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Richardson-Lucy Deblurring for Scenes Under A
Projective Motion Path

Yu-Wing Tai Ping Tan Michael S. Brown

Abstract— This paper addresses how to model and correct
image blur that arises when a camera undergoes ego motion
while observing a distant scene. In particular, we discuss how
the blurred image can be modeled as an integration of the clear
scene under a sequence of planar projective transformations (i.e.
homographies) that describe the camera’s path. This projective
motion path blur model is more effective at modeling the spatially
varying motion blur exhibited by ego motion than conventional
methods based on space-invariant blur kernels. To correct the
blurred image, we describe how to modify the Richardson-Lucy
(RL) algorithm to incorporate this new blur model. In addition,
we show that our projective motion RL algorithm can incorporate
state-of-the-art regularization priors to improve the deblurred
results. The projective motion path blur model along with the
modified RL algorithm is detailed together with experimental
results demonstrating its overall effectiveness. Statistical analysis
on the algorithm’s convergence properties and robustness to noise
is also provided.

I. I NTRODUCTION

Motion blur from camera ego motion is an artifact in pho-
tography caused by the relative motion between the camera and
an imaged scene during exposure. Assuming a static and distant
scene, and ignoring the effects of defocus and lens aberration,
each point in the blurred image can be modeled as the convolution
of the unblurred image by a point spread function (PSF) that
describes the relative motion trajectory at that point’s position.
The aim of image deblurring is to reverse this convolution process
to recover the clear image of the scene from the captured blurry
image as shown in Figure 1.

A common assumption in existing motion deblurring algo-
rithms is that the motion PSF is spatially invariant. This implies
that all pixels are convolved with the same motion blur kernel.
However, as recently discussed by Levinet al. [17] this global
PSF assumption is typically invalid. In their experiments, images
taken with camera shake exhibited notable amounts of rotation
that causes spatially varying motion blur within the image.
Figure 2 shows a photograph that illustrates this effect. As a
result, Levinet al. [17] advocated the need for a better motion
blur model as well as image priors to impose on the deblurred
results. In this paper, we address the former issue by introducing
a new and compact motion blur model that is able to describe
spatially varying motion blur caused by a camera undergoing ego
motion.

We refer to our blur model as theprojective motion blur
model as it represents the degraded image as an integration of
the clear scene under a sequence of planar projective transforms.
Figure 3 shows a diagram of this representation. One key benefit
of this model is that it is better suited to represent camera ego
motion than the conventional kernel-based PSF parameterization
that would require the image to be segmented into uniform blur

(a)RMS: 47.2736 (b)RMS: 10.5106

(c)RMS: 10.3517 (d) Ground truth

Fig. 1. (a) An image degraded by spatially varying motion blur due to
camera ego motion. (b) The result from our basic algorithm. (c) Our result
with added regularization. (d) Ground truth image. TheRMS errors are also
shown below each image.

regions, or worse, a separate blur kernel per pixel. However,
because our approach is not based on convolution with an explicit
PSF, it has no apparent frequency domain equivalent. One of the
key contributions of this paper is to show how our blur model
can be used to extend the conventional pixel-domainRichardson-
Lucy (RL) deblurring algorithm. We refer to this modified RL
algorithm as theprojective motion Richardson-Lucy algorithm.
Similar to the conventional RL deblurring, regularization based
on various priors can be incorporated in our algorithm.

Our paper is focused on developing the projective motion
blur model and the associated RL algorithm. We assume that
the motion path of the camera is known and that the camera’s
motion satisfies our projective motion blur model. Recent methods
useful in estimating the projective motion path are discussed in
Section VI. As with other camera shake deblurring approaches,
we assume that the scene is distant and and void of moving
objects.



Fig. 2. This example demonstrates the spatially varying nature of camera
shake (a similar example was shown in [31]). The motion paths of the
saturated point light sources (shown zoomed-in) represent the PSF at various
locations in the image. It is clear that the PSFs are not uniform in appearance.

