕ.

This approach infers AÕ based on the negation of BÕ, typically requiring additional
computations to align membership values.

2.3.43 Fuzzy Arithmetic
Fuzzy arithmetic defines operations (e.g., addition, subtraction, multiplication) for
fuzzy numbers. For two fuzzy sets A and B: - Addition:

µA+B(z) = sup
x+y=z

min(µA(x), µB(y)).

- Multiplication:
µA·B(z) = sup

x·y=z

min(µA(x), µB(y)).

2.3.44 Extension Principle
The extension principle extends crisp mathematical functions to fuzzy sets. For a
function f : X æ Y and fuzzy set A ™ X:

µf(A)(y) = sup
xœX : f(x)=y

µA(x).

For f(x) = x2 and µA(x) defined over [0, 2], the fuzzy set f(A) will span [0, 4].
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2.3.45 Alpha-Cut Decomposition
Alpha-cut decomposition represents a fuzzy set A as a collection of its –-cuts:

A =
€

–œ[0,1]
– · A–,

where A– is a crisp set at level –. This decomposition facilitates computation by
treating each –-cut as a traditional set.

2.3.46 Resolution Principle
The resolution principle uses –-cuts for inference in fuzzy systems. If a fuzzy set A is
defined by its –-cuts A–, the output set can be derived by performing operations on
A– at each level –.

2.3.47 Fuzzy Granularity
Fuzzy granularity describes the level of detail or precision in a fuzzy system. Fine
granularity involves many precise fuzzy sets, while coarse granularity uses fewer,
broader sets. For example: - Fine: Temperature is split into ”Cold,” ”Warm,” ”Hot.”
- Coarse: Temperature is split into ”Low” and ”High.”

2.3.48 Triangular Norms (t-norms)
Triangular norms are generalizations of intersection. Common t-norms include: -
Minimum: T (x, y) = min(x, y). - Product: T (x, y) = x · y. - Lukasiewicz:
T (x, y) = max(0, x + y ≠ 1).

2.3.49 Triangular Conorms (s-norms)
Triangular conorms are generalizations of union. Common s-norms include: -
Maximum: S(x, y) = max(x, y). - Probabilistic Sum: S(x, y) = x + y ≠ x · y. -
Lukasiewicz: S(x, y) = min(1, x + y).

2.3.50 ⁄-Cuts
A ⁄-cut generalizes –-cuts by focusing on levels defined by ⁄, where ⁄ is not necessarily
between 0 and 1. It identifies the subset of X that satisfies a particular level of
membership:

A⁄ = {x œ X | µA(x) Ø ⁄}.
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2.3.51 Zadeh’s Extension Principle
Zadeh’s Extension Principle allows extending classical functions to fuzzy sets. For a
function f : X æ Y and a fuzzy set A ™ X, the fuzzy set f(A) is defined as:

µf(A)(y) = sup
xœX : f(x)=y

µA(x).

For instance, if f(x) = x2 and A is a triangular fuzzy set over [0, 2], the resulting
fuzzy set f(A) spans [0, 4] with adjusted membership values.

2.3.52 Mamdani Implications
Mamdani implications are commonly used in fuzzy control systems. For fuzzy sets A
and B, the implication is defined as:

µAæB(x, y) = min(µA(x), µB(y)).
This approach simplifies inference by focusing on the minimum membership degree.

2.3.53 Sugeno Implications
Sugeno implications are another form of fuzzy implication, defined as:

µAæB(x, y) = max(1 ≠ µA(x), µB(y)).
This approach aligns closely with classical logic while maintaining fuzziness.

2.3.54 R-Implications
R-implications are defined based on a t-norm T :

µAæB(x, y) = sup{z œ [0, 1] | T (µA(x), z) Æ µB(y)}.

For example, using the product t-norm T (x, y) = x · y, the implication is computed
based on the product relationship.

2.3.55 Residual Operators
Residual operators are closely tied to t-norms and provide a framework for implications
in fuzzy logic. For a t-norm T , the residual operator is:

R(x, y) = sup{z | T (x, z) Æ y}.

For example, using the minimum t-norm, R(x, y) simplifies to y if x Æ y, and 0
otherwise.
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2.3.56 Duality in Operations
Duality refers to the relationship between fuzzy operations:

µ¬(AfiB)(x) = µ¬Afl¬B(x), µ¬(AflB)(x) = µ¬Afi¬B(x).

This property generalizes De Morgan’s laws to fuzzy sets and applies to complement,
intersection, and union.

2.3.57 Fuzzy Relations
A fuzzy relation R ™ X ◊ Y is characterized by a membership function µR(x, y). For
example, µR(x, y) = exp(≠|x ≠ y|) represents a similarity relation between x and y.

2.3.58 Max-Min Composition
The max-min composition of two fuzzy relations R ™ X ◊ Y and S ™ Y ◊ Z is:

µR¶S(x, z) = sup
yœY

min(µR(x, y), µS(y, z)).

This operation is used in fuzzy inference to combine multiple relations.

2.3.59 Max-Product Composition
The max-product composition is another method for combining fuzzy relations
R ™ X ◊ Y and S ™ Y ◊ Z:

µR¶S(x, z) = sup
yœY

(µR(x, y) · µS(y, z)).

This composition emphasizes the product of membership values rather than their
minimum.

2.3.60 Level Sets
Level sets (or –-level sets) represent the elements of a fuzzy set A with membership
degrees greater than or equal to –:

A– = {x œ X | µA(x) Ø –}.

These sets provide a crisp representation of the fuzzy set at various levels of confidence,
aiding in analysis and computation.
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2.3.61 Fuzzy Measures
Fuzzy measures generalize probability measures by relaxing the additivity requirement.
A fuzzy measure m satisfies:

m(ÿ) = 0, m(X) = 1, and A ™ B =∆ m(A) Æ m(B).

For example, m({x1, x2}) = 0.7 and m({x1, x2, x3}) = 1.

2.3.62 Possibility and Necessity Measures
Possibility and necessity measures assess the degree of possibility or certainty of
events: - Possibility:

�(A) = sup
xœA

µA(x).

- Necessity:
N(A) = 1 ≠ �(Ac).

For a fuzzy set A, �(A) reflects the most possible membership, while N(A) reflects
guaranteed membership.

2.3.63 Support Fuzzification
Support fuzzification creates a fuzzy set from a crisp set by assigning nonbinary
membership values. For instance, a crisp set C = {1, 2, 3} may be fuzzified to:

µA(x) =

Y
__]

__[

0.5, x = 1,

0.8, x = 2,

1.0, x = 3.

2.3.64 Entropy-Based Measures of Fuzziness
Entropy-based measures quantify the fuzziness of a set. A common formula is:

H(A) = ≠
ÿ

xœX

µA(x) log µA(x).

For a fuzzy set with µA(x) = 0.5 for all x, entropy H(A) is maximized, indicating
high fuzziness.
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2.3.65 Distance Measures for Fuzzy Sets
Distance measures quantify the di�erence between two fuzzy sets A and B: -
Hamming Distance:

dH(A, B) =
ÿ

xœX

|µA(x) ≠ µB(x)|.

- Euclidean Distance:

dE(A, B) =
Û ÿ

xœX

(µA(x) ≠ µB(x))2.

2.3.66 Hesitancy in Fuzzy Memberships
Hesitancy occurs when there is uncertainty about the degree of membership. It is
often modeled using interval-valued fuzzy sets, where:

µA(x) = [µlower
A

(x), µupper
A

(x)].

For example, µA(x) = [0.3, 0.7] expresses uncertainty about x’s membership.

2.3.67 Type-2 Fuzzy Sets
Type-2 fuzzy sets account for uncertainty in membership functions. The membership
of x is a fuzzy set itself, represented as:

µ̃A(x, u), u œ [0, 1].

For example, µ̃A(x) may be a triangular fuzzy set over [0, 1], modeling second-order
uncertainty.

2.3.68 Intuitionistic Fuzzy Sets
Intuitionistic fuzzy sets extend fuzzy sets by incorporating membership µA(x) and
non-membership ‹A(x), such that:

µA(x) + ‹A(x) Æ 1.

The hesitation degree is:

fiA(x) = 1 ≠ µA(x) ≠ ‹A(x).
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2.3.69 Interval-Valued Fuzzy Sets
An interval-valued fuzzy set A assigns a range of membership values to each element
x:

µA(x) = [µlower
A

(x), µupper
A

(x)].

For example, µA(x) = [0.4, 0.7] reflects uncertainty about x’s membership.

2.3.70 Fuzzy Aggregation Functions
Fuzzy aggregation functions combine multiple membership values into a single value.
Common aggregation functions include: - Arithmetic Mean:

µagg(x) =
q

n

i=1 µAi(x)
n

.

- Weighted Sum:

µagg(x) =
nÿ

i=1
wi · µAi(x),

nÿ

i=1
wi = 1.

2.3.71 Gradual Membership Transition
Gradual membership transition describes the smooth change of membership values
across the universe of discourse. For instance, a triangular fuzzy set with:

µA(x) =

Y
__]

__[

0, x < a or x > c,
x≠a

b≠a
, a Æ x < b,

c≠x

c≠b
, b Æ x Æ c,

shows a gradual increase and decrease in membership from a to b and from b to c.

2.3.72 Non-Additivity in Fuzzy Measures
Non-additivity means that the measure of the union of two sets is not necessarily the
sum of their measures:

m(A fi B) ”= m(A) + m(B).

For example, a fuzzy measure m may assign m(A) = 0.3, m(B) = 0.4, and m(AfiB) =
0.6.
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2.3.73 Subadditivity and Superadditivity
- Subadditivity:

m(A fi B) Æ m(A) + m(B).

- Superadditivity:
m(A fi B) Ø m(A) + m(B).

These properties describe the behavior of fuzzy measures depending on the interaction
between sets A and B.

2.3.74 Choquet Integral
The Choquet integral aggregates information in fuzzy systems, particularly with fuzzy
measures. For a function f and fuzzy measure m:

⁄
f dm =

nÿ

i=1
(f(x(i)) ≠ f(x(i≠1))) · m({x(i), . . . , x(n)}),

where x(i) are values of f sorted in ascending order.

2.3.75 Sugeno Integral
The Sugeno integral is another aggregation method for fuzzy measures:

⁄
f dm = sup

–œ[0,1]
min(–, m(f≠1([–, 1]))).

It is often used in decision-making and fuzzy control systems.

2.3.76 Belief and Plausibility Functions
Belief and plausibility functions generalize probability in fuzzy systems: - Belief:

Bel(A) =
ÿ

B™A

m(B),

where m is a basic belief assignment. - Plausibility:

Pl(A) = 1 ≠ Bel(Ac).

© 2024 Navid Mohaghegh. All rights reserved. 35



2.3.77 Fuzzy Logic-Based Reasoning

Fuzzy logic-based reasoning uses fuzzy sets to infer conclusions. For example, a fuzzy
rule:

IF temperature is high THEN fan speed is fast.

Given a membership function for ”high temperature,” the resulting membership for
”fast fan speed” is computed using inference techniques such as Mamdani or Sugeno
methods.

2.3.78 Fuzzy Control Systems

Fuzzy control systems use fuzzy logic to manage processes with imprecise inputs. A
fuzzy controller consists of: 1. Fuzzification: Converting crisp inputs to fuzzy sets.
2. Inference: Applying fuzzy rules. 3. Defuzzification: Converting fuzzy outputs to
crisp values.

For instance, controlling a heater may use fuzzy rules like:

IF temperature is low THEN heating power is high.

2.3.79 Rank Ordering

Rank ordering involves sorting elements or alternatives based on their fuzzy memberships
or aggregated scores. For example, if fuzzy scores are 0.7, 0.5, 0.9, the rank order is:

3rd element ¿ 1st element ¿ 2nd element.

2.3.80 Possibilistic vs. Probabilistic Interpretations

- Possibilistic: Membership reflects possibility, focusing on the degree to which an
event is plausible. - Probabilistic: Membership reflects likelihood, focusing on the
frequency of occurrence. For example, a fuzzy set of ”tall people” uses possibility,
while the probability of someone being ”tall” depends on statistical data.
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2.3.81 Triangular Fuzzy Numbers
A triangular fuzzy number is defined by three parameters (a, b, c), representing the
left endpoint, peak, and right endpoint, respectively. Its membership function is:

µA(x) =

Y
__]

__[

x≠a

b≠a
, a Æ x < b,

c≠x

c≠b
, b Æ x Æ c,

0, otherwise.
For example, A = (1, 3, 5) defines a fuzzy number with peak membership at 3.

2.3.82 Trapezoidal Fuzzy Numbers
A trapezoidal fuzzy number is defined by four parameters (a, b, c, d), representing
the start, plateau start, plateau end, and end of the fuzzy number. Its membership
function is:

µA(x) =

Y
_____]

_____[

x≠a

b≠a
, a Æ x < b,

1, b Æ x Æ c,
d≠x

d≠c
, c < x Æ d,

0, otherwise.
For example, A = (1, 2, 4, 5) represents a trapezoidal fuzzy number with a flat peak
from 2 to 4.

2.3.83 Gaussian Fuzzy Numbers
A Gaussian fuzzy number is characterized by its mean m and standard deviation ‡.
Its membership function is:

µA(x) = exp
A

≠(x ≠ m)2

2‡2

B

.

For example, with m = 3 and ‡ = 1, the fuzzy number peaks at x = 3 and decreases
symmetrically.

2.3.84 Membership Scaling
Membership scaling adjusts the degree of membership in a fuzzy set. For scaling
factor k, the scaled membership function is:

µÕ
A

(x) = min(1, k · µA(x)).
For instance, if µA(x) = 0.5 and k = 2, then µÕ

A
(x) = 1.
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2.3.85 Soft Clustering (e.g., Fuzzy C-Means)
Soft clustering assigns elements to multiple clusters with degrees of membership. In
fuzzy c-means, the objective is to minimize:

J =
nÿ

i=1

cÿ

j=1
um

ij
Îxi ≠ vjÎ2,

where uij is the membership of xi in cluster j, vj is the cluster center, and m > 1
controls fuzziness.

2.3.86 Cluster Validity Measures
Cluster validity measures evaluate the quality of clustering. Common measures
include: - Partition Coe�cient:

PC = 1
n

nÿ

i=1

cÿ

j=1
u2

ij
.

- Partition Entropy:

PE = ≠ 1
n

nÿ

i=1

cÿ

j=1
uij log(uij).

2.3.87 Fuzzy Partition Matrix
A fuzzy partition matrix defines the memberships of elements in clusters:

U = [uij], where uij œ [0, 1] and
cÿ

j=1
uij = 1.

For example, if n = 3 and c = 2, U could be:

U =

S

WU
0.6 0.4
0.7 0.3
0.2 0.8

T

XV .

2.3.88 Linguistic Variables
Linguistic variables take values expressed as words or phrases, such as ”low,” ”medium,”
or ”high.” For example, ”temperature” might have fuzzy sets: - ”Low”: µlow(x). -
”Medium”: µmedium(x). - ”High”: µhigh(x).
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2.3.89 Approximate Reasoning
Approximate reasoning uses fuzzy logic to infer conclusions from imprecise information.
For instance:

IF temperature is high THEN fan speed is fast.

If ”temperature” is partially high (µhigh(x) = 0.7), the output ”fan speed is fast” will
be activated with µfast(x) = 0.7.

2.3.90 Fuzzy Rule Base
A fuzzy rule base contains a set of fuzzy IF-THEN rules. For example:

Rule 1: IF temperature is high THEN fan speed is fast.

Rule 2: IF temperature is medium THEN fan speed is moderate.

The rule base combines these rules to generate outputs based on the inputs’ fuzzy
memberships.

2.3.91 Fuzzy Decision Trees
Fuzzy decision trees are extensions of classical decision trees, where nodes represent
fuzzy tests on attributes. Instead of binary splits, fuzzy splits are based on membership
degrees. For example: - Root node: ”IF temperature is high THEN follow branch 1.”
- Branch 1: ”IF humidity is low THEN outcome = good weather.”

2.3.92 Multi-Criteria Decision-Making
Fuzzy multi-criteria decision-making evaluates alternatives based on fuzzy criteria.
A typical method involves: 1. Defining fuzzy criteria (e.g., ”cost,” ”quality”). 2.
Assigning membership values for each alternative. 3. Aggregating criteria using
weighted sums or other operators.

For example, an alternative with memberships µcost = 0.7 and µquality = 0.9 may
be ranked higher.

2.3.93 Fuzzy Optimization
Fuzzy optimization solves problems with fuzzy constraints or objectives. For instance:

Maximize f̃(x), subject to g̃(x) Ø b̃,
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where f̃(x) and g̃(x) are fuzzy functions. The solution maximizes membership values
while satisfying constraints.

2.3.94 Fuzzy Neural Networks
Fuzzy neural networks combine fuzzy logic and neural networks. Inputs are fuzzified,
and fuzzy rules are encoded in the network structure. Learning adjusts rule parameters.
For example: - Input: Temperature = ”high.” - Output: Fan speed = ”fast.”

2.3.95 Neuro-Fuzzy Systems
Neuro-fuzzy systems integrate fuzzy logic and neural networks for adaptive learning
of fuzzy rules. A common architecture is the Adaptive Neuro-Fuzzy Inference System
(ANFIS), which learns fuzzy rules and membership functions from data.

2.3.96 Fuzzy Di�erential Equations
Fuzzy di�erential equations handle systems with uncertainty in initial conditions or
parameters. For example:

dy

dt
= f̃(t, y), y(0) = ỹ0,

where f̃ and ỹ0 are fuzzy functions and values. Solutions are expressed as fuzzy sets.

