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Abstract—This paper describes an application framework to
perform high quality upsampling and completion on noisy depth
maps. Our framework targets a complementary system setup
which consists of a depth camera coupled with an RGB camera.
Inspired by a recent work that uses a nonlocal structure regular-
ization, we regularize depth maps in order to maintain fine details
and structures. We extend this regularization by combining the
additional high-resolution RGB input when upsampling a low-
resolution depth map together with a weighting scheme that
favors structure details. Our technique is also able to repair
large holes in a depth map with consideration of structures
and discontinuities by utilizing edge information from the RGB
input. Quantitative and qualitative results show that our method
outperforms existing approaches for depth map upsampling and
completion. We describe the complete process for this system,
including device calibration, scene warping for input alignment,
and even how our framework can be extended for video depth-
map completion with consideration of temporal coherence.

Index Terms—Depth Map Upsampling, Depth Map Comple-
tion, RGB-D cameras

I. INTRODUCTION

Active depth cameras are becoming a popular alternative
to stereo-based range sensors. In particular, 3D time-of-flight
(3D-ToF) cameras and active pattern cameras (e.g. Microsoft
Kinect) are widely used in many applications. 3D-ToF cameras
use active sensing to capture 3D range data at frame-rate as
per-pixel depth. A light source from the camera emits a near-
infrared wave that is then reflected by a scene and captured by
a dedicated sensor. Depending on the distance of objects in a
scene, the captured light wave is delayed in phase compared
to the original emitted light wave. By measuring the phase
delay the distance at each pixel can be estimated. Active
pattern cameras emit a pre-defined pattern into a scene and
use a camera to observe the deformation and translation of
the pattern to determine depth map. This can be done using
an infrared projector and camera to avoid human detection and
interference with other visible spectrum imaging devices.
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Fig. 1. (a) Low-resolution depth map (enlarged using nearest neighbor
upsampling), (b) high-resolution RGB image, (c) result from [29], (d) our
result. User scribble areas (blue) and the additional depth sample (red) are
highlighted. The dark areas in (c) are the areas without depth samples after
registration. Full resolution comparisons are provided in the supplemental
materials.

The quality of the depth maps captured by these 3D cam-
eras, however, are relatively low. In the 3D-ToF cameras, the
resolution of the captured depth maps are typically less than
1/4th the resolution of a standard definition video camera. In
addition, the captured depth maps are often corrupted by sig-
nificant amounts of noise. In active pattern cameras, although
the captured depth map has a comparable resolution to the
resolution of RGB cameras, the depth map usually contains
many holes due to the disparity between the IR projector and
the IR camera. In addition, the captured depth map contains
quantization errors and holes due to the estimation errors in
pattern matching and the presence of bright light sources and
non-reflective objects in a scene.

The goal of this paper is to propose a method to estimate
a high quality depth map from the depth sensors through
upsampling and completion. To aid this procedure, an auxiliary
high-resolution conventional camera is coupled with the depth
camera to synchronously capture the scene. Related work [29],
[3], [6] also using coupled device setups for depth map up-
sampling have focused primarily on image filtering techniques
such as joint bilateral filtering [7], [17] or variations. Such
filtering techniques can often over-smooth results, especially
in areas of structure details.
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We formulate the depth map upsampling and completion
problem using constrained optimization. Our approach is in-
spired by the recent success of nonlocal structure regulariza-
tion for depth map construction from depth-from-defocus [8].
In particular, we describe how to formulate the problem into
a least-squares optimization that combines nonlocal structure
regularization together with an edge weighting scheme that
further reenforces fine details. We also employ scene warping
to better align the imagery to the auxiliary camera input.
While our methodology is heuristic in nature, the result is a
system that is able to produce high-quality depth maps superior
in quality to prior work. In addition, our approach can be
easily extended to incorporate simple user markup to correct
errors along discontinuity boundaries without explicit image
segmentation (e.g. Fig. 1).

A shorter version of this work appeared in [22], which
focuses on the depth map upsampling problem for 3D-ToF
cameras. This paper shows that the framework is also ap-
plicable in depth map completion for active pattern cameras
(e.g. Microsoft Kinect) with additional implementation details,
discussions and experiments for depth map completion. A
new technical section is included that extends our framework
to depth video completion. Our new experimental results
demonstrate high quality temporarily coherent depth video,
which out-performs our single frame approach in [22] for the
depth video completion problem.

The remainder of our paper is organized as follow: In
Sec. II, we review related works in depth map upsampling
and completion. Our system setup and preprocessing steps are
presented in Sec. III, followed by the optimization framework
in Sec. IV. In Sec. V, we present our experimental results.
Finally, we conclude our work in Sec. VI.

II. RELATED WORK

Previous work on depth map upsampling and completion
can be classified as either image fusion techniques that com-
bine the depth map with the high quality RGB image or
super-resolution techniques that merge multiple misaligned
low quality depth maps. Our approach falls into the first
category of image fusion which is the focus of the related
work presented here.