The remainder of this paper is organized as follows: Section II
discusses related work; Section III details our motion blur model;
Section IV derives the projective motion Richardson-Lucy de-
convolution algorithm; Section V describes how to incorporate
regularization into our modified RL deconvolution algorithm with
implementation details; Section VI discusses potential methods
that can be used to estimate the projective motion path; Sec-
tion VII provides analysis of the convergence properties of our
algorithm, its sensitivity to noise, and comparisons against other
approaches. A discussion and summary of this work is presented
in Section VIII.

II. RELATED WORK

Existing work targeting image blur due to camera ego motion
has assumed a global PSF for the entire image. When the blur PSF
is known, or can be estimated, well-known debluring algorithms
such as Richardson-Lucy [22], [20] and Wiener filter [32] can be
applied to deblur the image. Due to poor kernel estimation, or
convolution with PSFs that result in unrecoverable frequencies,
these conventional deblurring algorithms can introduce unde-
sirable artifacts in the deblurred result such as “ringing” and
amplification of image noise.

Consequently, research addressing image deblurring, including
camera shake and other types of blur, typically target either blur
kernel estimation or ways to regularize the final result, or both.
For example, Deyet al. [10] and Chan and Wong [6] utilized
total variation regularization to help ameliorate ringing and noise
artifacts. Ferguset al. [11] demonstrated how to use a variational
Bayesian approach combined with gradient-domain statistics to
estimate a more accurate PSF. Raskaret al. [21], [1] coded
the exposure to make the PSF more suitable for deconvolution.
Jia [13] demonstrated how to use an object’s alpha matte to better
compute the PSF. Levinet al. [16] introduced a gradient sparsity
prior to regularize results for images exhibiting defocus blur. This
prior is also applicable to motion blurred images. Yuanet al. [33]
proposed a multiscale approach to progressively recover blurred
details while Shanet al. [24] introduced regularization based on
high order partial derivatives to reduce image artifacts.

These previous approaches all work under the uniform PSF
assumption. As mentioned in Section I, camera ego motion causes
a spatially varying motion blur that cannot be accurately modeled
with a uniform PSF. Prior work has recognized the need to handle
non-uniform motion blur for camera ego motion, moving objects,
and defocus blur. For example, early work by Sawchuk [23]
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Fig. 3. Our input image is considered the integration of an image scene
under projective motion.

addressed motion blur from a moving camera by first using a log-
polar transform to transform the image such that the blur could be
expressed as a spatially invariant PSF. The range of motion that
could be addressed was limited to rotation and translation. When
addressing moving objects, the input image can be segmented
into multiple regions each with a constant PSF as demonstrated
by Levin [15], Bardsleyet al. [2], Cho et al. [7] and Li et al. [18].
Such segmented regions, however, should be small to make the
constant PSF assumption valid for the spatially varying motion
blur in camera shake motion. For example, Taiet al. [27], [28]
extended the hybrid camera framework used by Ben-Ezra and
Nayar [4] to estimate a PSF per pixel using an auxiliary video
camera. This need for a per-pixel PSF revealed the futility of
relying on the conventional kernel based PSF model for spatially
varying blur due to ego motion.

The impetus of this work is to introduce a better blur model
for camera ego motion. While this paper was under review, the
utility of this projective motion path model has already been
demonstrated by Taiet al. [29] for deblurring moving objects and
Li et al. [19] for generating sharp panoramas from motion blurred
image sequences. In addition, Whyteet al. [31] simultaneously
proposed a similar blur formulation and correction algorithm.
While their work focuses on rotational motion about the camera’s
optical center, the formulation of their motion blur model is
identical to ours.

III. T HE PROJECTIVEMOTION BLUR MODEL

In this section, we describe our blur model based on a planar
projective motion path. This model will be used in the following
section to derive the deblurring algorithm.