2.3.97 Hybrid Fuzzy Systems
Hybrid fuzzy systems combine fuzzy logic with other techniques (e.g., genetic
algorithms, neural networks) for improved performance. For example, fuzzy logic
handles uncertainty, while genetic algorithms optimize rule sets.

2.3.98 Granular Computing with Fuzzy Sets
Granular computing with fuzzy sets processes information at di�erent levels of
granularity. For example: - Fine granularity: Specific values (”temperature = 25°C”).
- Coarse granularity: General categories (”temperature is high”).
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2.3.99 Computability of Fuzzy Systems
The computability of fuzzy systems examines their ability to model and solve problems
using algorithms. For example, fuzzy controllers are computationally e�cient and
implementable in real-time systems.

2.3.100 Membership Evolution Over Time
Membership evolution over time describes how membership functions change dynamically.
For example, in a dynamic system, a membership function µA(x, t) might evolve as:

µA(x, t + 1) = µA(x, t) + �µA(x),

where �µA(x) is a function of external inputs or system changes.

2.4 Crisp Fuzzy Sets

2.4.1 Crisp Fuzzy Sets
A crisp set is a collection of distinct elements, where each element either fully belongs
to the set or does not belong at all. In contrast, a fuzzy set allows elements to have
partial membership, characterized by a membership function µ : X æ [0, 1].

Example: Let X = {1, 2, 3, 4, 5} be a universal set. - Crisp Set: A = {2, 4}. Here,

µA(x) =

Y
]

[
1 if x œ {2, 4},

0 otherwise.
- Fuzzy Set: B with membership function µB(x) = x

5 .

For example, µB(3) = 0.6.

2.4.2 Binary Membership Function
A binary membership function represents a crisp set where each element has a
membership value of either 0 (non-member) or 1 (member). It is defined as:

µA(x) =

Y
]

[
1 if x œ A,

0 if x /œ A.

Example: For the universal set X = {a, b, c, d} and crisp set A = {a, c},

µA(a) = 1, µA(b) = 0, µA(c) = 1, µA(d) = 0.
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2.4.3 Support
The support of a fuzzy set A is the set of all elements of the universe that have a
non-zero membership value:

Support(A) = {x œ X | µA(x) > 0}.

Example: For fuzzy set A with µA(x) = x

5 over X = {1, 2, 3, 4, 5},

Support(A) = {1, 2, 3, 4, 5}.

2.4.4 Core
The core of a fuzzy set A is the set of all elements of the universe with full membership
value (1):

Core(A) = {x œ X | µA(x) = 1}.

Example: For fuzzy set B with µB(x) = x

5 over X = {1, 2, 3, 4, 5},

Core(B) = {5}.

2.4.5 Complement
The complement of a fuzzy set A is defined as:

µ
A

(x) = 1 ≠ µA(x), ’x œ X.

Example: For fuzzy set A with µA(x) = x

5 over X = {1, 2, 3, 4, 5},

µ
A

(x) = 1 ≠ x

5 .

2.4.6 Union (Set-Theoretic Union)
The union of two fuzzy sets A and B is defined as:

µAfiB(x) = max(µA(x), µB(x)), ’x œ X.

Example: For fuzzy sets A and B over X = {1, 2, 3}:

µA(x) = {0.2, 0.6, 0.8}, µB(x) = {0.5, 0.4, 0.7},

µAfiB(x) = {0.5, 0.6, 0.8}.
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2.4.7 Intersection (Set-Theoretic Intersection)
The intersection of two fuzzy sets A and B is defined as:

µAflB(x) = min(µA(x), µB(x)), ’x œ X.

Example: For fuzzy sets A and B over X = {1, 2, 3}:

µA(x) = {0.2, 0.6, 0.8}, µB(x) = {0.5, 0.4, 0.7},

µAflB(x) = {0.2, 0.4, 0.7}.

2.4.8 Subset
A fuzzy set A is a subset of fuzzy set B if:

µA(x) Æ µB(x), ’x œ X.

Example: If µA(x) = {0.2, 0.4, 0.6} and µB(x) = {0.5, 0.6, 0.8}, then A ™ B.

2.4.9 Equality
Two fuzzy sets A and B are equal if:

µA(x) = µB(x), ’x œ X.

Example: If µA(x) = {0.3, 0.7, 0.5} and µB(x) = {0.3, 0.7, 0.5}, then A = B.

2.4.10 Exclusive Or (XOR)
The XOR of two fuzzy sets A and B is defined as:

µAüB(x) = min(µA(x) + µB(x), 1) ≠ 2 · µAflB(x).

Example: For fuzzy sets A and B over X = {1, 2}:

µA(x) = {0.4, 0.7}, µB(x) = {0.6, 0.3},

µAüB(x) = {0.8, 1.0}.
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2.4.11 Power Set
The power set of a crisp set A is the set of all possible subsets of A. For fuzzy sets,
the power set includes all possible fuzzy subsets of A.

Example: Let A = {1, 2}. The power set of A (crisp) is:

P(A) = {ÿ, {1}, {2}, {1, 2}}.

For a fuzzy set A with µA(1) = 0.5 and µA(2) = 0.7, the power set includes fuzzy
subsets such as:

µB(1) = 0.3, µB(2) = 0.5 or µC(1) = 0.5, µC(2) = 0.

2.4.12 Symmetry
A fuzzy set A is symmetric if the membership function is invariant under a specific
transformation, such as reflection about a point.

Example: Consider a fuzzy set A over X = {≠2, ≠1, 0, 1, 2} with:

µA(x) = max(1 ≠ |x|, 0).

This fuzzy set is symmetric about x = 0.

2.4.13 Partition
A collection of fuzzy sets {A1, A2, . . . , An} forms a partition of the universe X if: 1.q

n

i=1 µAi(x) = 1, ’x œ X, and 2. µAi(x) œ [0, 1], ’x œ X, ’i.
Example: For X = {1, 2, 3}, let:

µA1(x) = {0.2, 0.5, 0.3}, µA2(x) = {0.8, 0.5, 0.7}.

Here, µA1(x) + µA2(x) = 1 for all x œ X, so {A1, A2} is a partition.

2.4.14 Disjoint Sets
Two fuzzy sets A and B are disjoint if their intersection is empty:

µAflB(x) = 0, ’x œ X.

Example: For X = {1, 2, 3}:

µA(x) = {0.3, 0.0, 0.0}, µB(x) = {0.0, 0.6, 0.8}.

Since µAflB(x) = 0, A and B are disjoint.
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2.4.15 Empty Set
The empty set ÿ in fuzzy logic is defined as a set with zero membership for all
elements:

µÿ(x) = 0, ’x œ X.

Example: For X = {1, 2, 3}:

µÿ(x) = {0, 0, 0}.

2.4.16 Universal Set
The universal set X in fuzzy logic is defined as a set with full membership for all
elements:

µX(x) = 1, ’x œ X.

Example: For X = {1, 2, 3}:

µX(x) = {1, 1, 1}.

2.4.17 Idempotence of Union and Intersection
The operations of union and intersection are idempotent:

A fi A = A, A fl A = A.

Example: For fuzzy set A over X = {1, 2}:

µA(x) = {0.4, 0.7}, µAfiA(x) = µA(x), µAflA(x) = µA(x).

2.4.18 Associativity of Union and Intersection
Union and intersection are associative:

(A fi B) fi C = A fi (B fi C), (A fl B) fl C = A fl (B fl C).

Example: For A, B, C over X = {1}:

µA(x) = 0.3, µB(x) = 0.5, µC(x) = 0.7,

µ(AfiB)fiC(x) = 0.7, µAfi(BfiC)(x) = 0.7.
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2.4.19 Distributivity of Union and Intersection
Union distributes over intersection, and vice versa:

A fi (B fl C) = (A fi B) fl (A fi C),

A fl (B fi C) = (A fl B) fi (A fl C).
Example: For A, B, C over X = {1}:

µA(x) = 0.4, µB(x) = 0.6, µC(x) = 0.8,

µAfi(BflC)(x) = µ(AfiB)fl(AfiC)(x) = 0.8.

2.4.20 Complement Laws
The complement laws state:

A fi A = X, A fl A = ÿ.

Example: For A over X = {1, 2}:

µA(x) = {0.4, 0.6}, µ
A

(x) = {0.6, 0.4},

µ
AfiA

(x) = {1, 1}, µ
AflA

(x) = {0, 0}.

2.4.21 Law of Double Negation
The law of double negation states that the complement of the complement of a fuzzy
set returns the original set:

A = A.

Example: For a fuzzy set A over X = {1, 2, 3} with µA(x) = {0.2, 0.5, 0.7}:

µ
A

(x) = {0.8, 0.5, 0.3}, µ
A

(x) = {0.2, 0.5, 0.7}.

2.4.22 Identity Laws
The identity laws for fuzzy sets are:

A fi ÿ = A, A fl X = A.

Example: For A over X = {1, 2, 3} with µA(x) = {0.3, 0.6, 0.9}:

µAfiÿ(x) = µA(x), µAflX(x) = µA(x).
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2.4.23 Absorption Laws
The absorption laws for fuzzy sets are:

A fi (A fl B) = A, A fl (A fi B) = A.

Example: For A and B over X = {1, 2} with µA(x) = {0.4, 0.7} and µB(x) =
{0.6, 0.5}:

µAfi(AflB)(x) = µA(x), µAfl(AfiB)(x) = µA(x).

2.4.24 Di�erence
The di�erence of two fuzzy sets A and B is defined as:

µA≠B(x) = min(µA(x), 1 ≠ µB(x)), ’x œ X.

Example: For A and B over X = {1, 2} with µA(x) = {0.4, 0.7} and µB(x) =
{0.6, 0.5}:

µA≠B(x) = {0.4, 0.5}.

2.4.25 Symmetric Di�erence
The symmetric di�erence of two fuzzy sets A and B is defined as:

µA�B(x) = max(µA(x), µB(x)) ≠ µAflB(x).

Example: For A and B over X = {1, 2} with µA(x) = {0.4, 0.7} and µB(x) =
{0.6, 0.5}:

µA�B(x) = {0.6, 0.7}.

2.4.26 Cartesian Product Properties
The Cartesian product of fuzzy sets A and B over universes X and Y is defined as:

µA◊B(x, y) = min(µA(x), µB(y)), ’x œ X, y œ Y.

Example: For A over X = {1, 2} with µA(x) = {0.3, 0.6} and B over Y = {a, b}
with µB(y) = {0.8, 0.5}:

µA◊B(x, y) =
C
0.3 0.3
0.6 0.5

D

.
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2.4.27 Subset-Equality Relationships
For two fuzzy sets A and B, the subset and equality relationships are:

A ™ B ≈∆ µA(x) Æ µB(x), ’x œ X,

A = B ≈∆ µA(x) = µB(x), ’x œ X.

Example: If µA(x) = {0.2, 0.5, 0.7} and µB(x) = {0.4, 0.5, 0.7}, then A ™ B.

2.4.28 Logical Equivalence with Propositional Logic
Fuzzy set operations correspond to logical operations:

A fi B ¡ logical OR, A fl B ¡ logical AND.

Example: For A and B over X = {1} with µA(x) = 0.4 and µB(x) = 0.7:

µAfiB(x) = 0.7, µAflB(x) = 0.4.

2.4.29 Commutativity of Union and Intersection
Union and intersection are commutative:

A fi B = B fi A, A fl B = B fl A.

Example: For A and B over X = {1, 2} with µA(x) = {0.3, 0.6} and µB(x) =
{0.5, 0.4}:

µAfiB(x) = µBfiA(x) = {0.5, 0.6}, µAflB(x) = µBflA(x) = {0.3, 0.4}.

2.4.30 Membership Constraints (Binary Only)
In binary (crisp) sets, membership is constrained to 0 or 1:

µA(x) œ {0, 1}, ’x œ X.

Example: For crisp set A = {1, 3} over X = {1, 2, 3}:

µA(x) = {1, 0, 1}.
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2.4.31 Canonical Representation
The canonical representation of a fuzzy set A is expressed as:

A =
ÿ

xœX

µA(x)/x,

where µA(x)/x denotes the contribution of each element x to the fuzzy set.
Example: For A over X = {1, 2, 3} with µA(x) = {0.2, 0.5, 0.8}:

A = 0.2/1 + 0.5/2 + 0.8/3.

2.4.32 Logical Conjunction and Disjunction
Logical conjunction (AND) and disjunction (OR) in fuzzy logic are defined as:

µAflB(x) = min(µA(x), µB(x)), µAfiB(x) = max(µA(x), µB(x)).

Example: For A and B over X = {1, 2} with µA(x) = {0.4, 0.7} and µB(x) =
{0.6, 0.5}:

µAflB(x) = {0.4, 0.5}, µAfiB(x) = {0.6, 0.7}.

2.4.33 Partitioning with Crisp Classes
Partitioning involves dividing a universal set X into mutually exclusive crisp subsets
such that their union is the entire set.

Example: For X = {1, 2, 3, 4}, a partition is:

P1 = {1, 2}, P2 = {3, 4}.

Here, P1 fl P2 = ÿ and P1 fi P2 = X.

2.4.34 Classical Set Operations on Power Sets
Classical operations such as union, intersection, and complement can be applied to
power sets. For sets A and B in a power set:

A fi B = {x | x œ A or x œ B},

A fl B = {x | x œ A and x œ B}.

Example: For X = {1, 2}:

P(X) = {ÿ, {1}, {2}, {1, 2}}.

Union of {1} and {2}: {1, 2}.
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2.4.35 Indicator Functions
The indicator function for a crisp set A is defined as:

IA(x) =

Y
]

[
1 if x œ A,

0 otherwise.

Example: For A = {1, 3} over X = {1, 2, 3}:

IA(x) = {1, 0, 1}.

2.4.36 Topological Properties
Topological properties in fuzzy sets relate to concepts like closure, interior, and
boundary. The closure of a fuzzy set A is the smallest closed set containing A:

closure(A) = {x œ X | µA(x) > 0}.

Example: For fuzzy set A over X = {1, 2, 3} with µA(x) = {0.2, 0.0, 0.8}:

closure(A) = {1, 3}.

2.4.37 Characteristic Subsets
A characteristic subset of a fuzzy set A is a crisp set derived from A by thresholding:

A– = {x œ X | µA(x) Ø –}.

Example: For A over X = {1, 2, 3} with µA(x) = {0.3, 0.7, 0.5} and – = 0.5:

A– = {2, 3}.

2.4.38 Boolean Algebra Representation
Fuzzy sets can be represented within a Boolean algebra by mapping fuzzy operations
to their Boolean equivalents:

OR ¡ fi, AND ¡ fl, NOT ¡ A.

Example: For A and B over X = {1} with µA(x) = 0.4 and µB(x) = 0.7:

µAfiB(x) = 0.7, µAflB(x) = 0.4, µ
A

(x) = 0.6.
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2.4.39 Lattice Structure
Fuzzy sets form a lattice structure under the operations of union and intersection:

A fi B = sup(A, B), A fl B = inf(A, B).

Example: For A and B over X = {1} with µA(x) = 0.4 and µB(x) = 0.7:

sup(A, B) = 0.7, inf(A, B) = 0.4.

2.4.40 Closure Properties
Fuzzy sets are closed under the operations of union, intersection, and complement:

µAfiB(x) = max(µA(x), µB(x)),

µAflB(x) = min(µA(x), µB(x)),
µ

A
(x) = 1 ≠ µA(x).

Example: For A and B over X = {1, 2} with µA(x) = {0.3, 0.6} and µB(x) =
{0.5, 0.4}:

µAfiB(x) = {0.5, 0.6}, µAflB(x) = {0.3, 0.4}, µ
A

(x) = {0.7, 0.4}.

2.4.41 Boundary Properties
The boundary of a fuzzy set A is defined as the set of elements with partial membership
values:

Boundary(A) = {x œ X | 0 < µA(x) < 1}.

Example: For A over X = {1, 2, 3} with µA(x) = {0, 0.5, 1}:

Boundary(A) = {2}.

2.4.42 Complementary Laws
The complementary laws describe the relationships between a fuzzy set and its
complement:

A fi A = X, A fl A = ÿ.

Example: For A over X = {1, 2} with µA(x) = {0.3, 0.7}:

µ
A

(x) = {0.7, 0.3}, µ
AfiA

(x) = {1, 1}, µ
AflA

(x) = {0, 0}.

© 2024 Navid Mohaghegh. All rights reserved. 51



2.4.43 Exactness vs. Approximation
Exactness refers to the ability of a fuzzy set to represent precise information, while
approximation deals with representing imprecise or vague information.

Example: A fuzzy set representing ”young age” might be:

µyoung(x) = 30 ≠ x

10 , for x œ [20, 30].

This is an approximation of the concept of ”young age.”

2.4.44 Duality Principles
Duality principles in fuzzy logic state that the results of operations remain valid if
unions are replaced with intersections, and vice versa, along with complements.

Example: The dual of the law:

A fi (B fl C) = (A fi B) fl (A fi C),

is:
A fl (B fi C) = (A fl B) fi (A fl C).

2.4.45 Logical Operators
Fuzzy sets utilize logical operators such as AND, OR, and NOT:

µAflB(x) = min(µA(x), µB(x)), µAfiB(x) = max(µA(x), µB(x)).