Image fusion approaches assume there exists a joint occur-
rence between depth discontinuities and image edges and those
regions of homogenous color have similar 3D geometry [31],
[26]. Representative image fusion approaches include [5], [29],
[3], [6]. In [5], Diebel and Thrun performed upsampling using
an MRF formulation with the data term computed from the
depth map and weights of the smoothness terms between
estimated high-resolution depth samples derived from the
high-resolution image. Yang et al. [29] used joint bilateral
filtering [7], [17] to fill the hole and interpolate the high-
resolution depth values. Since filtering can often over-smooth
the interpolated depth values, especially along the depth dis-
continuity boundaries, they quantized the depth values into
several discrete layers. Joint bilateral filtering was applied
at each layer with a final post processing step to smoothly
fuse the discrete layers. This work was later extended by [30]

to use a stereo camera for better discontinuity detection in
order to avoid over-smoothing of depth boundaries. Chan et
al. [3] introduced a noise-aware bilateral filter that decides
how to blend between the results of standard upsampling or
joint bilateral filtering depending on the depth map’s regional
statistics. Dolson et al. [6] also used a joint bilateral filter
scheme, however, their approach includes additional time
stamp information to maintain temporal coherence for the
depth map upsampling in video sequences.

The advantage of these bilateral filtering techniques is that
they can be performed quickly; e.g. Chan et al. [3] reported
near real-time speeds using a GPU implementation. However,
the downside is that they can still over-smooth fine details.
Our approach is more related to [5] because we formulate the
problem using a constrained optimization scheme. However,
our approach incorporates a nonlocal structure (NLS) term
to help preserve local structures. This additional NLS term
was inspired by Favaro [8], which demonstrated that NLS
filtering is useful in maintaining fine details even with noisy
input data. We also include an additional weighting scheme
based on derived image features to further reinforce the
preservation of fine detail. In addition, we perform a warping
step to better align the low-resolution and high-resolution
input. Huhle et al. [11] proposes NLS based filtering algorithm
targeting a sparse 3D point cloud. However, data alignment
and outlier rejection are not needed in this approach. It also
only considers the NLS term, while our approach uses several
additional terms. Our experimental results on ground truth data
shows that our application framework can outperform existing
techniques for the majority of scenes with various upsampling
factors. Since our goal is high-quality depth maps, the need
for manual cleanup for machine vision related input is often
unavoidable. Another advantage of our approach is that it can
easily incorporate user markup to improve the results.

Recently, the Kinect sensor has been widely used in the
research community. The Kinect’s depth accuracy and mecha-
nism are extensively analyzed in [16]. In [12], Izadi et al. pro-
posed KinectFusion for static scene modeling. This approach
aligns multi-view depth maps into pre-allocated volumetric
representation by using a signed-distance function. It is ad-
equate for modeling objects within a few cubic meters [20].
Also, this method can be applied to depth map refinement
since it averages noisy depth maps from multiple view points.
Compared to Izadi et al. [12], we focus our work as a depth
map upsampling and completion for a single RGB-D image
configuration. While our configuration is more restrictive,
several research groups have utilized Kinect to build RGB-D
datasets [13], [24] under various scenes and objects for scene
categorization, object recognition and segmentation. Since the
Kinect depth map tends to have holes, it is necessary to fill
in these missing depth values before they can be used for
recognition and segmentation tasks. In this paper, using the
same optimization framework for depth map upsampling, we
demonstrate our approach can achieve high quality depth map
completion for these Kinect RGB-D data.
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Fig. 2. (a) Our 3D-ToF imaging setup. It uses a 3D-ToF camera which
captures images at 176×144 resolution that is synchronized with a 1280×960
resolution RGB camera. (b) The calibration configuration for 3D-ToF imaging
setup that uses a planar calibration pattern with holes to allow the 3D-ToF
camera to be calibrated. (c) The Kinect imaging setup. The Kinect depth
camera which captures depth map at 640×480 resolution that is synchronized
with a 1280×1024 resolution RGB camera. (d) The calibration configuration
for Kinect imaging setup, which utilizes a planar checker board.

III. SYSTEM SETUP AND PREPROCESSING

In this section, we describe our RGB-D imaging step and
the preprocessing step to register the depth camera and con-
ventional RGB camera and to perform initial outlier rejection
on the depth input.

A. System Configuration

Figure 2 (a) shows our hardware configuration consisting
of a 3D-ToF camera and a high-resolution RGB camera. For
the ToF camera, we use a SwissRangerTM SR4000 [1] which
captures a 176×144 depth map. For the RGB camera, we use
the Point Grey Research Flea RGB camera with a resolution of
1280×960 pixels. Figure 2 (c) shows the MicrosoftTMKinect
depth range sensor. The Microsoft Kinect is equipped with
an IR pattern projector, an IR camera for depth measurement,
and an RGB camera. The resolution of the captured depth
map depends on the resolution of the IR camera. The default
resolution of the Kinect is 640 × 480 and it is capable to
capture depth map and RGB image up to 1280 × 1024 (at a
low frame rate) resolution.

B. Camera Calibration

Since the RGB-D data captured from the system
in Sec. III-A have slightly different viewpoints (both for
3D-ToF setting and Kinect), we need to register the camera
according to the depth values from the low-resolution depth
map. This process requires intrinsic and extrinsic camera
parameters.

In this work, we utilize prior art for the heterogeneous
camera rig calibration. For 3D-ToF camera setting, we use
the method proposed by Jung et al. [14]. This method uses

a planar calibration pattern consisting of holes (Figure 2
(b)). This unique calibration pattern allows us to detect the
positions on the planar surface that are observed by the 3D-
ToF camera. In the case of the Kinect, we utilize the Kinect
calibration Toolbox [10] which simultaneously estimates the
camera parameters and fixed pattern noise of the depth map.
In this case, a conventional checkerboard is utilized.

The captured depth map does not response linearly to the
actual depth in the real world. To calibrate the response of
the depth camera, we capture a scene with a planar object
and move the planar object towards the camera. The actual
movement of the planar object is recorded and is used to
fit a depth response curve to linearize the depth map before
warping the depth map to align with the RGB image.