In photography, the pixel intensity of an image is determined
by the amount of light received by the imaging sensor over the
exposure time:

I(x) =

∫ T

0

�I(x, t)dt ≈

N
∑

i=1

ΔI(x, ti), (1)

where I(x) is the image recorded after exposure;�I(x, t) and
its discrete equivalentΔI(x, ti) are the image captured by the
sensor within an infinitesimal time intervaldt at time instancet;
[0, T ] is the total exposure time andx is a 3×1 vector indicating
the homogenous pixel coordinate. In our model, we assumeN

(the discrete sampling rate over exposure time) is large enough
so that the difference between continuous integration and discrete
integration is negligible.

When there is no relative motion between the camera and the
scene, assuming the effects of sensor noise is small,ΔI(x, t1) ∼=
ΔI(x, t2) ∼= ⋅ ⋅ ⋅ ∼= ΔI(x, tN ) and I(x) ∼= NΔI(x, t0) ≜

I0(x) is a clear image. When there is relative motion,I(x) is
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Fig. 4. This figure compares our blur model and the conventional model.
Given the motion path (PSF), a conventional model uses an rectangular kernel
(analogous to an image patch) to represent the PSF. In comparison, our
model uses a sequence of transformation matrices. For rotational motion, our
representation encodes the rotation via a sequence of homographies naturally,
while the conventional approach would need to store pixelwise PSFs.

the summation of multipleunaligned imagesΔI(x, ti). For a
static distant scene, the relative motion causes a planar projective
transform in the image plane, i.e.ΔI(x, ti) = ΔI(ℎix, ti−1).
Here,ℎi is a homography1 defined by a3×3 non-singular matrix
up to a scalar. Suppose allℎi are known, we can then express
ΔI(x, ti) by I0(x) using the following formulation:

ΔI(x, ti) = ΔI(

i
∏

j=1

ℎjx, t0) =
1

N
I0(Hix), (2)

whereHi =
∏i

j=1 ℎj is also a homography. Hence, we obtain
our projective motion blur model as:

B(y) =

N
∑

i=1

ΔI(x, ti) =
1

N

N
∑

i=1

I0(Hix), (3)

whereB(y) is the motion blurred image, andI0(x) is the clear
image we want to estimate. According to our model, the blur
image is the average of multiple clear images, each of which is
a planar projective transformed of the clear imageI0(x).

Figure 4 illustrates the relationship between our blur model
and the conventional representation. The conventional spatially
invariant PSF representation is a special case of our model for
which everyℎi is a translation. Note that for in-plane transla-
tional motion, the conventional kernel-based model provides a

1We use a homography for its ability to model all planar transformations.
More restrictive transformations, e.g. rotation, translation, etc, can be used
instead when prior knowledge of the camera’s motion path is known.

more compact representation of the motion blur than our model.
However, in the cases of other motions, e.g. in-plane/out-of-
plane rotation, our projective motion model is more compact and
intuitive.

IV. PROJECTIVEMOTION RICHARDSON-LUCY

In this section, we describe how to modify the Richardson-
Lucy algorithm to incorporate our blur model. To do so, we first
give a brief review of the Richardson-Lucy algorithm [22], [20]
and then derive our algorithm in a similar manner. For simplicity,
the termI instead ofI0 is used to represent the clear image to
be estimated.

A. Richardson-Lucy Deconvolution Algorithm

The derivation in this section of the Richardson-Lucy Decon-
volution algorithm [22], [20] is based on the paper from Shepp
and Vardi [26]. In particular, the derivation from Shepp and Vardi
shows that the RL algorithm can be considered a maximum
likelihood solution using the Poisson distribution to model the
likelihood probabilityP (B, k∣I):

P (B,k∣I) =
∏

x∈I

g(x)B(x)e−g(x)

B(x)!
, (4)

g(x) =
∑

y∈k

I(y)k(x− y), (5)

whereB is the observed motion blurred image,k is the motion
PSF, i.e.