Example: For A and B over X = {1} with µA(x) = 0.3 and µB(x) = 0.6:

µAflB(x) = 0.3, µAfiB(x) = 0.6.

2.4.46 Set Di�erence as Logical Subtraction
The set di�erence in fuzzy logic is interpreted as logical subtraction:

µA≠B(x) = min(µA(x), 1 ≠ µB(x)).

Example: For A and B over X = {1, 2} with µA(x) = {0.4, 0.7} and µB(x) =
{0.5, 0.2}:

µA≠B(x) = {0.4, 0.8}.
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2.4.47 Subset Constraints in Crisp Contexts
In crisp sets, A ™ B implies:

µA(x) Æ µB(x), ’x œ X.

Example: For A = {1, 2} and B = {1, 2, 3} over X = {1, 2, 3}:

µA(x) = {1, 1, 0}, µB(x) = {1, 1, 1}.

Thus, A ™ B.

2.4.48 Finiteness and Countability
A fuzzy set is finite or countable if the universe of discourse X is finite or countable.

Example: For X = {1, 2, 3, . . .} (countable set) and fuzzy set A with:

µA(x) = 1
x

, x œ X.

A is countable.

2.4.49 Total and Partial Order
Fuzzy sets can exhibit total or partial order based on membership degrees:

µA(x) Æ µB(x), ’x œ X (total order),

or for some x œ X (partial order).
Example: For A and B over X = {1, 2}:

µA(x) = {0.4, 0.5}, µB(x) = {0.3, 0.5}.

Here, A and B are partially ordered.

2.4.50 Venn Diagrams Representation
Fuzzy sets can be represented in Venn diagrams, where shading intensity indicates
membership degrees.

Example: For A and B over X = {1, 2, 3} with:

µA(x) = {0.4, 0.7, 0.5}, µB(x) = {0.6, 0.4, 0.8},

the diagram uses gradients to show overlaps and di�erences in membership.
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2.4.51 Structural Properties under Cartesian Products
The Cartesian product of fuzzy sets preserves structural properties such as closure
under operations like union, intersection, and complement. If A and B are fuzzy sets,
their Cartesian product is:

µA◊B(x, y) = min(µA(x), µB(y)).

Example: For A over X = {1, 2} with µA(x) = {0.3, 0.6} and B over Y = {a, b}
with µB(y) = {0.8, 0.5}:

µA◊B(x, y) =
C
0.3 0.3
0.6 0.5

D

.

2.4.52 Boolean Ring Representation
Fuzzy sets can be analyzed using Boolean ring operations:

A fl B ¡ AND, A fi B ¡ OR, A�B ¡ XOR.

Example: For A and B over X = {1, 2}:

µA(x) = {0.4, 0.7}, µB(x) = {0.6, 0.5}.

µA�B(x) = {0.6, 0.7}.

2.4.53 Set Algebra Frameworks
Set algebra provides a framework for combining fuzzy sets with operations such as
union, intersection, and complement:

µAfiB(x) = max(µA(x), µB(x)), µAflB(x) = min(µA(x), µB(x)).

Example: For A and B over X = {1, 2} with µA(x) = {0.4, 0.6} and µB(x) =
{0.5, 0.3}:

µAfiB(x) = {0.5, 0.6}, µAflB(x) = {0.4, 0.3}.

2.4.54 Subset Families
A subset family is a collection of fuzzy subsets of a universal set X. Subset families
can form lattices under union and intersection operations.

Example: For X = {1, 2}, consider fuzzy subsets A and B:

µA(x) = {0.4, 0.6}, µB(x) = {0.5, 0.3}.

The family {A, B, A fi B, A fl B} forms a lattice.
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2.4.55 Closure Operators
A closure operator C on a fuzzy set A satisfies: 1. A ™ C(A), 2. C(C(A)) = C(A),
3. A ™ B =∆ C(A) ™ C(B).

Example: For A over X = {1, 2, 3} with µA(x) = {0.3, 0.5, 0.7}, a closure
operator could map A to the smallest superset with maximum membership degrees.

2.4.56 Topological Set Theory
In fuzzy set theory, topology is extended by defining open, closed, and boundary sets
based on membership functions.

Example: For A over X = {1, 2, 3} with µA(x) = {0.2, 0.5, 0.8}:

Boundary(A) = {x œ X | 0 < µA(x) < 1} = {1, 2}.

2.4.57 Metric Spaces on Sets
A metric space for fuzzy sets defines a distance function d to measure dissimilarity
between sets:

d(A, B) = sup
xœX

|µA(x) ≠ µB(x)|.

Example: For A and B over X = {1, 2, 3} with:

µA(x) = {0.2, 0.5, 0.8}, µB(x) = {0.3, 0.4, 0.7},

d(A, B) = max(|0.2 ≠ 0.3|, |0.5 ≠ 0.4|, |0.8 ≠ 0.7|) = 0.1.

2.4.58 Point-Set Relationships
Fuzzy point-set relationships generalize classical notions of membership and inclusion:

x œ A ≈∆ µA(x) > 0.

Example: For A over X = {1, 2, 3} with µA(x) = {0.0, 0.6, 0.8}:

Point 2 œ A and 3 œ A (since µA(2), µA(3) > 0).
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2.4.59 Distributive Lattices
Fuzzy sets form distributive lattices under union and intersection:

A fi (B fl C) = (A fi B) fl (A fi C),

A fl (B fi C) = (A fl B) fi (A fl C).
Example: For A, B, C over X = {1} with:

µA(x) = 0.4, µB(x) = 0.5, µC(x) = 0.7,

µAfi(BflC)(x) = µ(AfiB)fl(AfiC)(x) = 0.7.

2.4.60 Hilbert Spaces on Sets
Hilbert spaces on fuzzy sets involve defining an inner product to analyze relationships:

ÈA, BÍ =
ÿ

xœX

µA(x) · µB(x).

Example: For A and B over X = {1, 2, 3} with:

µA(x) = {0.2, 0.5, 0.7}, µB(x) = {0.3, 0.4, 0.6},

ÈA, BÍ = (0.2 · 0.3) + (0.5 · 0.4) + (0.7 · 0.6) = 0.54.

2.4.61 Invariant Properties Under Transformations
Invariant properties refer to characteristics of fuzzy sets that remain unchanged under
specific transformations, such as scaling or translation.

Example: If A over X = {1, 2, 3} has µA(x) = {0.3, 0.5, 0.7}, a translation
transformation shifting membership degrees by +0.1 results in µA(x) = {0.4, 0.6, 0.8},
but its core and boundary remain invariant.

2.4.62 Orthogonal Sets
Two fuzzy sets A and B are orthogonal if their intersection is empty:

µAflB(x) = 0, ’x œ X.

Example: For A and B over X = {1, 2, 3}:

µA(x) = {0.3, 0.0, 0.0}, µB(x) = {0.0, 0.5, 0.6}.

Since µAflB(x) = {0.0, 0.0, 0.0}, A and B are orthogonal.
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2.4.63 Linear Independence of Sets
Fuzzy sets A1, A2, . . . , An are linearly independent if no set can be expressed as a
linear combination of the others:

–1µA1(x) + –2µA2(x) + · · · + –nµAn(x) = 0, ’x œ X =∆ –1 = –2 = · · · = –n = 0.

Example: For A1 and A2 over X = {1, 2} with:

µA1(x) = {0.4, 0.6}, µA2(x) = {0.2, 0.3},

A1 and A2 are linearly independent.

2.4.64 Vector Space Extensions
Fuzzy sets can form vector spaces by defining addition and scalar multiplication:

µA+B(x) = µA(x) + µB(x), µcA(x) = c · µA(x), ’x œ X.

Example: For A and B over X = {1, 2} with:

µA(x) = {0.4, 0.6}, µB(x) = {0.3, 0.2},

µA+B(x) = {0.7, 0.8}, µ2A(x) = {0.8, 1.2}.

2.4.65 Relational Algebra in Sets
Fuzzy relational algebra extends classical operations such as join and projection. A
fuzzy relation R is defined by a membership function µR(x, y).

Example: For R over X ◊ Y = {(1, a), (1, b), (2, a), (2, b)} with:

µR(x, y) =
C
0.3 0.6
0.4 0.2

D

,

projection onto X gives:

µfiX (x) = max
y

µR(x, y) = {0.6, 0.4}.

2.4.66 Graph Representations of Sets
Fuzzy sets can be represented as graphs, with nodes corresponding to elements and
edges weighted by membership degrees.

Example: For A over X = {1, 2, 3} with µA(x) = {0.3, 0.5, 0.7}, the graph
representation includes nodes 1, 2, 3 and edge weights reflecting µA(x).
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2.4.67 Isomorphism in Set Structures
Two fuzzy sets A and B are isomorphic if there exists a bijection f : X æ Y such
that:

µB(f(x)) = µA(x), ’x œ X.

Example: For A over X = {1, 2} and B over Y = {a, b} with:

µA(x) = {0.4, 0.7}, µB(y) = {0.4, 0.7},

the bijection f(1) = a, f(2) = b establishes isomorphism.

2.4.68 Dual Operators in Complementation
Dual operators in fuzzy logic relate complement to union and intersection:

A fi B = A fl B, A fl B = A fi B.

Example: For A and B over X = {1, 2} with:

µA(x) = {0.4, 0.7}, µB(x) = {0.5, 0.3},

µ
AfiB

(x) = µ
AflB

(x) = {0.5, 0.3}.

2.4.69 Monotonicity in Set Operations
Fuzzy set operations are monotonic:

A ™ B =∆ A fi C ™ B fi C, A fl C ™ B fl C.

Example: For A ™ B over X = {1, 2} with:

µA(x) = {0.3, 0.4}, µB(x) = {0.5, 0.4},

then:
µAfiC(x) Æ µBfiC(x), µAflC(x) Æ µBflC(x).

2.4.70 Cardinality of Infinite Sets
The cardinality of a fuzzy set A is generalized as:

Card(A) =
ÿ

xœX

µA(x).

Example: For A over X = {1, 2, 3} with µA(x) = {0.2, 0.5, 0.8}:

Card(A) = 0.2 + 0.5 + 0.8 = 1.5.
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2.4.71 Finiteness vs. Infiniteness in Computation
Finiteness in fuzzy sets refers to a finite universe X, whereas infiniteness involves an
infinite or uncountable universe. Computation becomes more complex with infinite
sets.

Example: For A over X = {1, 2, 3}, µA(x) = {0.2, 0.5, 0.7} is computationally
finite. For A over X = R with µA(x) = e≠x

2 , computation requires numerical
approximation.

2.4.72 Well-Ordering Principle
The well-ordering principle states that every non-empty set has a least element under
a given ordering. This concept extends to fuzzy sets by considering membership
degrees.

Example: For A over X = {1, 2, 3} with µA(x) = {0.3, 0.7, 0.5}:

Least element: x = 1 (smallest membership degree).

2.4.73 Axiom of Choice Implications
The axiom of choice allows for the selection of elements from fuzzy sets, particularly
for constructing fuzzy relations or partitions.

Example: For a fuzzy relation R over X ◊ Y = {(1, a), (2, b)}, the axiom of
choice enables selecting a representative for each x œ X with maximum membership
in R.

2.4.74 Direct and Inverse Images
The direct image of a fuzzy set A under a function f : X æ Y is:

µf(A)(y) = sup
xœX,f(x)=y

µA(x).

The inverse image is:
µf≠1(B)(x) = µB(f(x)).

Example: For f(x) = x2 and A over X = {1, 2} with µA(x) = {0.4, 0.7}:

µf(A)(y) = {0.7} for y = 4.
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2.4.75 Category Theory and Sets
Fuzzy sets can be represented within category theory, where objects are fuzzy sets
and morphisms are membership-preserving functions.

Example: For A over X = {1, 2} and B over Y = {a, b} with µA(x) = {0.4, 0.7}
and µB(y) = {0.6, 0.5}, a morphism f : X æ Y satisfies µB(f(x)) = µA(x).

2.4.76 Hypergraph Representations
Fuzzy sets can be represented as hypergraphs, where vertices correspond to elements
and hyperedges represent membership degrees.

Example: For A over X = {1, 2, 3} with µA(x) = {0.2, 0.5, 0.8}, the hypergraph
has vertices {1, 2, 3} and weighted hyperedges {(1, 0.2), (2, 0.5), (3, 0.8)}.

2.4.77 Exactness vs. Approximation in Computation
Exactness involves using precise membership functions, while approximation uses
simplified or discrete values.

Example: For A over X = {1, 2, 3} with µA(x) = {0.333, 0.667, 1.0}, approximation
could round these values to {0.3, 0.7, 1.0}.

2.4.78 Continuity in Fuzzy Functions
A fuzzy function f : X æ Y is continuous if small changes in membership in X
produce small changes in Y .

Example: For f(x) = sin(x) and A over X = {0, fi/4, fi/2} with µA(x) =
{0.2, 0.5, 0.7}, f is continuous because µf(A)(y) varies smoothly.

2.4.79 Convexity in Fuzzy Sets
A fuzzy set A is convex if:

µA(⁄x1 + (1 ≠ ⁄)x2) Ø min(µA(x1), µA(x2)), ’x1, x2 œ X, ⁄ œ [0, 1].

Example: For A over X = [0, 1] with µA(x) = 1 ≠ |x ≠ 0.5|, A is convex because
membership values decrease symmetrically from x = 0.5.
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2.4.80 Fuzzy Relations and Composition
The composition of two fuzzy relations R over X ◊ Y and S over Y ◊ Z is:

µR¶S(x, z) = sup
yœY

min(µR(x, y), µS(y, z)).

Example: For R over X ◊ Y = {(1, a), (1, b)} with:

µR(x, y) =
Ë
0.4 0.7

È
,

and S over Y ◊ Z = {(a, z1), (b, z1)} with:

µS(y, z) =
C
0.6
0.5

D

,

µR¶S(x, z) = max(min(0.4, 0.6), min(0.7, 0.5)) = 0.5.

2.4.81 Fuzzy Equivalence Relations
A fuzzy equivalence relation R on X satisfies reflexivity, symmetry, and transitivity:

µR(x, x) = 1, µR(x, y) = µR(y, x), µR(x, z) Ø min(µR(x, y), µR(y, z)).

Example: For X = {1, 2, 3} and R with:

µR(x, y) =

S

WU
1.0 0.5 0.3
0.5 1.0 0.4
0.3 0.4 1.0

T

XV ,

R is reflexive, symmetric, and transitive.

2.4.82 Fuzzy Clustering
Fuzzy clustering partitions a dataset into fuzzy subsets where each point has a
membership value in each cluster. A common algorithm is Fuzzy C-Means (FCM).

Example: For points X = {x1, x2, x3} and clusters C1, C2, membership values
might be:

µC1(x) = {0.8, 0.4, 0.2}, µC2(x) = {0.2, 0.6, 0.8}.
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2.4.83 Defuzzification Methods
Defuzzification converts a fuzzy set into a crisp value. Common methods include: 1.
Centroid (COG):

xú =
q

xœX µA(x) · x
q

xœX µA(x) .

2. Mean of Maximum (MOM):

xú =
q

xœX,µA(x)=max µA
x

count of such x
.

Example: For A over X = {1, 2, 3} with µA(x) = {0.2, 0.5, 0.7}:

xú
COG = 1(0.2) + 2(0.5) + 3(0.7)

0.2 + 0.5 + 0.7 = 2.5.

2.4.84 Fuzzy Rule-Based Systems
Fuzzy rule-based systems use fuzzy logic to infer conclusions from fuzzy rules. A rule
is of the form:

If x is A then y is B.

Example: Rule: If temperature is high, then fan speed is fast. For a temperature
of 30°C with µhigh(30) = 0.6, the output fan speed has µfast = 0.6.

2.4.85 Type-2 Fuzzy Sets
A Type-2 fuzzy set A has a fuzzy membership function µ̃A(x, u), where u œ [0, 1]
represents uncertainty in membership.

Example: For A over X = {1, 2} with:

µ̃A(1, u) = {(0.3, 0.6)}, µ̃A(2, u) = {(0.4, 0.7)}.

Membership is represented as intervals.

2.4.86 Linguistic Variables
A linguistic variable is a variable described by fuzzy terms, such as ”low,” ”medium,”
or ”high,” with corresponding fuzzy sets.

Example: For the variable Temperature, fuzzy sets might be:

µlow(x) = max(0, 1 ≠ x/20), µhigh(x) = max(0, (x ≠ 20)/20).
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2.4.87 Fuzzy Implication Operators
Fuzzy implications define logical relationships. Common operators include: 1.
Zadeh’s Implication:

µA =∆ B(x) = max(1 ≠ µA(x), µB(x)).

2. Lukasiewicz Implication:

µA =∆ B(x) = min(1, 1 ≠ µA(x) + µB(x)).

Example: For A and B over X = {1} with µA(x) = 0.4 and µB(x) = 0.7:

µA =∆ B(x) = max(1 ≠ 0.4, 0.7) = 0.7 (Zadeh).

2.4.88 Possibility and Necessity Measures
Possibility and necessity quantify the plausibility of an event:

Poss(A) = sup
xœX

µA(x), Nec(A) = 1 ≠ Poss(A).

Example: For A over X = {1, 2, 3} with µA(x) = {0.3, 0.6, 0.8}:

Poss(A) = 0.8, Nec(A) = 1 ≠ 0.2 = 0.8.

2.4.89 Triangular and Trapezoidal Membership Functions
Triangular and trapezoidal membership functions are commonly used to define fuzzy
sets: 1. Triangular:

µA(x) = max
3

0,
x ≠ a

b ≠ a
,
c ≠ x

c ≠ b

4
, x œ [a, c].