Besides our proposed calibration method, Pandey et al. [21]
introduces an automatic extrinsic calibration method for RGB-
D cameras. They optimize 6D extrinsic parameters by maxi-
mizing mutual information. The mutual information is evalu-
ated by measuring the correlation between surface reflectivity
from a range scanner (or known as intensity image in ToF
camera case) and intensity values from an RGB camera in
their joint histogram. Talyor and Nieto [25] introduced a
method that also takes the intrinsic calibration parameters into
account. They use normalized mutual information to avoid
drift and apply a particle swam optimization [15] for robust
estimation. Compared to the automatic methods, our procedure
requires a calibration pattern as shown in Fig. 2 (b) and (d).
The usage of the calibration pattern allows us to achieve
higher accuracy in calibration. However, in the case when pre-
calibration is impossible, the automatic approaches can be a
good substitution for our framework.

C. Depth Map Registration

With the estimated camera parameters, we first undistort the
depth map and RGB image. After that, the linearized depth
map is back-projected as a point cloud and points are projected
into the RGB camera coordinate. Numerically, for any point,
xt = (u, v)>, on the low-resolution depth map with depth
value dt, we can compute its corresponding position in the
high-resolution RGB image by the following equation:

sxc = Kc

[
R | t

]
Kd
−1[xt dt]

> (1)

where Kc and Kd are the intrinsic parameters of the RGB and
depth camera respectively, and R and t are the rotation and
translation matrices which describe the rotation and translation
of the the RGB camera and the depth camera with respect
to the 3D world coordinate. We obtain the scaling term
s by calculating the relative resolution between the depth
camera and the RGB camera. Since the depth map from the
depth camera is noisy, we impose a neighborhood smoothness
regularization using the thin-plate spline to map the low-
resolution depth map to the high-resolution image. The thin-
plate spline models the mapping of 3D points by minimizing
the following equation:

arg min
α

∑
j

||x′j −
∑
i

αiR(xj − xi)||2 (2)
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Fig. 3. A synthetic example for validating our outlier detection algorithm.
(a) A depth map of a synthetic scene. (b) A depth map of the same scene
with a translated view point. (c) Detected occlusion map for the view point
change. (d) Detected disocclusion map of (b).

where α = {αi} is a set of mapping coefficients that defines
the warping of 3D space, R(r) = r2 log r is the radial
basis kernel of the thin-plate spline, and {i, j} are index of
correspondents {x′i = [sxc d]>, xi = [xt d]>} given by
Eq. (1). Thus, for any 3D point, x, the new location after
warping is given by: ∑

i

αiR(x− xi) (3)

With the thin-plate spline regularization, the entire point cloud
is warped as a 3D volume. This can effectively suppress
individual mapping errors caused by noisy estimation of depth.

D. Outliers Detection

Since there is disparity between the depth camera and
the RGB camera, occlusion/disocclusion occurs along depth
discontinuities. In addition, we found that the depth map from
the 3D-ToF camera contains depth edges that are blurred
by mixing the depth values of two different depth layers
along depth boundaries1. These blurred depth boundaries are
unreliable and should be removed before our optimization
framework.

For each depth sample in the depth image, we reproject
its location to the RGB image using the method described
in Sec. III-C. The reprojected depth map allows us to de-
termine occluded and disoccluded regions. We expand the
detected occluded and disoccluded regions such that the unreli-
able depth samples along depth discontinuities are rejected. To
demonstrate the idea, we show a synthetic example in Fig. 3.
Fig. 3 (a) shows the depth map of the synthetic scene and
Fig. 3 (b) show the reprojected depth map. The occluded re-
gions and disoccluded regions are detected and shown in Fig. 3
(c) and Fig. 3 (d) respectively. Since our optimization method
handles both depth upsampling and depth completion simul-
taneously in the same framework, the rejected depth samples

1In the case of the Kinect, unreliable depth samples were already rejected
leaving holes in the captured depth map.

(a) (b)

Fig. 4. Comparison of our result without (a) and with (b) the NLS term.
The same weighting scheme proposed in Sec. IV-B is used for both (a) and
(b). Although the usage of NLS does not significantly affect the RMS error,
it is important in generating high quality depth maps especially along thin
structure elements.

along depth boundaries will not degrade the performance of
upsampling. Instead, we found that our framework performs
worse if the outliers were not rejected before optimization
framework.

IV. OPTIMIZATION FRAMEWORK

This section describes our optimization framework for up-
sampling the low-resolution depth map given the aligned
sparse depth samples and the high-resolution RGB image.
Note that this framework is also applied to depth map com-
pletion. Similar to the previous image fusion approaches [5],
[29], [6], we assume the co-occurrences of depth boundaries
and image boundaries.

A. Objective Function

We define the objective function for depth map upsampling
and completion as follows:

E(D) = Ed(D) + λsEs(D) + λNENLS(D) (4)

where Ed(D) is the data term, Es(D) is the neighborhood
smoothness term, and ENLS(D) is a NLS regularization. The
term λs and λN are the relative weights to balance the three
terms. Note that the smoothness term and NLS terms could be
combined into a single term, however, we keep them separate
here for sake of clarity.