∑

y∈k k(y) = 1, I is the clear image we want to
estimate, andg(x) is a convolution process for a pixel located
at x. Equation (4) assumes that the likelihood probability is
conditionally independent for eachx. Since

∑

y∈k k(y) = 1 and
∑

x∈B B(x) =
∑

x∈I I(x), the overall intensity is preserved.
In [26], Shepp and Vardi show that Equation (4) is a con-

cave function by showing the matrix of second derivatives of
Equation (4) is negative semi-definite. In order to optimize
Equation (4), it follows from the Theorem 2.19(e) of [30] that
the sufficient conditions forI to be a maximizer of Equation (4)
are the Kuhn-Tucker conditions where allx satisfy:

I(x)
∂

∂I(x)
ln(
∏

x∈I

g(x)B(x)e−g(x)

B(x)!
) = 0, (6)

and

∂

∂I(x)
ln(
∏

x∈I

g(x)B(x)e−g(x)

B(x)!
) ≤ 0, if I(x) = 0. (7)

To obtain the iterative update rule for the RL algorithm, we
use the first condition in Equation (6)2, for all x ∈ I:

I(x)
∂

∂I(x)
ln(
∏

x∈I

g(x)B(x)e−g(x)

B(x)!
) = 0,

I(x)
∑

x∈I

∂

∂I(x)
(B(x)ln(g(x))− g(x)− ln(B(x)!)) = 0,

I(x)
∑

x∈I

B(x)

g(x)

∂

∂I(x)
g(x)− I(x)

∑

x∈I

∂

∂I(x)
g(x) = 0,

I(x)
∑

y∈k

B(y)

g(y)
k(y − x)− I(x)

∑

y∈k

k(y − x) = 0.

2The second condition in Equation (7) is used to relate the RL algorithm
with the EM algorithm [9] for the convergence proof. For further details, we
refer readers to [26].
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Motion Blur Image, B
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(result at 20th iteration)
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Fig. 5. Overview of the projective motion RL algorithm. Giventhe current estimationIt, we compute a synthetic blur imageB′ according to the given
motion in terms ofHi. The residual error imageEt = B/B′ is computed by pixel-wise division. The residual errors are then integrated according toH−1

i

to produce an updated estimationIt+1. The It+1 is then used as the initial guess for the next iteration. This process is iterated until convergence or after a
fixed number of iterations. In our implementation, the number of iterations is fixed to 500.

Since
∑

y∈k k(y) = 1, we have
∑

y∈k k(y − x) = 1. After
adding the iteration index,t, we get:

It+1(x) = It(x)
∑

y∈k

B(y)
∑

z∈k I
t(z)k(y − z)

k(y − x). (8)

Utilizing the convolution operation for the whole image, we
obtain the RL algorihm:

It+1 = It × k̃ ⊗
B

k ⊗ It
, (9)

where k̃ is the transpose ofk that flips the shape ofk upside-
down and left-to-right,⊗ is the convolution operation and× is a
pixel-wise multiplication operation. To understand Equation (9),
we can consider thatB′t = k ⊗ It is the prediction of a blurred
image according to the current estimation of clear imageIt and
the given point spread functionk. Thus,B/B′t is the residual
errors (by pixel-wise division) between the real blurred imageB

and the predicted blurred imageB′t. The correlation operation
(k̃⊗) integrates the residual errors distributed according tok̃. The
update rule in Equation (9) essentially computes a clear imageI∞

that would generate the blurred imageB given a known point
spread functionk. Typically, the algorithm start with an initial
guess ofI0 = B.