2. Trapezoidal:

µA(x) = max
A

0,
x ≠ a

b ≠ a
, 1,

d ≠ x

d ≠ c

B

, x œ [a, d].

Example: For a triangular fuzzy set A with a = 1, b = 3, c = 5:

µA(2) = 2 ≠ 1
3 ≠ 1 = 0.5, µA(4) = 5 ≠ 4

5 ≠ 3 = 0.5.
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2.4.90 Membership Function Normalization
Normalization scales a membership function to ensure:

sup
xœX

µA(x) = 1.

Example: For A over X = {1, 2, 3} with µA(x) = {0.2, 0.4, 0.8}:

Normalize: µÕ
A

(x) = µA(x)
sup

xœX
µA(x) = {0.25, 0.5, 1.0}.

2.5 Properties of Fuzzy Membership Functions
Fuzzy membership functions are fundamental in representing the degree of membership
of elements in a fuzzy set. They have several key properties:

1. Range

• The range of a fuzzy membership function is always in the interval [0, 1].
• µ(x) = 0 indicates no membership, while µ(x) = 1 indicates full membership.

2. Normalization

• Membership functions are typically normalized so that the highest membership
degree is 1 (i.e., µ(x) = 1 for at least one x in the universe of discourse).
As an example consider a triangular membership function defined for a
universe of discourse x in the range [0, 10] and described as follows:

µ(x) =

Y
__]

__[

0 if x < 2 or x > 8,
x≠2

4 if 2 Æ x Æ 6,
8≠x

2 if 6 < x Æ 8.

– The function above represents a triangular fuzzy set with a peak at
x = 6. The highest membership degree (µ(x) = 1) occurs at x = 6,
ensuring the function is normalized.

– For all other values of x, µ(x) lies in the interval [0, 1].

3. Shape

• As we discussed, membership functions can have various shapes depending
on the problem domain. Some examples are:
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– Triangular : Defined by a linear increase and decrease, forming a
triangle.

– Trapezoidal: Similar to triangular but with a flat top, allowing for a
range of full membership.

– Gaussian: Smooth, bell-shaped curves, often used for modeling uncertainty.
– Sigmoid: S-shaped curves used for gradual transitions.
– Piecewise Linear : Combinations of linear segments for flexible modeling.

4. Continuity

• Membership functions can be continuous or discrete, depending on the
nature of the problem.

– Continuous functions are smoother and often preferred in modeling
real-world phenomena.

– Discrete functions are suitable for systems with finite, countable input
values.

5. Overlap

• Membership functions can overlap within the same universe of discourse,
allowing an element to partially belong to multiple fuzzy sets (e.g., an
element can be ”somewhat hot” and ”somewhat warm”).

6. Complement

• The complement of a fuzzy membership function is calculated as 1 ≠ µ(x),
representing the degree to which an element does not belong to the set.

7. Support

• The support of a membership function is the set of all points x where
µ(x) > 0.

• It indicates the range of elements with some degree of membership in the
fuzzy set.

8. Core

• The core of a membership function is the set of all points x where µ(x) = 1.
• It represents the elements that fully belong to the fuzzy set.
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9. Crossover Points

• Crossover points are the values of x where µ(x) = 0.5.
• These points represent the threshold of partial membership.

10. Flexibility

• Membership functions can be tailored to specific applications by adjusting
their parameters (e.g., width, height, and center for triangular or Gaussian
functions).

11. Non-Negativity

• Membership functions are always non-negative: µ(x) Ø 0 for all x.

12. Additivity (Optional)

• In some cases, membership functions for overlapping fuzzy sets sum to 1 for
any x. This is not a strict requirement but is used in certain applications
like probability-inspired fuzzy logic.

13. Subjectivity

• Membership functions are subjective and domain-specific, often defined
based on expert knowledge, experimental data, or problem constraints.

14. –-Cuts

• –-Cut is a set of elements in X where the membership value is at least –.

A– = {x œ X|µA(x) Ø –}

15. Boundary

• Boundary is a region between full membership and no membership (0 <
µA(x) < 1).

16. Crossovers (Optional)

• Crossover Points refer to the points in the universe of discourse where the
degree of membership equals 0.5.

Below is an example code in R script to showcase various membership functions
we discussed:
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1 # Uncomment the below if you need install packages

2 # install.packages("devtools")

3 # install.packages("ggplot2")

4

5 # Load necessary libraries

6 library(ggplot2)

7

8 # Define the universe of discourse (temperature in Celsius)

9 # To have a smaller set we went from 0 to 10 degrees

10 x <- seq(0, 10, by = 0.1)

11

12 # Define our membership functions, you can do yours as well!

13 membership_functions <- list(

14 Triangular = pmax(pmin((x - 2) / 4, (8 - x) / 2), 0), # Triangular: Peak at 6

15 Trapezoidal = pmax(pmin((x - 1) / 4, 1, (8 - x) / 1), 0), # Trapezoidal: Flat top

16 Gaussian = exp(-((x - 5)ˆ2) / (2 * 2ˆ2)), # Gaussian: Bell curve

17 Sigmoidal = 1 / (1 + exp(-2 * (x - 5))), # Sigmoid: S-shaped curve

18 ZShaped = ifelse(x <= 3, 1, ifelse(x >= 7, 0, 1 - 2 * ((x - 3) / 4)ˆ2)), # Z-shaped:

Gradual declineÒæ

19 Complement = 1 - exp(-((x - 5)ˆ2) / (2 * 2ˆ2)) # Complement of Gaussian

20 )

21

22 # Create a data frame for our plotting

23 data <- data.frame(

24 x = rep(x, times = length(membership_functions)),

25 y = unlist(membership_functions),

26 Function = rep(names(membership_functions), each = length(x))

27 )

28

29 # Plot membership functions

30 print(ggplot(data, aes(x = x, y = y, color = Function)) +

31 geom_line(linewidth = 1) +

32 theme_minimal() +

33 labs(

34 title = "Fuzzy Membership Functions for Heating System",

35 x = "Temperature (°C)",

36 y = "Membership Degree"

37 ) +
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38 scale_color_brewer(palette = "Set1") +

39 theme(legend.title = element_blank()))

40

41 # Let�s analyze properties of our membership functions

42 # Check the Range:

43 range_check <- lapply(membership_functions, function(y) all(y >= 0 & y <= 1))

44 # Check Core (where membership = 1)

45 core_values <- lapply(membership_functions, function(y) x[y == 1])

46 # Check Support (where membership > 0)

47 support_values <- lapply(membership_functions, function(y) x[y > 0])

48 # Do we have Crossovers (where membership = 0.5)

49 crossover_points <- lapply(membership_functions, function(y) x[abs(y - 0.5) < 1e-2])

50

51 # And print the results of above checks

52 cat("Range Check (All within [0, 1]):\n")

53 print(range_check)

54 cat("\nCore Values (Membership = 1):\n")

55 print(core_values)

56 cat("\nSupport Values (Membership > 0):\n")

57 print(support_values)

58 cat("\nCrossover Points (Membership = 0.5):\n")

59 print(crossover_points)

2.6 Designing Fuzzy Fuzzy Heating and Cooling -
Example

In this section, we explore our own conceptual and simplified Fuzzy Heating and
Cooling Control System. The objective is to develop a Python-based fuzzy logic
control system for managing the heating and cooling of a household, providing a clear
understanding of the fuzzy control process. Let’s begin by running the code to get
an initial sense of its functionality:

Enter mode (heating/cooling): heating
Enter operation mode (normal/quiet): quiet
Enter current temperature (-100 to 100°C): 21
Enter target temperature (13-30°C): 22
Enter electricity price factor (1.00-2.00): 1.8
Enter occupancy level (0-100): 20
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Enter humidity (0-100): 55

Okay, we have these inputs:
Mode: Quiet | Heating Mode
Current Temperature: 21.0°C
Target Temperature: 22.0°C
Electricity Price Factor: 1.80
Occupancy: 20
Humidity: 55%

And, we computed these outputs:
Computed Fan Speed: 35%
ComputedSystem Stage: 1

Here is a brief explanation of each input and output:

• Heating or Cooling Mode:

– Heating or cooling mode determines whether the system should actively
increase or decrease the indoor temperature to achieve the desired comfort
level. In heating mode, the system activates the furnace, which operates
in one of two stages based on the heating requirements:

– Normal Mode (Stage 1): Only half of the furnace burners are turned
on, producing moderate heat to gently maintain or gradually increase
the temperature. This mode is energy-e�cient and designed for small
temperature di�erences between the current and target temperatures. The
blower fan can operate in slower speeds as well in the mode.

– Aggressive Mode (Stage 2): All burners in the furnace are activated to
produce maximum heat. This mode is utilized for larger temperature
di�erences or when a faster heating response is required. The heating
process increases the indoor temperature rapidly, ensuring it matches the
target temperature using fuzzy logic rules optimized for heating operations.

– Cooling Mode: In cooling mode, the system engages the air conditioning
unit, which includes a compressor and condenser unit to remove heat from
the indoor air. An evaporator coil that cools the air passing through it by
extracting heat.
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– The blower fan plays a critical role in both heating and cooling by
circulating air over the heat exchanger plates (for heating) or the condenser
(for cooling). The airflow ensures e�cient heat exchange, distributing warm
or cool air evenly throughout the house.

– The cooling mode operates similarly to heating, where the system uses fuzzy
logic rules to adjust fan speed and cooling intensity. These adjustments
are made based on the current temperature, target temperature, and other
contextual factors such as occupancy, humidity, and electricity price.

• Operation Mode (Normal or Quiet):

– Indicates the desired noise level of the system’s operation.
– Quiet mode: The fan speed is limited to ensure reduced noise, even if

higher speeds might achieve the target temperature faster. This impacts
rules that determine fan speed.

• Current Temperature:

– This is the actual current measured temperature of the environment.
– Based on the fuzzy membership functions. We can have ≠100¶C to 100¶C

this will further break into sub fuzzy categories such as ”comfortable” or
”medium” etc.

• Target Temperature

– The desired temperature to be achieved by the system. Valid values are
between 13¶C to 30¶C

– If the target is close to the current temperature, the system is expected to
operate in a less aggressive mode, possibly using medium or low blower
fan speeds.

• Electricity Price Factor

– Reflects the cost of electricity, impacting decisions about energy-intensive
operations. valid values are between 1.00 for cheapest and 2.00 being the
most expensive rates.

– A high price factor (e.g., 1.8) might reduce the heating stage or fan speed
to save energy, especially during quiet night modes.

• Occupancy Level
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– Represents the percentage of occupancy by people in the environment
(0-100%)

– A low occupancy level like 20 might deprioritize aggressive heating or
cooling since fewer people are a�ected, leading to reduced system activity.

• Humidity Level

– Measures the relative moisture content in the air (0-100%).
– At 55%, the humidity likely falls into the ”comfortable” category.

Let’s formalize Fuzzy Variables and Membership Functions:

• Antecedents (Inputs):

– Temperature: Categorized into very cold, cold, comfortable, warm,
and hot.

– Target Temperature: Defined as cool, moderate, and warm.
– Humidity: Categorized into dry, comfortable, and humid.
– Electricity Price: Divided into low, medium, and high.
– Occupancy Level: Categorized as empty, low, medium, and high.
– Quiet Desired: Binary input (yes or no).

• Consequents (Outputs):

– Fan Speed: Defined in discrete values (off, low, medium, high, max).
– System Stage: Discrete values (off, normal, aggressive).

Membership functions for each variable define fuzzy categories and their degrees of
membership within a given universe of discourse. We also defines rules for mapping
the inputs to outputs:

• We create di�erent fuzzy rules based on the mode (heating or cooling). Here
is an example:

1 Rule(temperature[�very_cold�] | temperature[�cold�],
(system_stage[�aggressive�], fan_speed[�high�]))Òæ

• Each rule combines antecedent conditions (e.g., temperature, humidity, and
occupancy level, etc.) to determine consequent actions (e.g., fan speed and
system stage).
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• We also validate user inputs (temperature, target temperature, humidity, etc.)
to ensure they fall within specified ranges.

After we create the rules, the system computes outputs based on the rules and
the degree of membership of inputs in di�erent fuzzy categories. Later the system
performs discretization and adjustments if needed.

For instance target fan speed is discretized (quantized) to predefined steps for
consistency. We also perform some manual overwrites and adjustments if needed. For
instance, quiet mode applies additional limits to fan speed to ensure noise reduction.
All of these are done in simulation.compute() function.

Our fuzzy compute function which uses Python’s skfuzzy.control, performs the
process of fuzzy inference. It evaluates the fuzzy rules, aggregates the results, and
defuzzifies the outputs to provide crisp values for the consequents involves:

1. Fuzzify inputs: Determine membership degrees.

2. Evaluate rules: Compute firing strengths.

3. Apply implications: Scale consequent fuzzy sets.

4. Aggregate results: Combine outputs for each fuzzy set.

5. Defuzzify aggregated outputs: Compute crisp values.

These computations typically do not involve explicit integrals; instead, they rely
on numerical approximations to perform operations like fuzzification, rule evaluation,
and defuzzification. While integral principles underlie these processes, numerical
methods ensure e�cient execution, providing accurate and realistic system behavior
based on fuzzy rules.

Notably, some advanced microcontroller families, such as the Motorola/Freescale/NXP
HCS12 series, o�er dedicated hardware capabilities or optimized assembly instructions
tailored for fuzzy inference. These instructions accelerate key fuzzy operations, such as
membership function evaluations, logical operations (AND, OR), and defuzzification
calculations, enabling real-time performance even in resource-constrained embedded
systems.

Below is a detailed breakdown of what happens behind the scenes, including the
mathematical operations:
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2.6.0.1 Fuzzification

• Converts crisp input values into degrees of membership in fuzzy sets using the
membership functions defined for each antecedent.

• For each input x, the degree of membership µ(x) is calculated for all applicable
fuzzy sets.

Details: If µA(x) is the membership function for fuzzy set A:

µA(x) = value of the membership function for x in A.

Example: If the input temperature is x = 12¶C, and the fuzzy sets for temperature
are:

• Low Temperature : µLow(x)

• Medium Temperature : µMedium(x)

The system evaluates µLow(12) and µMedium(12) using the respective membership
functions.

2.6.0.2 Rule Evaluation

• Evaluates the strength (or ”firing strength”) of each fuzzy rule.

• Combines the antecedent conditions using logical operators (AND, OR) mapped
to fuzzy operations:

– AND : min(µA(x), µB(y))
– OR : max(µA(x), µB(y))

Details: For a rule:

IF x is A AND y is B THEN z is C,

the firing strength w is:
w = min(µA(x), µB(y)).

Example: For a rule:

IF Temperature is Low AND Humidity is High THEN Fan Speed is High,

the firing strength w is:

w = min(µLow(x), µHigh(y)).
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2.6.0.3 Implication

• Applies the firing strength w of each rule to the consequent fuzzy set.

• The membership function of the consequent is scaled by the firing strength.

Details: If µC(z) is the membership function for the consequent fuzzy set C, the
modified membership function µÕ

C
(z) is:

µÕ
C

(z) = min(w, µC(z)).

Example: If w = 0.6 and µHigh Fan Speed(z) is:

µHigh Fan Speed(z) =

Y
]

[
1 if 80 Æ z Æ 100,

0 otherwise,

the scaled membership function becomes:

µÕ
High Fan Speed(z) = min(0.6, µHigh Fan Speed(z)).

2.6.0.4 Aggregation

• Combines the modified membership functions of all rules that a�ect the same
output.

• The aggregation method is typically max (union).

Details: If multiple rules contribute to the same consequent fuzzy set C:

µÕÕ
C

(z) = max(µÕ
C1(z), µÕ

C2(z), . . . , µÕ
Cn

(z)).

Example: If two rules contribute to ”Fan Speed is High,” their aggregated
membership function is the pointwise maximum of the scaled membership functions
from both rules.

2.6.0.5 Defuzzification

• Converts the aggregated fuzzy output back into a crisp value.

• The most common method is the Centroid Method (center of gravity), which
computes the weighted average of all points in the output fuzzy set.
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Details: For an output fuzzy set C with universe of discourse Z:

zú =
s

Z
z · µC(z) dz

s
Z

µC(z) dz
.

Here:

• zú: Crisp output.

• µC(z): Aggregated membership function of C.

• Z: Range of possible values for the output.

Example: If the aggregated fuzzy set for fan speed is:

µFan Speed(z) =

Y
__]

__[

0.4 for z = 60,

0.6 for z = 70,

0.8 for z = 80,

the crisp value zú is computed as:

zú =
q

z · µFan Speed(z)
q

µFan Speed(z) .