Our data term is defined according to the initial sparse depth
map:

Ed(D) =
∑
p∈G

(D(p)−G(p))
2
, (5)

where G is a set of pixels, which has the initial depth value,
G(p). Our smoothness term is defined as:

Es(D) =
∑
p

∑
q∈N (p)

wpq
Wp

(D(p)−D(q))
2
, (6)

where N (p) is the first order neighborhood of p, wpq is the
confidence weighting that will be detailed in the following sec-
tion, and Wp =

∑
q wpq is a normalization factor. Combining

Eq. (5) and Eq. (6) forms a quadratic objective function which
is similar to the objective function in [18]. The work in [18]
was designed to propagate sparse color values to a gray high-
resolution image that is similar in nature to our problem of
propagating sparse depth values to the high-resolution RGB
image.
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 5. (a) Low-resolution depth map (enlarged using nearest neighbor upsampling). (b) High-resolution RGB image. (c) Color segmentation by [27]. (d) Edge
saliency map. (e) Guided depth map by using bicubic interpolation of (a). (f) Our upsampling result without the guided depth map weighting, depth bleeding
occurred in highly textured regions. (g) Our upsampling result with guided depth map weighting. (h) Ground truth. We subsampled the depth value of a dataset
from Middlebury to create the synthetic low-resolution depth map. The magnification factor in this example is 5×. The sum of squared difference(SSD)
between (f) and (g) comparing to the ground truth are 31.66 and 24.62 respectively. Note that the depth bleeding problem in highly textured regions has
been improved.

The difference between our method and that of [18] is the
definition of wpq . Work in [18] defined wpq using intensity
difference between the first order neighborhood pixels to
preserve discontinuities. We further combine segmentation,
color information, and edge saliency as well as the bicubic
upsampled depth map to define wpq . The reason for this is
that we find the first order neighborhood does not properly
consider the image structure. As the result, propagated color
information in [18] was often prone to bleeding errors near
fine detail. In addition, we include a NLS regularization term
that helps to preserve thin structures by allowing the pixels on
the same nonlocal structure to reinforce with each other within
a larger neighborhood. We define the NLS regularization term
using an anisotropic structural-aware filter [4]:

ENLS(D) =
∑
p

∑
r∈A(p)

κpr
Kp

(D(p)−D(r))
2
, (7)

where A(p) is a local window (e.g. 11 × 11) in the
high-resolution image, κpr is the weight of the anisotropic
structural-aware filter, and Kp =

∑
r κpr is normalization

constant. κpr is defined as:

κpr =
1

2

(
exp(−(p− r)>Σ−1

p (p− r))+

exp(−(p− r)>Σ−1
r (p− r))

)
,

Σp =
1

|A|
∑

p′∈A(p)

∇I(p′)∇I(p′)>. (8)

Here, ∇I(p) = {∇xI(p),∇yI(p)}> is the x- and y- image
gradient vector at p, and I is the high-resolution color image.
The term Σq is defined similarly to Σp. This anisotropic
structural-aware filter defines how likely p and q are on the
same structure in the high-resolution RGB image, i.e. if p and
r are on the same structure, κpr will be large. This NLS filter
essential allows similar pixel to reinforce each other even if
they are not first-order neighbors. To maintain the sparsity
of the linear system, we remove neighborhood entries with
κpr < t. A comparison of our approach to illustrate the
effectiveness of the NLS regularization is shown in Fig. 4.

B. Confidence Weighting

In the section, we describe our confidence weighting scheme
for defining the weights wpq in Eq. (6). The value of wpq
defines the spatial coherence of neighborhood pixels. The

Edge weightColor weight Segment weight

Depth weight Overall weight
0

1
Cropped image

p

Fig. 6. Visualization of different weighting terms and the overall weighting
term.

larger wpq is, the more likely that the two neighborhood pixels
having the same depth value. Our confidence weighting is
decomposed into four terms based on color similarities (wc),
segmentation (ws), edge saliency (we), and guided bicubic
interpolated depth map (wd).

The color similarity term is defined in the YUV color space
as follows:

wc = exp−(
∑

I∈Y UV

(I(p)− I(q))2

2σ2
I

), (9)

where σI controls the relative sensitivity of the different color
channels.

Our second term is defined based on color segmentation
using the library provided in [27] to segment an image into
super pixels as shown in Fig. 5(c). For the neighborhood pixels
that are not within the same super pixel, we give a penalty term
defined as:

ws =

{
1 if Sco(p) = Sco(q)
tse otherwise, (10)

where Sco(·) is the segmentation label, tse is the penalty
factor with its value between 0 and 1. In our implementation,
we empirically set it equals to 0.7.

Inspired by [2], we have also included a weight that depends
on the edge saliency response. Different from the color simi-
larity term, the edge saliency responses are detected by a set of
Gabor filters with different sizes and orientations.2 The edge
saliency map contains image structures rather than just color
differences between neighborhood pixels. We combine the
responses of different Gabor filters to form the edge saliency

2We use two scale 7 × 7, and 15 × 15 filter kernels with 8 orientations.
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 7. Depth map refinement via user markup. (a)(e) Color image of small
scale structure. (b)(f) Upsampled depth map before user correction. The user
scribble areas in (b), and the user added depth samples in (e) are indicated
by the yellow lines and dots respectively. (c) The extracted alpha mattes for
depth refinement. (d)(g) Refined depth maps.

map as shown in Fig. 5(d). Our weighting is computed as:

we =
1√

sx(p)2 + sx(q)2 + 1
, (11)

where sx(·) is the value of x−axis edge saliency map if p
and q are x−axis neighborhoods. The edge saliency enhances
smoothness of depth boundary along edge.