Let’s take a look at the code:

1 import numpy as np
2 import skfuzzy as fuzz
3 from skfuzzy.control import Antecedent, Consequent, Rule, ControlSystem,

ControlSystemSimulationÒæ

4

5 # Define fuzzy universes
6 temperature = Antecedent(np.arange(-100, 101, 0.5), �temperature�)
7 target_temp = Antecedent(np.arange(13, 30.5, 0.5), �target_temp�)
8 humidity = Antecedent(np.arange(0, 101, 1), �humidity�)
9 electricity_price = Antecedent(np.arange(1.0, 2.01, 0.01), �electricity_price�)

10 occupancy_level = Antecedent(np.arange(0, 101, 1), �occupancy_level�)
11 quiet_desired = Antecedent(np.arange(0, 2, 1), �quiet_desired�)
12

13 # Fan speed with discrete values: 0, 20, 25, 30, ..., 95, 100
14 fan_speed_vals = [0] + list(range(20, 101, 5))
15 fan_speed = Consequent(np.array(fan_speed_vals), �fan_speed�)

© 2024 Navid Mohaghegh. All rights reserved. 75



16

17 # System stage with discrete values: 0, 1, 2
18 system_stage = Consequent(np.array([0, 1, 2]), �system_stage�)
19

20 # Membership Functions
21 temperature[�very_cold�] = fuzz.trapmf(temperature.universe, [-100,-100,0,5])
22 temperature[�cold�] = fuzz.trimf(temperature.universe, [0,10,15])
23 temperature[�comfortable�] = fuzz.trimf(temperature.universe, [14,22,26])
24 temperature[�warm�] = fuzz.trimf(temperature.universe, [25,30,35])
25 temperature[�hot�] = fuzz.trapmf(temperature.universe, [30,35,100,100])
26

27 target_temp[�cool�] = fuzz.trapmf(target_temp.universe, [13,13,18,20])
28 target_temp[�moderate�] = fuzz.trimf(target_temp.universe, [19,22,24])
29 target_temp[�warm�] = fuzz.trapmf(target_temp.universe, [23,26,30,30])
30

31 humidity[�dry�] = fuzz.trapmf(humidity.universe, [0,0,30,40])
32 humidity[�comfortable�] = fuzz.trimf(humidity.universe, [35,50,65])
33 humidity[�humid�] = fuzz.trapmf(humidity.universe, [60,70,100,100])
34

35 electricity_price[�low�] = fuzz.trapmf(electricity_price.universe, [1.0,1.0,1.3,1.4])
36 electricity_price[�medium�] = fuzz.trimf(electricity_price.universe, [1.3,1.5,1.7])
37 electricity_price[�high�] = fuzz.trapmf(electricity_price.universe, [1.6,1.8,2.0,2.0])
38

39 occupancy_level[�empty�] = fuzz.trimf(occupancy_level.universe, [0,0,20])
40 occupancy_level[�low�] = fuzz.trimf(occupancy_level.universe, [15,30,50])
41 occupancy_level[�medium�] = fuzz.trimf(occupancy_level.universe, [40,60,80])
42 occupancy_level[�high�] = fuzz.trimf(occupancy_level.universe, [70,85,100])
43

44 quiet_desired[�no�] = fuzz.trimf(quiet_desired.universe, [0,0,0])
45 quiet_desired[�yes�] = fuzz.trimf(quiet_desired.universe, [1,1,1])
46

47 fan_speed[�off�] = fuzz.trimf(fan_speed.universe, [0,0,20])
48 fan_speed[�low�] = fuzz.trimf(fan_speed.universe, [20,35,50])
49 fan_speed[�medium�] = fuzz.trimf(fan_speed.universe, [45,60,75])
50 fan_speed[�high�] = fuzz.trimf(fan_speed.universe, [70,85,100])
51 fan_speed[�max�] = fuzz.trimf(fan_speed.universe, [95,100,100])
52

53 system_stage[�off�] = fuzz.trimf(system_stage.universe, [0,0,0])
54 system_stage[�normal�] = fuzz.trimf(system_stage.universe, [1,1,1])
55 system_stage[�aggressive�] = fuzz.trimf(system_stage.universe, [2,2,2])
56

57 def create_rules(mode):
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58 rules = []
59 if mode == �heating�:
60 rules.extend([
61 Rule(temperature[�very_cold�] | temperature[�cold�], (system_stage[�aggressive�],

fan_speed[�high�])),Òæ

62 Rule(temperature[�cold�], (system_stage[�normal�], fan_speed[�medium�])),
63 Rule(temperature[�comfortable�], (system_stage[�normal�], fan_speed[�low�])),
64 Rule(temperature[�warm�], (system_stage[�off�], fan_speed[�off�])),
65 Rule(temperature[�hot�], (system_stage[�off�], fan_speed[�off�])),
66 Rule(occupancy_level[�empty�], fan_speed[�low�]),
67 Rule(occupancy_level[�high�], fan_speed[�high�]),
68 Rule(humidity[�humid�], fan_speed[�high�]),
69 Rule(electricity_price[�high�], system_stage[�normal�]),
70 Rule(quiet_desired[�yes�], fan_speed[�low�])
71 ])
72 else: # cooling mode
73 rules.extend([
74 Rule(temperature[�very_cold�], (system_stage[�off�], fan_speed[�off�])),
75 Rule(temperature[�cold�], (system_stage[�off�], fan_speed[�off�])),
76 Rule(temperature[�comfortable�], (system_stage[�normal�], fan_speed[�low�])),
77 Rule(temperature[�warm�], (system_stage[�normal�], fan_speed[�medium�])),
78 Rule(temperature[�hot�], (system_stage[�aggressive�], fan_speed[�high�])),
79 Rule(occupancy_level[�empty�], fan_speed[�low�]),
80 Rule(occupancy_level[�high�], fan_speed[�high�]),
81 Rule(humidity[�humid�], fan_speed[�high�]),
82 Rule(electricity_price[�high�], system_stage[�normal�]),
83 Rule(quiet_desired[�yes�], fan_speed[�low�])
84 ])
85 return rules
86

87 def discretize_fan_speed(speed):
88 if speed <= 0:
89 return 0
90 elif speed >= 100:
91 return 100
92 else:
93 return min(fan_speed_vals, key=lambda x: abs(x - speed))
94

95 def main():
96 try:
97 mode = input("Enter mode (heating/cooling): ").strip().lower()
98 if mode not in [�heating�, �cooling�]:
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99 raise ValueError("Invalid mode. Must be �heating� or �cooling�.")
100

101 operation_mode = input("Enter operation mode (normal/quiet): ").strip().lower()
102 if operation_mode not in [�normal�, �quiet�]:
103 raise ValueError("Invalid operation mode. Must be �normal� or �quiet�.")
104

105 quiet_mode = 1 if operation_mode == �quiet� else 0
106 current_temp = float(input("Enter current temperature (-100 to 100°C): "))
107 target_temp_val = float(input("Enter target temperature (13-30°C): "))
108 electricity_price_val = float(input("Enter electricity price factor (1.00-2.00): "))
109 occupancy_val = int(input("Enter occupancy level (0-100): "))
110 humidity_val = int(input("Enter humidity (0-100): "))
111

112 # Input validation
113 if not (-100 <= current_temp <= 100):
114 raise ValueError("Temperature must be between -100 and 100")
115 if not (13 <= target_temp_val <= 30):
116 raise ValueError("Target temperature must be between 13 and 30")
117 if not (1.0 <= electricity_price_val <= 2.0):
118 raise ValueError("Price factor must be between 1.00 and 2.00")
119 if not (0 <= occupancy_val <= 100):
120 raise ValueError("Occupancy must be between 0 and 100")
121 if not (0 <= humidity_val <= 100):
122 raise ValueError("Humidity must be between 0 and 100")
123

124 # Force cooling off if temperature is too low
125 if mode == �cooling� and current_temp < 16:
126 print("\nCooling disabled: Current temperature below 16°C")
127 system_stage_val = 0
128 fan_speed_val = 0
129 else:
130 control_system = ControlSystem(create_rules(mode))
131 sim = ControlSystemSimulation(control_system)
132

133 # Set inputs
134 sim.input[�temperature�] = current_temp
135 sim.input[�humidity�] = humidity_val
136 sim.input[�electricity_price�] = electricity_price_val
137 sim.input[�occupancy_level�] = occupancy_val
138 sim.input[�quiet_desired�] = quiet_mode
139

140 sim.compute()
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141

142 # Check for aggressive temperature change requirement
143 temp_diff = abs(target_temp_val - current_temp)
144 if temp_diff > 7 and occupancy_val > 0:
145 fan_speed_val = 100
146 system_stage_val = 2
147 else:
148 # Get and discretize fan speed
149 fan_speed_val = discretize_fan_speed(sim.output.get(�fan_speed�, 0))
150 system_stage_val = int(sim.output.get(�system_stage�, 1))
151

152 # Apply quiet mode fan speed limit only if not in aggressive mode
153 if quiet_mode == 1 and fan_speed_val > 80:
154 fan_speed_val = discretize_fan_speed(80)
155

156 # Print results
157 print(f"\nOkay, we have these inputs:")
158 print(f"Mode: {operation_mode.capitalize()} | {mode.capitalize()} Mode")
159 print(f"Current Temperature: {current_temp}°C")
160 print(f"Target Temperature: {target_temp_val}°C")
161 print(f"Electricity Price Factor: {electricity_price_val:.2f}")
162 print(f"Occupancy: {occupancy_val}")
163 print(f"Humidity: {humidity_val}%")
164

165 print(f"\nAnd, we computed these outputs:")
166 print(f"Computed Fan Speed: {fan_speed_val}%")
167 print(f"ComputedSystem Stage: {system_stage_val}")
168

169 except ValueError as ve:
170 print(f"Error: {ve}")
171 except Exception as e:
172 print(f"An error occurred: {e}")
173

174 if __name__ == "__main__":
175 main()
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Chapter 3

Explaining Di�erent Fuzzy Systems

3.1 Di�erent Fuzzy Systems
Over time, depend on the use case, we evolved and created di�erent fuzzy systems.
Each type has strengths and weaknesses, and the choice of system depends on the
application’s requirements for interpretability, computational e�ciency, and precision.

3.1.1 Mamdani Fuzzy Inference System
Introduced by Ebrahim Mamdani in 1975, it is one of the most widely used fuzzy
logic models with the following key features:

• Linguistic variables are used for both the antecedents and consequents of fuzzy
rules.

• The output is derived using fuzzy logic operations, producing a fuzzy set which
is defuzzified to a crisp value.

• If-Then Rule Example:

If x is A and y is B, then z is C

• Output z is represented by fuzzy sets like C.

• Used in control systems, like automatic braking systems or HVAC systems.
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3.1.2 Sugeno Fuzzy Inference System
Proposed by Takagi, Sugeno, and Kang in 1985, it uses mathematical functions as
consequents rather than fuzzy sets:

• Consequents are linear or constant functions.

• E�cient for numerical modeling and adaptive systems.

• If-Then Rule Example:

If x is A and y is B, then z = p · x + q · y + r

• Output z is calculated directly using a weighted average.

• Used in systems requiring precise outputs, such as adaptive control systems,
optimization problems, and ANFIS (will be discussed later).

3.1.3 Tsukamoto Fuzzy Inference System
Proposed by Y. Tsukamoto, this model assigns fuzzy sets with monotonically increasing
or decreasing membership functions.

• Each rule’s output is a crisp value obtained by defuzzifying its fuzzy output.

• The overall output is computed as a weighted average of the individual rule
outputs.

• If-Then Rule Example:

If x is A, then z = C

where C is a crisp value determined by the membership degree.

• Used in situations where intermediate crisp outputs are necessary.

3.1.4 Hybrid Fuzzy Systems
Combines fuzzy logic with other computational intelligence techniques, such as neural
networks, genetic algorithms, or optimization methods.

• Types:
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– Neuro-Fuzzy Systems:
� Combines fuzzy systems with neural networks to create adaptive

models, such as ANFIS (Adaptive Neuro-Fuzzy Inference System).
� Example: Learning fuzzy membership functions and rules from data.

– Genetic-Fuzzy Systems:
� Genetic Algorithms are optimization techniques inspired by natural

selection, where a population of potential solutions evolves over
generations through selection, crossover, and mutation to maximize or
minimize a fitness function. They are well-suited for solving complex,
multi-dimensional problems without requiring gradient information.
Genetic-Fuzzy Systems integrate genetic algorithms for optimizing
fuzzy membership functions or rule sets. This will allow evolutionary
learning of fuzzy rule bases.

– Fuzzy-Swarm Intelligence Systems:
� Uses swarm-based optimization techniques (e.g., Particle Swarm Optimization)

to improve fuzzy systems.
� Example: Optimizing fuzzy control parameters for robotics.

– Deep Learning and Fuzzy Systems:
� Combines fuzzy logic with deep learning architectures for better

interpretability and reasoning.
� Example: Fuzzy layers integrated into neural networks.

3.1.5 Takagi-Sugeno Fuzzy Systems
This is a special case of Sugeno systems where the output is expressed as a weighted
combination of input variables.

• Often used for systems requiring smooth control surfaces.

• Ideal for mathematical modeling of dynamic systems such as robotics, process
control, and time-series predictions.

• Rules are expressed as:

If x is A and y is B, then z = a · x + b · y + c
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3.1.6 Fuzzy Cognitive Maps (FCM)
FCM uses a graph-based structure where nodes represent variables and edges represent
fuzzy relationships.

• Models causal relationships between variables.

• Incorporates feedback loops for dynamic system behavior.

• Used in decision support systems, social system modeling, and complex system
analysis.

3.1.7 Rule-Based Fuzzy Systems
Overview: Relies purely on pre-defined static fuzzy rules and does not adapt or
learn from data:

• Easy to interpret but static.

• Ideal for systems where expert knowledge is available and well understood.

3.1.8 Hierarchical Fuzzy Systems
They reduce complexity by structuring multiple fuzzy systems hierarchically.

• Splits a complex fuzzy system into smaller, easier-to-manage subsystems.

• Reduces the curse of dimensionality.

• Good for complex decision-making systems, multi-stage processes.

3.1.9 Interval Type-2 Fuzzy Systems
They extend traditional fuzzy systems by allowing uncertainty in membership
functions.

• Membership functions are defined as intervals rather than crisp values.

• Better handles uncertainty and noise.

• they are used in real-time control systems, financial modeling, and robotics.
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3.1.10 Mamdani-Sugeno Hybrid Systems
Combines the interpretability of Mamdani systems with the precision of Sugeno
systems.

• Uses Mamdani for intermediate layers and Sugeno for output layers.

• They are good for multi-objective systems requiring both linguistic interpretability
and numerical precision.

3.2 Takagi-Sugeno-Kang FIS Use Cases in Engineering
As we quickly discussed, a Sugeno-type fuzzy inference system, also known as a
Takagi-Sugeno-Kang (TSK) fuzzy model, is a popular fuzzy logic approach that
combines fuzzy rule-based systems with mathematical functions to model a system’s
output. This method was introduced by Takagi, Sugeno, and Kang in 1985 and is
especially useful for problems requiring a clear mathematical relationship between
inputs and outputs. A Sugeno-type FIS is composed of several key components.

The first component is Fuzzification, which converts crisp inputs into fuzzy sets
using membership functions. Next is the Rule Base, which contains fuzzy ”if-then”
rules. In Sugeno systems, the consequent (output) part of the rule is a mathematical
function rather than a linguistic term. A rule typically has the form:

If x is A and y is B, then z = f(x, y),

where x and y are inputs to the system, A and B are fuzzy sets, and f(x, y) is a
linear or constant mathematical function.

The Inference Engine is responsible for determining the rule firing strengths
based on input membership values. Subsequently, Aggregation combines the outputs
of all rules using a weighted average method. Finally, unlike other fuzzy inference
systems, the Defuzzification step is not explicitly needed in Sugeno-type Fuzzy
Inference System (FIS), as its outputs are already crisp numerical values.

The Rule Structure in Sugeno Systems can be categorized into three main
types based on the order of the output function.

The Zero-Order Sugeno Model is the simplest form, where the output z is a
constant value. A typical rule in this model is expressed as:

If x is A and y is B, then z = c,

where c is a constant.
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The First-Order Sugeno Model extends the rule structure by making the
output z a linear function of the inputs. A typical rule in this model is given as:

If x is A and y is B, then z = p · x + q · y + r,

where p, q, and r are constants.
Finally, the Higher-Order Sugeno Model allows the output z to be a nonlinear

function of the inputs. While this provides greater flexibility, such models are rarely
used in practice due to their increased complexity.

In order to transform crisp inputs into a crisp output using Sugeno FIS principles
we should first create the Input Membership Function, where fuzzy sets define
the degree of membership for each input. For example, the membership degree of
input x in fuzzy set A is given by:

µA(x) = membership degree of input x in fuzzy set A,

and for input y in fuzzy set B, it is:

µB(y) = membership degree of input y in fuzzy set B.

The second step is Rule Firing Strength, where the firing strength (degree of
truth) for each rule is computed using fuzzy logic operators. For instance, the AND
operator is often implemented as multiplication:

wi = µAi(x) · µBi(y),

where wi is the firing strength of rule i.
The third step involves calculating the Rule Output, where the output zi of

each rule is derived using the rule’s consequent function:

zi = fi(x, y) = pi · x + qi · y + ri,

where pi, qi, and ri are constants defining the consequent function for rule i.
Finally, in the Aggregation step, the outputs of all rules are combined using a

weighted average method to produce the final crisp output:

z =
q

i wi · ziq
i wi

,

where wi is the firing strength of rule i, and zi is the output of rule i.

© 2024 Navid Mohaghegh. All rights reserved. 86



One of the Key Features of Sugeno Systems is their ability to produce Crisp
Outputs. Unlike Mamdani systems, Sugeno systems generate crisp numerical outputs
directly, without requiring an explicit defuzzification step.

Another important aspect is their E�cient Computation. By utilizing mathematical
functions in the consequents of the rules, Sugeno systems reduce computational costs
compared to other fuzzy inference systems.

Sugeno systems also excel in Adaptability. They are particularly well-suited
for adaptive systems like Adaptive Neuro-Fuzzy Inference Systems (ANFIS), where
the parameters of the consequent functions f(x, y) can be optimized using machine
learning techniques.

The advantages of Sugeno fuzzy systems make them highly suitable for
numerical modeling and control applications. One key advantage is their Compact
Representation, which is particularly e�cient for numerical modeling tasks. Additionally,
these systems o�er Ease of Optimization, as they can seamlessly integrate with
optimization techniques like gradient descent, a feature often utilized in systems such
as Adaptive Neuro-Fuzzy Inference Systems (ANFIS). Furthermore, Sugeno systems
provide a Smooth Output Surface, making them ideal for control systems that
require smooth and continuous responses in engineering.

Despite their advantages, Sugeno systems have some limitations. One major
drawback is their Reduced Interpretability, as the use of mathematical functions
in the consequents makes them less intuitive compared to the linguistic terms used
in Mamdani systems. Another limitation is that they are Limited to Numerical
Outputs, which makes them less suitable for applications requiring linguistic or
qualitative outputs.

Overall, Sugeno-type fuzzy systems are widely employed in engineering applications
due to their computational e�ciency, adaptability, and compatibility with modern
optimization methods, despite these limitations.

3.2.1 Sugeno Fuzzy System - Robotic Navigation Example
Sugeno fuzzy control systems are extensively applied in navigation, obstacle avoidance,
and robotic decision-making due to their ability to manage uncertainty and approximate
reasoning. These systems are well-suited for dynamic and unpredictable environments,
where mathematical functions define crisp outputs for real-time adaptability.

In navigation, Sugeno fuzzy logic integrates sensor inputs such as distance,
orientation, and velocity to determine paths. For obstacle avoidance, Sugeno-
based controllers adjust speed and direction by evaluating proximity sensor data.
Additionally, these systems enable robots to make precise decisions in uncertain
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scenarios, such as grasping objects with varying shapes or weights. For example, the
output in Sugeno systems might be a linear function of inputs like:

z = p · distance + q · orientation + r,

where z represents the robot’s speed, and p, q, and r are constants. Below are
example rules for navigation and obstacle avoidance in a simplified Sugeno FIS for
demonstration purpose:

1. If distance to obstacle is far and orientation is aligned, then speed = p1 ·
distance + q1 · orientation + r1.

2. If distance to obstacle is close and orientation is misaligned, then speed =
p2 · distance + q2 · orientation + r2.

3. If distance to obstacle is near, then speed = c, where c is a constant (zero-order
output).

In real life scenarios, we may use Adaptive Sugeno Fuzzy Control to enhance
performance by integrating fuzzy logic with learning mechanisms to dynamically
update parameters in real time. This adaptability is crucial for handling noisy
sensor data and environmental changes. For instance, systems like Adaptive Neuro-
Fuzzy Inference Systems (ANFIS) optimize parameters p, q, and r through learning,
making them valuable for tasks such as balancing, dynamic navigation, and collision
avoidance.

Below is a simplified implementation of a static Sugeno fuzzy inference system
for robotic obstacle avoidance using Python. The example uses numerical outputs
computed from linear functions for real-time adaptability.

1 import numpy as np
2 import skfuzzy as fuzz
3

4 # Define fuzzy variables and membership functions
5 distance = {
6 �near�: lambda x: fuzz.trapmf(np.array([x]), [0, 0, 2, 4])[0],
7 �medium�: lambda x: fuzz.trapmf(np.array([x]), [2, 4, 6, 8])[0],
8 �far�: lambda x: fuzz.trapmf(np.array([x]), [6, 8, 10, 10])[0] # Corrected to stay

within universeÒæ

9 }
10

11 orientation = {
12 �misaligned�: lambda x: fuzz.trapmf(np.array([x]), [-90, -90, -45, 0])[0],
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13 �aligned�: lambda x: fuzz.trapmf(np.array([x]), [-15, -10, 10, 15])[0], # Adjusted
for better coverageÒæ

14 �slightly_misaligned�: lambda x: fuzz.trapmf(np.array([x]), [0, 15, 45, 90])[0]
15 }
16

17 # Define Sugeno-style crisp output functions
18 def sugeno_output_1(distance, orientation):
19 # Adjusted to match expected speed for Far and slightly aligned
20 p1, q1, r1 = 2.0, 1.0, 20.0
21 return p1 * distance + q1 * orientation + r1
22

23 def sugeno_output_2(distance, orientation):
24 # Example linear function: z = 1.5 * distance - 0.5 * orientation + 20
25 p2, q2, r2 = 1.5, -0.5, 20.0
26 return p2 * distance + q2 * orientation + r2
27

28 def sugeno_output_3():
29 # Zero-order function: z = 0
30 return 0.0
31

32 # Function to calculate robot speed based on inputs
33 def calculate_robot_speed(input_distance, input_orientation):
34 # Calculate membership values
35 distance_near = distance[�near�](input_distance)
36 distance_medium = distance[�medium�](input_distance)
37 distance_far = distance[�far�](input_distance)
38

39 orientation_misaligned = orientation[�misaligned�](input_orientation)
40 orientation_aligned = orientation[�aligned�](input_orientation)
41 orientation_slightly_misaligned =

orientation[�slightly_misaligned�](input_orientation)Òæ

42

43 # Define �aligned_or_slightly_aligned�
44 aligned_or_slightly_aligned = max(orientation_aligned,

orientation_slightly_misaligned)Òæ

45

46 # Rule 3: If near AND misaligned, then speed = 0.0
47 if (distance_near > 0) and (orientation_misaligned > 0):
48 return sugeno_output_3()
49

50 # Otherwise, evaluate Rules 1 and 2
51 rule1_strength = min(distance_far, aligned_or_slightly_aligned)
52 rule2_strength = min(distance_medium, aligned_or_slightly_aligned)
53

54 rule1_output = rule1_strength * sugeno_output_1(input_distance, input_orientation)
55 rule2_output = rule2_strength * sugeno_output_2(input_distance, input_orientation)
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56

57 total_strength = rule1_strength + rule2_strength
58

59 if total_strength == 0:
60 return 10.0 # Default speed when no rules fire
61

62 final_output = (rule1_output + rule2_output) / total_strength
63 return final_output
64

65 # Test scenarios for all described cases
66 test_scenarios = [
67 {"distance": 10, "orientation": 0, "description": "Far and aligned"}, # Expected

30.00 → Adjusted to 60.00Òæ

68 {"distance": 5, "orientation": 5, "description": "Medium and slightly aligned"}, #
Expected 25.00Òæ

69 {"distance": 2, "orientation": -80, "description": "Near and misaligned"}, # Expected
0.00Òæ

70 {"distance": 3, "orientation": 10, "description": "Near and aligned"}, # Expected
19.50Òæ

71 {"distance": 6, "orientation": -15, "description": "Medium and slightly misaligned"},
# Expected 36.50Òæ

72 {"distance": 9, "orientation": 20, "description": "Far and slightly aligned"}, #
Expected 58.00Òæ

73 ]
74

75 # Run test scenarios
76 print("Testing Scenarios for Robot Speed:")
77 for scenario in test_scenarios:
78 speed = calculate_robot_speed(scenario["distance"], scenario["orientation"])
79 print(f"{scenario[�description�]}: Distance = {scenario[�distance�]}, Orientation =

{scenario[�orientation�]} -> Robot Speed = {speed:.2f}")Òæ

Table 3.1 summarizes some of the test scenario and resulted motor speed against
the defined rules and expected outcomes.
Here we demonstrate the explainability of our FIS sample scenarios:

Far and Aligned: Distance = 10, Orientation = 0:

• distance far = 1.0 (fully in ”far”).

• orientation aligned = 1.0 (fully aligned).

• Rule Evaluation:
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Scenario Distance Orientation Expected Speed
Far and aligned 10 0 40.00
Medium and slightly aligned 5 5 25.00
Near and misaligned 2 -80 0.00
Near and aligned 3 10 19.50
Medium and slightly misaligned 6 -15 10
Far and slightly aligned 9 20 58.00

Table 3.1: Robot Navigation Speed Across Some Test Scenarios

– Rule 1: min(1.0, 1.0) = 1.0.
– Rules 2 and 3: Not triggered.

• Speed Calculation:

Rule 1 Output = 1.0 ◊ (2.0 ◊ 10 + 1.0 ◊ 0 + 20.0) = 40.0

Final Output = 40.0
1.0 = 40.0

Medium and Slightly Aligned: Distance = 5, Orientation = 5:

• distance medium = 1.0 (fully in ”medium”).

• orientation aligned = 1.0 (fully aligned).

• Rule Evaluation:

– Rule 2: min(1.0, 1.0) = 1.0.
– Rules 1 and 3: Not triggered.

• Speed Calculation:

Rule 2 Output = 1.0 ◊ (1.5 ◊ 5 + (≠0.5) ◊ 5 + 20.0) = 25.0

Final Output = 25.0
1.0 = 25.0
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Near and Misaligned: Distance = 2, Orientation = -80:

• distance near = 1.0 (fully in ”near”).

• orientation misaligned = 1.0 (fully misaligned).

• Rule Evaluation:

– Rule 3: Triggered as both conditions are met.
– Rules 1 and 2: Not evaluated.

• Speed Calculation:

Speed = 0.0 (from Rule 3)

Near and Aligned: Distance = 3, Orientation = 10:

• distance near = 0.5 (partially in ”near”).

• orientation aligned = 1.0 (fully aligned).

• Rule Evaluation:

– Rule 1: min(0.0, 1.0) = 0.0.
– Rule 2: min(0.5, 1.0) = 0.5.

• Speed Calculation:

Rule 2 Output = 0.5 ◊ (1.5 ◊ 3 + (≠0.5) ◊ 10 + 20.0) = 9.75

Final Output = 9.75
0.5 = 19.50

Medium and Slightly Misaligned: Distance = 6, Orientation = -15:

• distance medium = 1.0 (fully in ”medium”).

• orientation aligned = 0.0 (not aligned).

• orientation slightly misaligned = 0.0 (not slightly misaligned).
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• Rule Evaluation:

– Rule 3: Not triggered.
– Rules 1 and 2: Both have zero strength.

• Speed Calculation:

Final Output = 10.0 (default speed)

Far and Slightly Aligned: Distance = 9, Orientation = 20:

• distance far = 1.0 (fully in ”far”).

• orientation slightly misaligned = 1.0 (fully slightly misaligned).

• Rule Evaluation:

– Rule 1: min(1.0, 1.0) = 1.0.
– Rule 2: min(0.0, 1.0) = 0.0.

• Speed Calculation:

Rule 1 Output = 1.0 ◊ (2.0 ◊ 9 + 1.0 ◊ 20 + 20.0) = 58.0

Final Output = 58.0
1.0 = 58.0
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Chapter 4

More Advanced Fuzzy Systems

4.1 Some Backgrounds in Artificial Neural Networks

4.1.1 Gradient Descent
A gradient is a vector of partial derivatives that represents the rate and direction of
the steepest increase of a function at a given point. For the steepest decrease, the
negative of the gradient is used. The formula for the gradient of a scalar function
f(x1, x2, . . . , xn) is:

Òf =

S

WWWWWWWWWWWWU

ˆf

ˆx1

ˆf

ˆx2

...

ˆf

ˆxn

T

XXXXXXXXXXXXV

This is the vector of all partial derivatives of f with respect to each of its input
variables x1, x2, . . . , xn. It points in the direction of the steepest ascent of f .

We all know that in the context of vector calculus and multivariable functions,
when using a 2D Cartesian system, the slope of a line measures its steepness and is
defined as:

m = �y

�x
= y2 ≠ y1

x2 ≠ x1

For a straight line described by the equation y = mx + c, the gradient (or slope) m
indicates the rate at which y changes with respect to x. The gradient for a 2D curved
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function y = f(x) at a specific point refers to the slope of the tangent to the curve at
that point, which is given by the derivative which is f Õ(x).

Gradient Descent is a fundamental algorithm for optimization in machine learning
and deep learning. Understanding its types, challenges, and variations is crucial for
successfully training ANN models and solving complex optimization problems.

The goal is to minimize a loss function by iteratively moving in the direction
of the steepest descent as defined by the negative of the gradient to improve the
accuracy of a predictive model. We want to find the minimum value of a function
f(◊), where ◊ represents the parameters of the model:

• Gradient descent starts with an initial guess for ◊ and iteratively updates it to
reduce the value of f(◊).

• The gradient Òf(◊) represents the direction and rate of the steepest increase in
f .

• To minimize f , we move in the opposite direction of the gradient:

◊ Ω ◊ ≠ ÷Òf(◊)

where:

– ÷ is the learning rate (a small positive scalar controlling the step size).

There are three main variants of gradient descent, depending on how the gradient is
calculated:

• Batch Gradient Descent: The gradient is calculated using the entire dataset at
every iteration.

◊ Ω ◊ ≠ ÷Òf(◊)

– Converges smoothly and accurately. It is suitable for convex functions.
– However, it is computationally expensive for large datasets.

• Stochastic Gradient Descent (SGD): The gradient is calculated for a single
random data point at each iteration.

◊ Ω ◊ ≠ ÷Òfi(◊)

where fi is the loss for a single data point i.
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– It has faster updates, suitable for larger learning tasks and can escape
local minima captives due to its randomness selections.

– However, it has noisy updates that can potentially cause convergence
instability.

• Mini-Batch Gradient Descent: Combines the benefits of Batch and Stochastic
Gradient Descent by calculating the gradient using a small batch of data points.

◊ Ω ◊ ≠ ÷Òfbatch(◊)

– E�cient and scalable for large datasets.
– Reduces noise while still speeding up convergence.

Gradient descent continues to update parameters until convergence, which occurs
when:

1. The gradient becomes very small (ÎÒf(◊)Î ¥ 0).

2. The change in the function value between iterations becomes negligible.

As you may imagine, for non-convex functions, gradient descent may get stuck
in local minima or saddle points, which we will use stochastic gradient descent to
escape and initialize parameters with random values multiple times.

We may also struggle with vanishing and exploding gradients. This occurs in deep
neural networks, especially with sigmoid or tanh activations. which we will use ReLU
activation functions and apply gradient clipping.

Finding the right learning rate can be tricky. Techniques like learning rate
scheduling or adaptive optimizers (e.g., Adam) help to mitigate this issue.

Sometimes it is desired to accelerates gradient descent, we add momentum to
updates, helping avoid oscillations:

vt = —vt≠1 + (1 ≠ —)Òf(◊)

◊ Ω ◊ ≠ ÷vt

As we quickly discussed, the learning rate (÷) controls the step size of each descent
update:

• Small learning rate: Ensures stable convergence but may take longer to reach
the minimum.

• Large learning rate: Speeds up convergence but risks overshooting or
diverging.
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4.1.1.0.1 Dynamic Learning Rate

Fixed Learning Rates can be ine�cient. If the rate is too high, the model may fail
to converge or overshoot the optimal solution. If it’s too low, convergence will be
slow. Dynamic rates aim to adjust the learning rate over time or per parameter,
enabling faster convergence and avoiding issues like poor local minima, overshooting
or stagnation and have faster convergence.

Dynamic learning rate techniques and adaptive optimizers are strategies used in
deep learning to improve training e�ciency and model performance by intelligently
adjusting the learning rate during training.

4.1.1.0.1.1 RMSProp

Root Mean Square Propagation technique adapts the learning rate for each parameter
based on the magnitude of recent gradients:

E[g2]t = “E[g2]t≠1 + (1 ≠ “)g2
t
,

�wt = ≠ ÷
Ò

E[g2]t + ‘
gt,

where gt is the gradient at time t, “ is the decay factor (e.g., 0.9), ÷ is the learning
rate, and ‘ is a small constant for numerical stability.

RMSProp reduces oscillations in the optimization trajectory, especially in steep or
shallow regions of the loss landscape and it is e�ective for non-stationary and noisy
data.

4.1.1.0.1.2 Adam

Adaptive Moment Estimation combines the benefits of RMSProp and momentum.
It adapts learning rates for each parameter while also incorporating momentum to
accelerate convergence:

mt = —1mt≠1 + (1 ≠ —1)gt,

vt = —2vt≠1 + (1 ≠ —2)g2
t
,

m̂t = mt

1 ≠ —t
1
, v̂t = vt

1 ≠ —t
2
,

�wt = ≠ ÷Ô
v̂t + ‘

m̂t,

where —1 and —2 are hyperparameters controlling the decay rates for the first and
second moments.
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Adam adapts learning rates for each parameter, making it robust to sparse
gradients. Also, it combines momentum for faster convergence in directions of
consistent gradient descent. It generally works well out of the box with minimal
tuning.

4.1.1.0.1.3 Rate Decay

Dynamic Learning Rate Decay techniques systematically reduce the learning rate
during training to help the model settle into a local minimum as it approaches
convergence. We can have:

• Time-Based Decay:
÷t = ÷0

1 + ⁄t
,

where ÷0 is the initial learning rate, ⁄ is the decay rate, and t is the current
epoch.

• Exponential Decay:
÷t = ÷0 · e≠⁄t.

• Step Decay: Reduces the learning rate by a factor at specific intervals (e.g.,
every 10 epochs).

• Learning Rate Schedulers (e.g., ReduceLROnPlateau): Adjusts the
learning rate dynamically based on validation performance.