Allowing the depth values to propagate freely with only very
sparse data constraint can lead to notable depth bleeding. Here,
we introduce the guided depth map to resolve this problem.
The guided depth map weighting is similar to the intensity
weighting in bilateral filter. Since we do not have a depth
sample at each high-resolution pixel location, we use bicubic
interpolation to obtain the guided depth map, Dg , as shown in
Fig. 5(e). Similar to the bilateral filter, we define the guided
depth map weighting as follow:

wd = exp−(
(Dg(p)−Dg(q))

2

2σ2
g

), (12)

Combining the weight defined from Eq. (9) to Eq. (11) by
multiplication, we obtain the weight wpq = wswcwewd. Note
that except for the edge saliency term, all the weighting
defined in this subsection can be applied to the weighting κpq
via multiplication to the NLS regularization term. Figure 6
illustrates the effects of each weighting term and the combined
weighting term.

C. User Adjustments

Since the goal is high-quality depth refinement, there may
be cases that some depth frames are going to require user
touch up, especially if the data is intended for media related
applications. Our approach allows easy user corrections by
direct manipulation of the weighting term wpq or by adding
additional sparse depth sampling for error corrections.

For the manipulation of the weighting term, we allow
the user to draw scribbles along fuzzy image boundaries, or
along the boundaries where the image contrast is low. These

fuzzy boundaries or low contrast boundaries represent difficult
regions for segmentation and edge saliency detection. As a
result, they cause depth bleeding in the reconstructed high-
resolution depth map as illustrated in Fig. 7(b). Within the
scribble areas, we compute an alpha matte based on the work
by Wang et al. [28] for the two different depth layers. An
additional weighting term will be added according to the
estimated alpha values within the scribble areas. For the two
pixels p and q within the scribble areas, if they belong to the
same depth layer, they should have the same or similar alpha
value. Hence, our additional weighting term for counting the
additional depth discontinuity information is defined as:

exp−(
(α(p)− α(q))2

2σ2
α

), (13)

where α(·) is the estimated alpha values within the scribble
areas. Figure 7(d) shows the effect after adding this alpha
weighting term. The scribble areas are indicated by the yellow
lines in Fig. 7(b) and the corresponding alpha matte is shown
in Fig. 7(c).

Our second type of user correction allows the user to draw
or remove depth samples on the high-resolution depth map
directly. When adding a depth sample, the user can simply
pick a depth value from the computed depth map and then
assign this depth value to locations where depth samples are
“missing”. After adding the additional depth samples, our
algorithm generates the new depth map using the new depth
samples as a hard constraint in Equation (4). The second row
of Fig. 7 shows an example of this user correction. Note that
for image filtering techniques, such depth sample correction
can be more complicated to incorporate since the effect of new
depth samples can be filtered by the original depth sample
within a large local neighborhood. Removal of depth samples
can also cause a hole in the result of image filtering techniques.

D. Evaluation on the Weighting Terms

Our weighting term, wpq , is a combination of several
heuristic weighting terms. Here we provide some insight to
the relative effectiveness of each individual weighting term
and their combined effect as shown in Fig. 8 (f). Our exper-
iments found that using only the color similar term can still
cause propagation errors. The edge cue is more effective in
preserving structure along edge boundary, but cannot entirely
remove propagation errors. The effect of the segmentation
cue is similar to the color cue as the segmentation is also
based on color information, but generally produces sharper
boundary with piecewise smoothed depth inside each segment
than simply using the color cue. The depth cue3 is good in
avoiding propagation bleeding, but it is not effective along
the depth boundaries, which do not utilize the co-occurrence
of image edges and depth edges. After combining the four
different cues together, the combined weighting scheme shows
the best results. The results produced with the combined
weighting term can effectively utilize the structures in the

3The depth cue produces better results than other cues in this synthetic
examples because the depth cues have no noise and no missing values. It is
blurry because it is from a low resolution depth map.
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Fig. 8. A synthetic example for self-evaluation of our weighting term. (a)(b)
A synthetic image pair consisting of a high-resolution color image and low-
resolution depth image. (c) A low-resolution depth map with noise. (d) Our
8× upsampled depth map with the combined weighting term. (e) A zoomed-
up images of upsampling results for various parameter configurations. (f)
The plot of PSNR accuracy against the results with the combined weighting
term and the results with additional weighting term. The combined weighting
term consistently produce the best results under different upsampling scales.
(g) In 8× upsampling, the four weights are manipulated individually and its
corresponding accuracies are displayed in PSNR. Larger k implies giving
more reliance to the corresponding weighting term.

high-resolution RGB image while it can avoid bleeding by
including the depth cue which consists with the low-resolution
depth map.

To further justify the relative effectiveness of our weight
terms, we manipulate the weight values wc, ws, we and
wd individually. Since the weight terms are combined by a
multiplication, simply multiplying an individual weight term
by a constant factor does not affect the relative effectiveness.
Therefore, we apply an exponential function f(w, k) = wk.
If one of the weights is mapped as w′ = f(w, k) where
0 < k < 1, the relative importance of this term decreases
since w′ is likely to be 1. In contrast, If k � 1, the weight
term dominates the overall weight. k = 0 means that the
corresponding weight term is not used and k = 1 means no
manipulation (equivalent to our empirical choice). Figure 8
(g) shows the evaluation results on the four weight terms. The
graphs reach the maximum accuracy around k = 1, which
implies our empirical choice is reasonable. Figure 8 (g) also

pp - 𝑢𝑡−2- 𝑢𝑡−1 p - 𝑢𝑡−1 p + 𝑢𝑡+1

𝑢𝑡−2
𝑢𝑡−1

𝑢𝑡+1
𝑢𝑡+2

p + 𝑢𝑡+1+ 𝑢𝑡+2

Fig. 9. Long range tracking of depth samples. From the dense flow fields ~u
which is acquired from sequential color image pairs, we accumulate ~u to get
correspondences from distant frames.

shows that the choice of tse do not significantly alters the
accuracy and the PSNR drops in most cases when k � 1.
This implies that excessive reliance on a specific weight term is
undesirable. For the color cue, when k > 3, the linear system4

become singular and the solution is invalid.
Regarding λs and λN defined in Eq. (4), we find out that

varying ratio between the two values shows subtle changes in
PSNR. Instead, we observe that the magnitude of λs and λN
is significant to the processed depth map accuracy. Figure 8
(e) shows an example of choosing λs and λN for the noisy
depth map. When there is high-level of noise, larger lambda
is preferable since the optimization is less stick to the input
depth. However, if it is too large, the output can be over-
smoothed. Throughout this paper, we choose λs = λN = 10
for noisy depth input and λs = λN = 0.2 for high-fidelity
depth input.