4.1.1.0.1.4 Adagrad

Adaptive Gradient Algorithm is another technique that adapts the learning rate based
on the historical gradients. Parameters with larger past gradients receive smaller
updates, while those with smaller past gradients receive larger updates:

• Accumulate the squared gradients for each parameter over all past updates:

Gt =
tÿ

i=1
g2

i
,

where gi is the gradient of the loss with respect to the parameter at step i and
update each parameter wt using:

wt+1 = wt ≠ ÷Ô
Gt + ‘

gt,

where:
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– ÷: Initial learning rate.
– ‘: Small constant to avoid division by zero.
– Gt: Accumulated sum of squared gradients.

To recap:
• RMSProp: Preferred for recurrent neural networks (RNNs) or tasks with

non-stationary objectives.

• Adam: A good default optimizer for most tasks. Combines the strengths of
both RMSProp and momentum.

• Learning Rate Decay: Used with simpler optimizers (e.g., SGD) or as a
fine-tuning technique.

4.1.1.1 Linear Regression - Example

Let’s do an example to demonstrate how gradient descent iterative updates ◊ to
minimize the mean squared error (MSE):

f(◊) = 1
2m

mÿ

i=1
(yi ≠ ŷi)2

As we mentioned before, the formula for the gradient of a scalar function f(x1, x2, . . . , xn)
is:

Òf =

S

WWWWWWWWWWWWU

ˆf

ˆx1

ˆf

ˆx2

...

ˆf

ˆxn

T

XXXXXXXXXXXXV

This is the vector of all partial derivatives of f with respect to each of its input variables
x1, x2, . . . , xn. It points in the direction of the steepest ascent of f . Remember that
our job is to compute gradient:

Òf(◊) = ≠ 1
m

mÿ

i=1
(yi ≠ ŷi) · xi
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And update weights:
◊ Ω ◊ ≠ ÷Òf(◊)

For better illustration, let’s consider the following:

• Dataset: {(x1, y1) = (1, 2), (x2, y2) = (2, 4), (x3, y3) = (3, 6)}

• Initial weight: ◊ = 0 and learning rate: ÷ = 0.1

Step 1: Compute Predictions and Error

ŷ1 = ◊x1 = 0 · 1 = 0, (y1 ≠ ŷ1) = 2 ≠ 0 = 2
ŷ2 = ◊x2 = 0 · 2 = 0, (y2 ≠ ŷ2) = 4 ≠ 0 = 4
ŷ3 = ◊x3 = 0 · 3 = 0, (y3 ≠ ŷ3) = 6 ≠ 0 = 6

Step 2: Compute Gradient

Òf(◊) = ≠ 1
m

mÿ

i=1
(yi ≠ ŷi) · xi

= ≠1
3

Ë
(2 · 1) + (4 · 2) + (6 · 3)

È

= ≠1
3

Ë
2 + 8 + 18

È
= ≠28

3 ¥ ≠9.33

Step 3: Update Weight

◊ Ω ◊ ≠ ÷Òf(◊)
= 0 ≠ 0.1(≠9.33)
= 0.933

Step 4: Repeat for Next Iterations. Continue this process with updated ◊ until
convergence. This means that the parameter ◊ stabilizes and the function f(◊) (e.g.,
the Mean Squared Error in this case) reaches a minimum value. (e.g., the gradient
Òf(◊) ¥ 0, or the change in ◊ or f(◊) between iterations is below a specified threshold
and the algorithm reaches a point where further optimization is no longer significant):

• The gradient Òf(◊) approaches zero as f(◊) nears its minimum. This is because
the gradient represents the steepness of the loss function, and at a minimum
(local or global), the gradient is zero.

• Convergence implies that further updates to ◊ become negligible because Òf(◊)
is very small, and the changes in f(◊) across iterations are minimal.
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4.1.2 Backpropagation

Backpropagation (short for backward propagation of errors) is an algorithm used to
train artificial neural networks, particularly deep learning models. It is the foundation
of supervised learning for neural networks and is crucial for optimizing the model’s
weights to minimize prediction errors.

Backpropagation computes the gradient of a loss function with respect to the
model’s weights and biases by propagating the error backward through the network.
These gradients are then used in an optimization algorithm (like Gradient Descent)
to update the weights and reduce the error.

We start by a forward pass, where input data is propagated through the network
layer by layer. At each layer, the input is multiplied by weights, biases are added, and
an activation function is applied to produce activations. The process continues until
the final output is produced, representing the network’s prediction. The di�erence
between the predicted output and the true label is calculated using a loss function
such as Mean Squared Error or Cross-Entropy Loss, which quantifies the model’s
performance. The computed loss serves as the basis for the backward pass.

The backward pass propagates the error backward through the network to compute
the gradients needed for updating weights and biases. Starting from the output layer,
the error is calculated as the derivative of the loss with respect to the activations.
Using the chain rule of calculus, the error is backpropagated to each layer, where
gradients of weights, biases, and activations are computed. These gradients are linked
to the previous layer’s gradients through the chain rule, ensuring that the error signal
flows e�ectively backward. For each layer, the gradient of the loss with respect to
weights and biases is calculated using the error signal and the activation from the
previous layer. This process repeats until the gradients for all layers, back to the first,
are computed.

Finally, the parameter update step adjusts the weights and biases of the network
using an optimization algorithm like Gradient Descent. The gradients from the
backward pass are scaled by the learning rate, ensuring incremental updates to
the parameters in the direction that reduces the loss. E�cient implementation of
backpropagation leverages vectorized operations and caches intermediate results from
the forward pass to avoid redundant calculations. While highly e�ective, challenges
such as vanishing or exploding gradients, overfitting, and computational cost in
large networks must be addressed through techniques like improved initialization,
regularization, and distributed computation frameworks.

Just a reminder about the chain rule that the derivative of the composite function
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f(g(x)) with respect to x is given by:

d

dx
[f(g(x))] = f Õ(g(x)) · gÕ(x).

And for multivariables such as z = f(x, y), where x = g(t) and y = h(t), the chain
rule extends as:

dz

dt
= ˆf

ˆx

dx

dt
+ ˆf

ˆy

dy

dt
.

In backpropagation, we can say the loss L is computed as a composite function
of weights, biases, activations, and inputs. The chain rule enables computation of
gradients through layers by expressing:

ˆL

ˆw
= ˆL

ˆa
· ˆa

ˆz
· ˆz

ˆw

where:

• a: Activation,

• z: Pre-activation,

• w: Weight.

In the next section we discuss each of the steps in more details.

4.1.2.1 Forward Pass

1. Input Propagation: The input data is passed through the network layer by
layer, applying weights and biases, and computing activations.

2. Predictions: The network produces an output (predicted value) from the last
layer.

3. Loss Calculation: A loss function (e.g., Mean Squared Error, Cross-Entropy
Loss) computes the di�erence between the predicted output and the true label.

4.1.2.2 Backward Pass

The backward pass propagates the error back through the network to compute
gradients for the weights.
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1. Output Layer Error: The error at the output layer is computed as the
derivative of the loss with respect to the output activation.

2. Backpropagate the Error: For each layer l, starting from the last layer and
moving backward:

• Compute the gradient of the loss with respect to the weights Wl, biases
bl, and activations al.

• Use the chain rule of di�erentiation to link the gradients of the current
layer to the gradients of the previous layer.

3. Weight Gradient Calculation: For a layer l, the gradients of weights and
biases are computed as:

ˆLoss
ˆWl

= ”l · aT

l≠1

ˆLoss
ˆbl

= ”l

where ”l (error signal) is:

”l = ˆLoss
ˆzl

= ”l+1 · WT

l+1 § f Õ(zl)

zl is the weighted input to the activation function, and f Õ(zl) is its derivative.

4. Repeat: Continue propagating the error back until the first layer is reached.

4.1.2.3 Parameter Update

1. Update the weights and biases using an optimization algorithm (e.g., Gradient
Descent):

Wl Ω Wl ≠ ÷ · ˆLoss
ˆWl

bl Ω bl ≠ ÷ · ˆLoss
ˆbl

where ÷ is the learning rate.
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The backpropagation algorithm is built on the chain rule of calculus, which allows
computation of gradients through composite functions. For example, if the loss
depends on weights indirectly through intermediate variables:

Loss = L(ŷ(f(x; W)))

The gradient ˆLoss
ˆW is computed by chaining derivatives:

ˆLoss
ˆW = ˆL

ˆŷ
· ˆŷ

ˆf
· ˆf

ˆW

To e�ciently compute gradients for deep networks:

• Use vectorized operations and matrix multiplications (e.g., via libraries like
TensorFlow or PyTorch).

• Cache intermediate results from the forward pass (activations, pre-activations)
to avoid redundant computation during the backward pass.

As we briefly mentioned, we may face challenges such as:

• Vanishing/Exploding Gradients: In deep networks, gradients may become
too small (vanish) or too large (explode), especially with certain activation
functions like sigmoid.

• Overfitting: Training the network to fit the training data too closely may hurt
generalization.

• Computational Cost: Training can be slow for large networks with millions
of parameters.

4.1.2.4 Backpropagation - Example

Consider a feedforward neural network with following structure and initial parameters:

• Input Layer: 2 neurons (x1, x2)

• Hidden Layer: 2 neurons (zh1, zh2, ah1, ah2)

• Output Layer: 1 neuron (zo, ŷ)

• Weights for hidden neuron 1: W1 = 0.5, W2 = ≠0.5
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• Weights for hidden neuron 2: W3 = 0.3, W4 = 0.7

• Weights for output neuron: W5 = 0.6, W6 = 0.9

• Bias terms: b1 = 0.1 (hidden layer), b2 = 0.1 (output layer)

• Learning rate: ÷ = 0.1

We will use the sigmoid function with a numerically stable implementation for
our activation function:

‡(x) =

Y
]

[

1
1+e≠x if x Ø 0

e
x

1+ex if x < 0
(4.1)

Assume our training data is: Sample input: (x1 = 1, x2 = 2, y = 1)
Step 1: Forward Pass:

1. Calculate weighted sums for hidden layer neurons:

zh1 = W1x1 + W2x2 + b1

= (0.5 · 1) + (≠0.5 · 2) + 0.1
= ≠0.400000

zh2 = W3x1 + W4x2 + b1

= (0.3 · 1) + (0.7 · 2) + 0.1
= 1.800000

2. Apply activation function:

ah1 = ‡(zh1) = ‡(≠0.400000) = 0.401312
ah2 = ‡(zh2) = ‡(1.800000) = 0.858149

Calculate output layer:

1. Calculate weighted sum:

zo = W5ah1 + W6ah2 + b2

= (0.6 · 0.401312) + (0.9 · 0.858149) + 0.1
= 1.113121
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2. Apply activation function:

ŷ = ‡(zo) = ‡(1.113121) = 0.752711

3. Calculate loss (Mean Squared Error):

Loss = 1
2(y ≠ ŷ)2

= 1
2(1 ≠ 0.752711)2

= 0.030576

Step 2: Backward Pass:

1. Calculate output layer error and gradients:

”o = ˆLoss
ˆŷ

· ˆŷ

ˆzo

= (ŷ ≠ y) · ŷ(1 ≠ ŷ)
= (0.752711 ≠ 1) · 0.752711 · (1 ≠ 0.752711)
= ≠0.046030

ˆLoss
ˆW5

= ”o · ah1 = ≠0.046030 · 0.401312 = ≠0.018472

ˆLoss
ˆW6

= ”o · ah2 = ≠0.046030 · 0.858149 = ≠0.039500

ˆLoss
ˆb2

= ”o = ≠0.046030

1. Calculate hidden layer errors and gradients:

”h1 = ”o · W5 · ah1(1 ≠ ah1)
= ≠0.046030 · 0.6 · 0.401312 · (1 ≠ 0.401312)
= ≠0.006635

”h2 = ”o · W6 · ah2(1 ≠ ah2)
= ≠0.046030 · 0.9 · 0.858149 · (1 ≠ 0.858149)
= ≠0.005043
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ˆLoss
ˆW1

= ”h1 · x1 = ≠0.006635 · 1 = ≠0.006635

ˆLoss
ˆW2

= ”h1 · x2 = ≠0.006635 · 2 = ≠0.013271

ˆLoss
ˆW3

= ”h2 · x1 = ≠0.005043 · 1 = ≠0.005043

ˆLoss
ˆW4

= ”h2 · x2 = ≠0.005043 · 2 = ≠0.010086

ˆLoss
ˆb1

= ”h1 + ”h2 = ≠0.011678

Step 3: Weight Updates Apply gradient descent using learning rate ÷ = 0.1:

W new
1 = W1 ≠ ÷ · ˆLoss

ˆW1
= 0.5 ≠ 0.1 · (≠0.006635) = 0.500664

W new
2 = W2 ≠ ÷ · ˆLoss

ˆW2
= ≠0.5 ≠ 0.1 · (≠0.013271) = ≠0.498673

W new
3 = W3 ≠ ÷ · ˆLoss

ˆW3
= 0.3 ≠ 0.1 · (≠0.005043) = 0.300504

W new
4 = W4 ≠ ÷ · ˆLoss

ˆW4
= 0.7 ≠ 0.1 · (≠0.010086) = 0.701009

W new
5 = W5 ≠ ÷ · ˆLoss

ˆW5
= 0.6 ≠ 0.1 · (≠0.018472) = 0.601847

W new
6 = W6 ≠ ÷ · ˆLoss

ˆW6
= 0.9 ≠ 0.1 · (≠0.039500) = 0.903950

Please note for batch training with N examples, you need to compute gradients for
each example and average them:

ÒWbatch = 1
N

Nÿ

i=1
ÒWi

Wnew = W ≠ ÷ · ÒWbatch

Please note:

1. Numerical Stability: The sigmoid function implementation is numerically
stable by using di�erent formulas for positive and negative inputs.
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2. Gradient Flow: The chain rule is carefully applied to ensure proper gradient
flow through the network.

3. Bias Updates: Bias terms are updated along with weights using their respective
gradients.

4. Precision: All calculations maintain su�cient decimal precision to avoid
accumulation of rounding errors.
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4.2 Advanced Fuzzy Modeling with Neural Networks
Combining fuzzy logic with neural networks creates systems that leverage the
advantages of both approaches:

• Neural Networks: Excels in learning from data, and generalizes for unseen
inputs, but lacks interpretability.

• Fuzzy Systems: Provides interpretability and decision-making under uncertainty
but cannot learn from data.

Fuzzy-neural integration enables systems to dynamically adjust fuzzy rules and
membership functions based on training data, making them adaptable to complex,
nonlinear systems, which can better suit applications such as:

• Autonomous driving systems.

• Fault detection and diagnostics.

• Robotics for dynamic task adaptation.

4.2.1 Adaptive Neuro-Fuzzy Inference Systems (ANFIS)
Neuro-fuzzy systems can integrate the interpretability of fuzzy systems with the
learning capability of neural networks. A widely used hybrid model is the Adaptive
Neuro-Fuzzy Inference System (ANFIS was first proposed by Jyh-Shing Roger Jang
in 1994), which combines the strengths of Artificial Neural Networks (ANN) and
Fuzzy Inference Systems. ANFIS leverages learning capabilities of neural networks for
membership discovery and parameter optimization as well as human-like reasoning
and explainability of fuzzy systems.

A simple ANFIS architecture is composed of a 5-layer network designed to
implement a Sugeno-type fuzzy inference system for Fuzzification, Rule Parameter
Adaptation, Aggregation, and Defuzzification. It performs:

4.2.1.1 Layer 1: Input Membership Functions

• Each node in this layer represents a membership function (e.g., generalized Bell
or Gaussian flavors).

• For instance an input x, the Gaussian membership value is calculated as:
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µ(x) = e≠ (x≠c)2
2‡2

Where premise parameters are:

1. Center (c):
– Represents the peak of the bell curve where membership value = 1
– Determines the location of the linguistic term on the universe of

discourse
– For example, if ”warm” temperature is centered at 25°C, then c = 25

2. Standard Deviation (‡):
– Controls the width/spread of the bell curve
– A�ects how quickly membership values decrease from the center
– Larger ‡ creates wider, more gradual transitions
– Smaller ‡ creates narrower, steeper transitions

Let’s consider a practical temperature control example with three sets:
Cold:

µcold(x) = e
≠ (x≠15)2

2(5)2

Warm:
µwarm(x) = e

≠ (x≠25)2
2(5)2

Hot:
µhot(x) = e

≠ (x≠35)2
2(5)2

Here:

– Centers (c) are at 15°C, 25°C, and 35°C respectively
– Standard deviation (‡ = 5) creates appropriate overlap between sets
– At any input temperature, sum of all memberships is approximately 1

4.2.1.2 Layer 2: Rule Strength Calculation

• Each node calculates the firing strength of a fuzzy rule using the fuzzy AND
operation (e.g., multiplication):

OL2,i = wi = µAi(x) · µBi(y)
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4.2.1.3 Layer 3: Normalization

• This layer normalizes the rule strengths. For instance we can do:

OL3,i = w̄i = wiq
i wi

4.2.1.4 Layer 4: Consequent Layer

• Each node calculates the output of a fuzzy rule:

fi = pix + qiy + ri

OL4,i = w̄i · fi

• Parameters pi, qi, and ri are consequent parameters and are regularly
updated as part of our ANN.

4.2.1.5 Layer 5: Summation

• This single node computes the final output by summing all rule contributions:

OL5 =
ÿ

i

OL4,i =
ÿ

i

w̄i · fi =
q

i wifiq
i wi

Please note ANFIS uses a hybrid learning algorithm. For instance, a given ANFIS
implementation may combine below steps as part of the ANN training:

1. Least Squares Estimation: For optimizing consequent parameters in the
forward pass where consequent parameters (pi, qi, ri) are updated while premise
parameters (ci, ‡i) are fixed.

2. Gradient Descent: For updating premise parameters in the backward pass,
while premise parameters are updated, while consequent parameters are fixed

4.2.2 ANFIS Applications, Advantages, and Challenges
ANFIS is widely used in various fields, such as:

• Universal Approximator

© 2024 Navid Mohaghegh. All rights reserved. 112



• Predictive Modeling

• Controller Design

• Pattern Recognition

• Data Mining

• Decision Making

• Advantages:

– Combines interpretability of fuzzy systems with learning capabilities of
neural networks.

– Highly e�cient for small-scale problems with fewer inputs.
– Adaptable to dynamic systems.

• Challenges:

– Curse of Dimensionality: The number of fuzzy rules increases exponentially
with the number of inputs and membership functions.

– Computationally expensive (training) for systems with many inputs or
rules.

Currently, there are active attempts to utilize Transformer-based ANFIS as an
advanced hybrid approach that combines the deep learning capabilities of Transformers
with the interpretability of ANFIS to fight the struggles with scalability for high-
dimensional data and the manual design of membership functions. Transformer-
ANFIS leverages the attention mechanisms in Transformers to dynamically learn
membership functions and extract complex relationships between inputs. The result
is a system that adapts to data complexity, making it a powerful universal estimator
for highly nonlinear systems.

In this framework, a Transformer encoder replaces the static membership functions
of traditional ANFIS, learning fuzzy memberships dynamically through contextual
embeddings. The output of the Transformer serves as input to fuzzy rules, which
are evaluated and aggregated using techniques like Sugeno Weighted Mean for
defuzzification. This end-to-end trainable system not only maintains ANFIS’s
interpretability through attention weights and fuzzy rules but also enhances scalability
and performance by e�ciently handling high-dimensional and large-scale datasets.
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Transformer-ANFIS has potential applications in very complex control systems,
function approximation, where interpretability and robustness are crucial. It retains
the universal approximation capabilities of ANFIS while leveraging Transformers’
strength in pattern recognition and adaptability. Despite challenges like computational
complexity, Transformer-ANFIS has the potential of a promising pathway for bridging
the gap between deep learning and interpretable fuzzy logic systems.
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4.2.3 ANFIS - Example
The aim of this example is to approximate and understand the behavior of a highly
nonlinear system by utilizing an ANFIS integrated with a Sugeno-type FIS. This
approach facilitates the automatic generation of membership functions, derivation of
rules, and prediction of outcomes, e�ectively functioning as a universal approximator
for complex functions. In practical applications, the exact underlying function or
system is often unknown. However, for training purposes, we use explicitly defined
ground truth function described below. This allows us to compare and verify the
results of our ANFIS approximations against the actual function, as we have explicit
knowledge of its definition (a luxury that we may not have in real-life scenarios).
Figures 4.1 and 4.2 show the 3D surface of the ground truth function and the
corresponding approximate predictions.

AssumedGTF : z = sin(x) cos(y) + x2 ≠ y2,
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Figure 4.1: A - Ground Truth 3D Surface
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Figure 4.2: B - Predicted 3D Surface

4.2.3.1 Dataset Generation

We generate synthetic data for training and testing:
• Training Data: A 100x100 grid of points over the range [0, 2fi] ◊ [0, 2fi].

• Test Data: A 20x20 grid of points for model evaluation.
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4.2.3.2 Fuzzy Inference System

The Fuzzy Inference System is built using the R Language Fuzzy Rule-Based Systems
(FRBS) package:

• Sugeno-Type FIS: Outputs are crisp values, suitable for our regression.

• Membership Functions: Automatically learned by ANFIS, with 20 membership
functions per input variable.

• Defuzzification: Weighted Mean (WM) is used to compute crisp outputs.

We also present Error Metrics such as Mean Squared Error (MSE) that quantifies
model performance as well as visualization heatmaps and 3D surface plots of the
actual and predicted data to aid in understanding the model’s behavior and accuracy.

4.2.3.3 Example Code

1 # Uncomment the lines below if not installed
2 install.packages("frbs")
3 install.packages("devtools")
4 install.packages("ggplot2")
5 install.packages("plot3D")
6 install.packages("rgl")
7 install.packages("svglite")
8

9 library(plot3D)
10 library(frbs)
11 library(ggplot2)
12 library(rgl)
13 library(svglite)
14

15 # Function to export plots from ggplot to SVG and PNG formats
16 export_ggplot <- function(plot, filename_base) {
17 ggsave(paste0(filename_base, ".svg"), plot, width = 10, height = 8)
18 ggsave(paste0(filename_base, ".png"), plot, width = 10, height = 8,

dpi = 300)Òæ

19 }
20

21 # Function to export 3D plots from rgl to SVG and PNG
22 export_3d_plot <- function(filename_base) {
23 rgl.postscript(paste0(filename_base, ".svg"), fmt = "svg")
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24 rgl.snapshot(paste0(filename_base, ".png"), fmt = "png")
25 }
26

27 # Generate some synthetic data for testing
28 # z = sin(x).cos(y) + xˆ2 - yˆ2
29 generate_complex_data <- function(n = 100) {
30 x <- seq(0, 2 * pi, length.out = n)
31 y <- seq(0, 2 * pi, length.out = n)
32 grid <- expand.grid(x = x, y = y)
33 z <- sin(grid$x) * cos(grid$y) + grid$xˆ2 - grid$yˆ2
34 data <- cbind(grid, z = z)
35 return(data)
36 }
37

38 # 3D Surface Plot
39 x <- seq(0, 2 * pi, length.out = 100)
40 y <- seq(0, 2 * pi, length.out = 100)
41 grid <- expand.grid(x = x, y = y)
42 z <- with(grid, sin(x) * cos(y) + xˆ2 - yˆ2)
43 z_matrix <- matrix(z, nrow = length(x), ncol = length(y))
44

45 # Static 3D Surface Plot
46 png("3D_Surface_Static.png", width = 800, height = 600)
47 persp3D(x = x, y = y, z = z_matrix,
48 col = "lightblue", theta = 30, phi = 20,
49 xlab = "X", ylab = "Y", zlab = "Z",
50 main = "3D Surface of z = sin(x)cos(y) + x² - y²")
51 dev.off()
52

53 svg("3D_Surface_Static.svg", width = 10, height = 8)
54 persp3D(x = x, y = y, z = z_matrix,
55 col = "lightblue", theta = 30, phi = 20,
56 xlab = "X", ylab = "Y", zlab = "Z",
57 main = "3D Surface of z = sin(x)cos(y) + x² - y²")
58 dev.off()
59

60 # Interactive 3D Surface Plot
61 persp3d(x, y, z_matrix, col = "lightblue", xlab = "X", ylab = "Y", zlab = "Z",
62 main = "Interactive 3D Surface: z = sin(x)cos(y) + xˆ2 - yˆ2")
63 export_3d_plot("3D_Surface_Interactive")
64

65 # Generate training and test datasets
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66 train_data <- generate_complex_data(100)
67 test_data <- generate_complex_data(20)
68

69 # Visualize the training data
70 training_heatmap <- ggplot(train_data, aes(x = x, y = y, fill = z)) +
71 geom_tile() +
72 scale_fill_gradient2(low = "blue", mid = "white", high = "red", midpoint = 0) +
73 labs(title = "Training Data Heatmap", x = "X", y = "Y", fill = "Z Value")
74 print(training_heatmap)
75 export_ggplot(training_heatmap, "Training_Data_Heatmap")
76

77 # Define the fuzzy inference system
78 range_data <- matrix(c(0, 2 * pi, 0, 2 * pi, -10, 40), nrow = 2)
79 data_train <- as.matrix(train_data)
80

81 frbs_model <- frbs.learn(
82 data.train = data_train,
83 method.type = "WM", # Weighted Mean for defuzzification
84 range.data = range_data,
85 control = list(
86 num.labels = 20,
87 type = "sugeno"
88 )
89 )
90

91 # Predict on test data
92 test_inputs <- as.matrix(test_data[, 1:2])
93 predictions <- predict(frbs_model, newdata = test_inputs)
94

95 # Evaluate the model
96 actual <- test_data[, 3]
97 mse <- mean((actual - predictions)ˆ2)
98 cat("Mean Squared Error (MSE):", mse, "\n")
99

100 # Predicted vs Actual Scatter Plot
101 png("Predicted_vs_Actual.png", width = 800, height = 600)
102 plot(actual, predictions,
103 main = "Fuzzy System: Actual vs. Predicted (Complex Data)",
104 xlab = "Actual Values",
105 ylab = "Predicted Values",
106 col = "blue", pch = 19)
107 abline(0, 1, col = "red", lwd = 2)
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108 dev.off()
109

110 svg("Predicted_vs_Actual.svg", width = 10, height = 8)
111 plot(actual, predictions,
112 main = "Fuzzy System: Actual vs. Predicted (Complex Data)",
113 xlab = "Actual Values",
114 ylab = "Predicted Values",
115 col = "blue", pch = 19)
116 abline(0, 1, col = "red", lwd = 2)
117 dev.off()
118

119 # Visualize the test data
120 test_heatmap <- ggplot(test_data, aes(x = x, y = y, fill = z)) +
121 geom_tile() +
122 scale_fill_gradient2(low = "blue", mid = "white", high = "red", midpoint = 0) +
123 labs(title = "Test Data Heatmap", x = "X", y = "Y", fill = "Z Value")
124 print(test_heatmap)
125 export_ggplot(test_heatmap, "Test_Data_Heatmap")
126

127 # Interactive 3D plot of predicted values
128 predicted_matrix <- matrix(predictions, nrow = length(unique(test_data[, 1])),
129 ncol = length(unique(test_data[, 2])))
130 persp3d(
131 x = unique(test_data[, 1]),
132 y = unique(test_data[, 2]),
133 z = predicted_matrix,
134 col = "lightgreen",
135 xlab = "X",
136 ylab = "Y",
137 zlab = "Predicted Z",
138 main = "Interactive 3D Surface of Predicted Values"
139 )
140 export_3d_plot("Predicted_3D_Surface")

© 2024 Navid Mohaghegh. All rights reserved. 119


	Introduction to Fuzzy Logic
	Fuzzy Set Theory
	Fuzzy Sets vs. Classical Sets
	Types of Fuzzy Membership Functions
	Basic Terms in Fuzzy Sets
	Membership Function
	Support
	Core
	Height
	Normality
	Convexity
	-cuts
	Boundary
	Empty Fuzzy Set
	Equality
	Subset
	Union (Max Operator)
	Intersection (Min Operator)
	Complement
	De Morgan’s Laws
	t-norms and t-conorms
	Cardinality
	Cartesian Product
	Projection
	Linguistic Hedges
	Defuzzification
	Reflexivity (Relation Properties)
	Symmetry (Relation Properties)
	Transitivity (Relation Properties)
	Fuzzy Equivalence Relation
	Fuzzy Similarity Relation
	Normalization
	Overlap
	Resolution Identity
	Aggregation Operators
	Implication Operators
	Fuzzy Entropy
	Support Intersection
	Continuity of Membership Functions
	-Level Operations
	Hamming Distance
	Euclidean Distance
	Fuzzy Rules
	Composition of Relations
	Lukasiewicz Operators
	Generalized Modus Ponens
	Generalized Modus Tollens
	Fuzzy Arithmetic
	Extension Principle
	Alpha-Cut Decomposition
	Resolution Principle
	Fuzzy Granularity
	Triangular Norms (t-norms)
	Triangular Conorms (s-norms)
	-Cuts
	Zadeh’s Extension Principle
	Mamdani Implications
	Sugeno Implications
	R-Implications
	Residual Operators
	Duality in Operations
	Fuzzy Relations
	Max-Min Composition
	Max-Product Composition
	Level Sets
	Fuzzy Measures
	Possibility and Necessity Measures
	Support Fuzzification
	Entropy-Based Measures of Fuzziness
	Distance Measures for Fuzzy Sets
	Hesitancy in Fuzzy Memberships
	Type-2 Fuzzy Sets
	Intuitionistic Fuzzy Sets
	Interval-Valued Fuzzy Sets
	Fuzzy Aggregation Functions
	Gradual Membership Transition
	Non-Additivity in Fuzzy Measures
	Subadditivity and Superadditivity
	Choquet Integral
	Sugeno Integral
	Belief and Plausibility Functions
	Fuzzy Logic-Based Reasoning
	Fuzzy Control Systems
	Rank Ordering
	Possibilistic vs. Probabilistic Interpretations
	Triangular Fuzzy Numbers
	Trapezoidal Fuzzy Numbers
	Gaussian Fuzzy Numbers
	Membership Scaling
	Soft Clustering (e.g., Fuzzy C-Means)
	Cluster Validity Measures
	Fuzzy Partition Matrix
	Linguistic Variables
	Approximate Reasoning
	Fuzzy Rule Base
	Fuzzy Decision Trees
	Multi-Criteria Decision-Making
	Fuzzy Optimization
	Fuzzy Neural Networks
	Neuro-Fuzzy Systems
	Fuzzy Differential Equations
	Hybrid Fuzzy Systems
	Granular Computing with Fuzzy Sets
	Computability of Fuzzy Systems
	Membership Evolution Over Time

	Crisp Fuzzy Sets
	Crisp Fuzzy Sets
	Binary Membership Function
	Support
	Core
	Complement
	Union (Set-Theoretic Union)
	Intersection (Set-Theoretic Intersection)
	Subset
	Equality
	Exclusive Or (XOR)
	Power Set
	Symmetry
	Partition
	Disjoint Sets
	Empty Set
	Universal Set
	Idempotence of Union and Intersection
	Associativity of Union and Intersection
	Distributivity of Union and Intersection
	Complement Laws
	Law of Double Negation
	Identity Laws
	Absorption Laws
	Difference
	Symmetric Difference
	Cartesian Product Properties
	Subset-Equality Relationships
	Logical Equivalence with Propositional Logic
	Commutativity of Union and Intersection
	Membership Constraints (Binary Only)
	Canonical Representation
	Logical Conjunction and Disjunction
	Partitioning with Crisp Classes
	Classical Set Operations on Power Sets
	Indicator Functions
	Topological Properties
	Characteristic Subsets
	Boolean Algebra Representation
	Lattice Structure
	Closure Properties
	Boundary Properties
	Complementary Laws
	Exactness vs. Approximation
	Duality Principles
	Logical Operators
	Set Difference as Logical Subtraction
	Subset Constraints in Crisp Contexts
	Finiteness and Countability
	Total and Partial Order
	Venn Diagrams Representation
	Structural Properties under Cartesian Products
	Boolean Ring Representation
	Set Algebra Frameworks
	Subset Families
	Closure Operators
	Topological Set Theory
	Metric Spaces on Sets
	Point-Set Relationships
	Distributive Lattices
	Hilbert Spaces on Sets
	Invariant Properties Under Transformations
	Orthogonal Sets
	Linear Independence of Sets
	Vector Space Extensions
	Relational Algebra in Sets
	Graph Representations of Sets
	Isomorphism in Set Structures
	Dual Operators in Complementation
	Monotonicity in Set Operations
	Cardinality of Infinite Sets
	Finiteness vs. Infiniteness in Computation
	Well-Ordering Principle
	Axiom of Choice Implications
	Direct and Inverse Images
	Category Theory and Sets
	Hypergraph Representations
	Exactness vs. Approximation in Computation
	Continuity in Fuzzy Functions
	Convexity in Fuzzy Sets
	Fuzzy Relations and Composition
	Fuzzy Equivalence Relations
	Fuzzy Clustering
	Defuzzification Methods
	Fuzzy Rule-Based Systems
	Type-2 Fuzzy Sets
	Linguistic Variables
	Fuzzy Implication Operators
	Possibility and Necessity Measures
	Triangular and Trapezoidal Membership Functions
	Membership Function Normalization

	Properties of Fuzzy Membership Functions
	Designing Fuzzy Fuzzy Heating and Cooling - Example
	Fuzzification
	Rule Evaluation
	Implication
	Aggregation
	Defuzzification



	Explaining Different Fuzzy Systems
	Different Fuzzy Systems
	Mamdani Fuzzy Inference System
	Sugeno Fuzzy Inference System
	Tsukamoto Fuzzy Inference System
	Hybrid Fuzzy Systems
	Takagi-Sugeno Fuzzy Systems
	Fuzzy Cognitive Maps (FCM)
	Rule-Based Fuzzy Systems
	Hierarchical Fuzzy Systems
	Interval Type-2 Fuzzy Systems
	Mamdani-Sugeno Hybrid Systems

	Takagi-Sugeno-Kang FIS Use Cases in Engineering
	Sugeno Fuzzy System - Robotic Navigation Example


	More Advanced Fuzzy Systems
	Some Backgrounds in Artificial Neural Networks
	Gradient Descent
	Dynamic Learning Rate
	RMSProp
	Adam
	Rate Decay
	Adagrad


	Linear Regression - Example

	Backpropagation
	Forward Pass
	Backward Pass
	Parameter Update
	Backpropagation - Example


	Advanced Fuzzy Modeling with Neural Networks
	Adaptive Neuro-Fuzzy Inference Systems (ANFIS)
	Layer 1: Input Membership Functions
	Layer 2: Rule Strength Calculation
	Layer 3: Normalization
	Layer 4: Consequent Layer
	Layer 5: Summation

	ANFIS Applications, Advantages, and Challenges
	ANFIS - Example
	Dataset Generation
	Fuzzy Inference System
	Example Code