E. Extension to RGB-D Video

In this section, we extend our framework to handle RGB-
D video depth completion. A major difference between sin-
gle image depth completion and video depth completion is
that video depth completion requires temporal coherence. To
achieve temporal coherent depth completion, we substitute our
Eq. (5) as

Ed(D) =
∑
p

(D(p)−G′(p))
2
, (14)

where G′(p) is median value of depth from temporal corre-
spondences as illustrated in Fig. 9.

We find the temporal correspondence of depth value by
finding dense temporal correspondence across the RGB video.
In our implementation, we use the optical flow algorithm by
Liu [19]. We assume that the depth sensor does not move
drastically as well as the motion of moving object inside a
scene. From the computed dense optical flows, we trace the
depth samples in [t − 3,t + 3] frames. Since modern depth
sensors can record approximately 30 frames per second, the
period within [t − 3,t + 3] corresponds to 0.2 seconds. After
collecting the multiple correspondences of D(p) in [t−3,t+3]
frames, we compute the median depth values and use it as
G′(p) in Eq. (14). This gives us a reliable and temporally
consistent data term. For the special case such as Kinect,

4We optimize overall energy by solving a linear equation. Details are
discussed in Sec. IV-F.
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whose depth maps show consistent holes over the frames, we
apply our algorithm on each frames independently for hole
filling and take median depth value of tracked points over
[t− 3,t+ 3] frames.

Section V-C demonstrates the effectiveness of our video
depth completion extension versus the results of using the
original frame-by-frame depth completion.

F. Efficient Energy Optimization

We now describe our approach to optimize Eq. (4). To
optimize our quadratic energy function, similar to the work in
Diebel et al. [5], we can first register the low-resolution depth
map with the color image and interpolate the depth values
as an initialization (described in Sec. III-C). After that, we
apply an iterative convex optimization technique. Specifically,
if we take the first derivative w.r.t. D on Eq. (4) and set the
derivative equal to zero, i.e. ∆E(D)

∆D = 0, we get:

Ad = g, (15)

where A is a n × n Laplacian matrix with weight terms, n
is number of pixels in RGB domain, d is the desired depth
values, and g is observed depth which is conditionally filled
with measured depth G. For D(p), the elements of A and g
are filled as:

App =

{
1 + λs + λN if p ∈ G
λs + λN otherwise, (16)

Apq = −λswpq
Wp

, (17)

Apr = −λNκpr
Kp

, (18)

gp =

{
G(p) if p ∈ G
0 otherwise, (19)

where q ∈ N (p) and r ∈ A(p) indicate neighborhoods for
smoothness term and NLS regularization term respectively,
Apq indicates A’s element at p-th row and q-th column, and gp
indicates p-th element of vector g. In the RGB-D video case,
G′(p) is used instead of G(p). To solve Eq. (15), we applied
the built-in linear solver in MatlabTM 2009b, or known as a
backslash operator ‘\’.

V. RESULTS AND COMPARISONS

We demonstrate our approach applied to both depth map
upsampling and depth map completion. For depth map up-
sampling, we present quantitative evaluation and real world
examples. For depth map completion, we refine the raw Kinect
depth which exhibits missing regions (i.e. holes). The system
configuration for experiments is 3Ghz CPU, 8GB RAM. The
computation time is summarized in Table III.

A. Depth Map Upsampling

1) Evaluations using the Middlebury stereo dataset: We
use synthetic examples for quantitative comparisons with the
results from previous approaches [5], [29], [9]. The depth
map from the Middlebury stereo datasets [23] are used as the
ground truth. We downsampled the ground truth depth map

Synthetic Time(Sec.) Real-world Time(Sec.)
Art 21.60 Lion 18.60

Books 26.47 Office with person 16.65
Moebius 24.07 Lounge 18.28

Classroom 19.00

TABLE II
RUNNING TIME OF OUR ALGORITHM FOR 8X UPSAMPLING. THE

UPSAMPLED DEPTH MAP RESOLUTION IS 1376×1088 FOR SYNTHETIC
AND 1280×960 FOR REAL-WORLD EXAMPLES. THE ALGORITHM WAS

IMPLEMENTED USING UNOPTIMIZED MATLAB CODE.

by different factors to create the low-resolution depth map.
The original color image is used as the high-resolution RGB
image. We compare our results with bilinear interpolation,
MRF [5], bilateral filter [29], and a recent work on guided
image filter [9]. Since the previous approaches do not contain
a user correction step, the results generated by our method
for these synthetic examples are all based on our automatic
method in Sec. IV-A and Sec. IV-B for fair comparisons.
Table I summaries the RMSE (root-mean-square error) against
the ground truth under different magnification factors for
different testing examples. To demonstrate the advantages
of our combined weight, wpq = wswcwewd, defined in
Sec. IV-B, we have also applied our algorithm using each
weight independently. As shown in Table I, our combined
weight consistently achieves the lowest RMSE among all the
test cases especially for large scale upsampling. The qualitative
comparison with the results from [5] and [29] under 8×
magnification factor can be found in Fig. 10.

In terms of depth map quality, we found that the MRF
method in [5] produces the most blurred result. This is due
to its simple use of neighborhood term, which considers only
the image intensity difference as the neighborhood similarity
for depth propagation. The results from bilateral filtering in
[29] are comparable to ours with sharp depth discontinuities
in some of the test examples. However, since segmentation and
edge saliency are not considered, their results can still suffer
from depth bleeding highly textured regions. Also, we found
that in the real world example in Fig. 1, the results from [29]
tend to be blurry.

2) Robustness to Depth Noise: The depth map captured by
depth cameras exhibit notable levels of noise. We compare
the robustness of our algorithm and the previous algorithms
by adding noise. We also compare against the Noise-Aware
bilateral filter approach in [3]. We observe that the noise char-
acteristics in depth camera depends on the distance between
the camera and the scene. To simulate this effect, we add a
conditional Gaussian noise:

p(x, k, σd) = k exp−(
x

2(1 + σd)2
), (20)

where σd is a value proportional to the depth value, and
k is the magnitude of the Gaussian noise. Although the
actual noise distribution of depth camera is more complicated
than the Gaussian noise model, many previous depth map
upsampling algorithms do not consider the problem of noise
in the low-resolution depth map. This experiment therefore
attempts an objective comparison on the robustness of different
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(a) (b) (c)
Fig. 10. Qualitative comparison on Middlebury dataset. (a) MRFs optimzation [5]. (b) Bilateral filtering with subpixel refinement [29]. (c) Our results.
The image resolution are enhanced by 8×. Note that we do not include any user correction in these synthetic testing cases. The results are cropped for the
visualization, full resolution comparisons are provided in the supplemental materials.

Art Books Moebius
2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16×

Bilinear 0.56 1.09 2.10 4.03 0.19 0.35 0.65 1.24 0.20 0.37 0.70 1.32
MRFs [5] 0.62 1.01 1.97 3.94 0.22 0.33 0.62 1.21 0.25 0.37 0.67 1.29

Bilateral [29] 0.57 0.70 1.50 3.69 0.30 0.45 0.64 1.45 0.39 0.48 0.69 1.14
Guided [9] 0.66 1.06 1.77 3.63 0.22 0.36 0.60 1.16 0.24 0.38 0.61 1.20

Ours segment weight 0.60 1.12 2.54 4.01 0.21 0.38 0.79 1.28 0.23 0.42 0.92 1.47
Ours color weight 0.52 0.81 1.45 3.09 0.19 0.32 0.57 1.06 0.21 0.32 0.56 1.08
Ours edge weight 0.67 1.73 3.62 6.68 0.25 0.51 1.05 2.03 0.26 0.57 1.19 2.12
Ours depth weight 0.46 0.85 1.66 3.49 0.18 0.34 0.68 1.36 0.18 0.33 0.67 1.31

Ours combined weight 0.43 0.67 1.08 2.21 0.17 0.31 0.57 1.05 0.18 0.30 0.52 0.90

TABLE I
QUANTITATIVE COMPARISON ON MIDDLEBURY DATASET. THE ERROR IS MEASURED IN RMSE FOR 4 DIFFERENT MAGNIFICATION FACTORS. THE

PERFORMANCE OF OUR ALGORITHM IS THE BEST AMONG ALL COMPARED ALGORITHM. NOTE THAT NO USER CORRECTION IS INCLUDED IN THESE
SYNTHETIC TESTING EXAMPLES.

algorithms towards the effect of noisy depth map. The results
in term of RMSE are summarized in Table II. We note that
some of our results are worse than results from the previous
methods, this is because the previous methods tends to over-
smooth upsampled depth map and therefore have higher noise
tolerance. Although we can adjust parameters to increase noise
tolerance by increasing smoothness weight, we keep the same
parameter setting as in Sec. V-A1 to provide a fair comparison.

3) ToF Depth Upsampling: Figure 13 shows upsampled
ToF depth maps which is taken from real scenes. Since the
goal of our paper is to obtain high quality depth maps, we

include user corrections for the examples in the top and middle
row. We show our upsampled depth as well as a novel view
rendered by using our depth map. The magnification factors
for all these examples are 8×. These real world examples are
challenging with complicated boundaries and thin structures.
Some of the objects contain almost identical colors but with
different depth values. Our approach is successful in distin-
guishing the various depth layers with sharp boundaries.
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Art Books Moebius
2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16×

Bilinear 3.09 3.59 4.39 5.91 2.91 3.12 3.34 3.71 3.21 3.45 3.62 4.00
MRFs [5] 1.62 2.54 3.85 5.70 1.34 2.08 2.85 3.54 1.47 2.29 3.09 3.81

Bilateral [29] 1.36 1.93 2.45 4.52 1.12 1.47 1.81 2.92 1.25 1.63 2.06 3.21
Guided [9] 1.92 2.40 3.32 5.08 1.60 1.82 2.31 3.06 1.77 2.03 2.60 3.34
NAFDU [3] 1.83 2.90 4.75 7.70 1.04 1.36 1.94 3.07 1.17 1.55 2.28 3.55

Ours 1.24 1.82 2.78 4.17 0.99 1.43 1.98 3.04 1.03 1.49 2.13 3.09

TABLE III
QUANTITATIVE COMPARISON ON MIDDLEBURY DATASET WITH ADDITIVE NOISE. OUR ALGORITHM ACHIEVES THE LOWEST RMSE IN MOST CASES.
NOTE THAT ALL THESE RESULTS ARE GENERATED WITHOUT ANY USER CORRECTION. BETTER PERFORMANCE IS POSSIBLE AFTER INCLUDING USER

CORRECTION.

B. Depth Map Completion

This section provides our depth map completion results
on Kinect’s raw depth data where the depth map and the
RGB image are of the same resolution. For all depth map
completion results in this section, we do not include any user
markup or post-processing. Figure 11 compares our depth map
completion results with results obtained using joint bilateral
filtering [17] and colorization [18]. The scene in the first row
is captured by our calibrated Kinect and the second scene is
from the NYU RGB-D dataset [24]. The NYU RGB-D dataset
provides RGB images, depth maps and also pre-calculated
camera parameters for alignment. In both scenes, filter based
result [17] in Fig. 11 (c) shows an over-smoothed depth map.
Results from colorization [18] in Fig. 11(d) are very similar
to our results in Fig. 11(e) as we both use optimization
based method for depth map completion. However, upon
careful comparisons in the highlighted regions, our method
produces sharper depth boundaries and does not over-smooth
fine structures.

Figure 14 shows more depth completion results using the
NYU RGB-D dataset. The input depth map from the Kinect
has many holes which are indicated as black. Our refined and
completed depth maps are shown in Fig. 14(c), which well
align with object boundaries in RGB image. Note that some
holes are very big and the available depth samples within these
holes are limited.

Compared to filter based methods [29], [9], [3], it is worth
noting that our optimization based method does not need a
manual filter size adjustment for completing large depth holes.

We have also evaluated the quality of our depth completion
using “ground truth” depth maps captured using KinectFu-
sion [12]. As previously discussed in Sec. II, KinectFusion
integrates raw Kinect depth maps into a regular voxel grid.
From this voxel grid we can construct a textured 3D mesh
to serve as the ground truth depth maps. Since KinectFusion
integrates noisy depth maps which are captured at various
view points, compared to the single raw Kinect depth, the
fused depth has less holes and less noise. In our evaluation,
we applied our algorithm on the single raw Kinect depth with
the RGB image guidance. The result in Fig. 12 shows that our
depth completion result is visually similar to the KinectFusion
depth. Especially in Fig. 12, we are able to complete thin and
metal structure of the desk lamp whose depth measurement
is not captured reliably from the raw Kinect depth map. In

addition, the boundary regions and holes are also reasonably
completed.

C. Video Depth Completion

Finally, we show our video depth completion results in
Fig. 15. In our experiments, we also use the NYU RGB-
D dataset [24] since it is an public data set and it provides
synchronized depth-color video pairs in 30 frame rates. As
shown in Fig. 15, the depth map without temporal coherency
flickers and has noticeable depth inconsistency. After using
our approach described in Sec. IV-E, however, the artifacts
are significantly reduced. In addition, the quality of the depth
completion results in each individual frame improved.

VI. DISCUSSION AND SUMMARY

We have presented a framework to upsample a low-
resolution depth from 3D-ToF camera and to repair raw depth
maps from a Kinect using an auxiliary RGB image. Our frame-
work is based on a least-square optimization that combines
several weighting factors together with nonlocal structure fil-
tering to maintain sharp depth boundaries and to prevent depth
bleeding during propagation. Although the definitions of our
weighting factors are heuristic, each of them serves different
purposes to protect edge discontinuities and fine structures in
the repaired depth maps. By combining the different weighting
factors together, our approach achieved the best quality results
comparing to individual usage of the weighting factors. Our
experimental results show that this framework out-performs
previous work in terms of both RMSE and visual quality. In
addition to the automatic method, we have also discussed how
to extend our approach to incorporate user markup. Our user
correction method is simple and intuitive and does not require
any addition modifications for solving the objective function
defined in Sec. IV-A. Lastly, we described how to extend this
framework to work on video input by introducing an additional
data term to exploit temporal coherency.
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(a) (b) (c) (d) (e)
Fig. 11. Depth map completion results. (a) RGB Images, (b) Registered raw depth maps from Kinect, Depth map completion using (c) Joint bilateral
filter [17], (d) Colorization [18], and (e) Our method. Note the high lighted regions.
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Fig. 12. Qualitative comparison of our depth completion result with KinectFusion [12]. From the 3D mesh of KinectFusion, we generated a depth map at
the color image coordinate. Next, we apply our depth completion approach to the raw Kinect depth map. The two depth maps shows quite similar structure
and similar depth values in various regions (especially a thin structure of the desk lamp and boundary regions of cups and holes in the books.
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(a) (b) (c)
Fig. 13. Depth map upsampling on ToF-RGB system. (a) Our input, the low-resolution depth maps are shown on the lower left corner (Ratio between the
two images are preserved). (b) Our results. User scribble areas (blue) and the additional depth sample (red) were high-lighted. (c) Novel view rendering of
our result. Note that no user markup is required in our results in the third row.
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(a) (b) (c)
Fig. 14. Depth map completion examples using NYU RGB-D dataset [24]. (a) RGB Images. (b) Registered raw depth maps. (c) Our refinement. For these
results no user markup is applied.

Fig. 15. Depth map video completion results on NYU RGB-D dataset [24]. Each rows show sequence of color images, raw Kinect depth, our depth
completion without temporal coherency and with temporal coherency, which is described in Sec. IV-E. The white boxes highlight improvements when the
temporal coherency is considered; the large holes in raw depth is reliably filled and the depth boundaries become stable.