B. Projective Motion Richardson-Lucy algorithm

With the basic Richardson-Lucy algorithm, we can derive our
projective motion Richardson-Lucy algorithm. From the projec-
tive motion blur model defined in Equation (3), we can integrate
the motion path at each pixel locationy and define a spatially
varying motion PSFky:

B(y) =
1

N

N
∑

i=1

I(Hix) =
∑

x∈ky

I(x)ky(x), (10)

and

ky(x) =

{

1
N , if x = H−1

i y

0, otℎerwise
, (11)

where
∑

x∈ky
ky(x) =

∑N
i=1

1
N = 1. Becausex = H−1

i y does
not correspond to a discrete integer pixel coordinate, bicubic
interpolation is used to estimate the pixel values for the pointsx.

Substituting and replacing Equation (5) with Equation (10) for
the RL algorithm, we get:

It+1(x) = It(x)
∑

y∈kx

B(y)
∑

z∈ky
It(z)ky(z)

k̃x(y), (12)

which is the general form for spatially varying motion deblurring
using the RL algorithm. The motion path iñkx is the reverse
direction of motion path inkx.

Since the motion path inkx, according to Equation (10), can
be described by a sequence of homographies,H1 . . .HN , we
can also group the motion path of̃kx. Grouping the motion
path of k̃x forms a new sequence of homographies which is
the original homography sequence but with each matrix inverted
and applied in reverse order, i.e.H−1

N . . .H−1
1 . For each point

along the motion path inH1 . . .HN , H−1
N

. . .H−1
1 reverse the

transformation and integrate the errors along the motion path.
Thus, we obtain the iterative update rule for the projective motion
blur model:

It+1 = It ×
1

N

N
∑

i=1

Et(H−1
i x), (13)

whereEt(x) =
B(x)

1
N

∑
N
i=1

It(Hix)
is the residual error between the

real blurred imageB and the predicted blurred imageB′t =
1
N

∑N
i=1 I

t(Hix). Note that although we computed the per-pixel
motion PSF during the derivation, Equation (13) processes the
image as a whole and does not need to reconstruct the per-pixel
motion PSF explicitly. This is similar to the global convolution
and correlation process in the conventional RL algorithm. In
essence, our approach replaces the convolution and correlation
operators in the conventional RL algorithm with a sequence of
forward projective motions and their inverses via the homogra-
phies. Figure 5 diagrams our projective motion RL algorithm.

V. A DDING REGULARIZATION

The result derived in the previous section is a maximum likeli-
hood estimation with respect to Poisson noise models and imposes
no regularization on the solution. Recent deblurring works (e.g.
[10], [16], [33]) have shown that imposing certain image priors
can significantly reduce deconvolution artifacts. In this section,
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RMS: 11.5446 RMS: 12.1306 RMS: 12.8540 RMS: 11.5512

RMS: 10.3517 RMS: 10.9025 RMS: 10.8316 RMS: 10.4296
Total Variation Laplacian Bilateral Bilateral Laplacian

Fig. 6. Comparisons on different regularization: Total Variation (TV) regularization, Laplacian regularizatio gdn, Bilateral regularization and Bilateral
Laplacian regularization. The results on the top row are produced with fixed� = 0.5; The results on the bottom row are produced with our suggested
implementation scheme which� decreases progressively as iterations increase. The number of iterations and parameters setting (except�) are the same for
all testing case. Our implementation scheme is effective as the deblurring quality improves in terms of both visual appearance andRMS errors. The input
blur image and ground truth image can be found in Figure 1(a) and (d) respectively.

we first derive the general form for including a regularization
term in the Richardson-Lucy algorithm. We then describe how
regularization based on total variation [10], Laplacian [16], and
bilateral regularization in [33] can be incorporated into our
algorithm. The goal of this section is not to compare and evaluate
the performance of different regularization in the deconvolution
process. Instead, we want to show the capability of our projective
motion RL to include regularization terms that have been used
with the conventional RL. In addition, we discuss implementation
details that allow the regularization terms to be more effective and
avoid the tuning of the parameter,�, that controls the relative
weight of regularization.

Regularization in Richardson-Lucy algorithm
We start with the derivation from the Bayes’s equation. Suppose

that P (I) is the prior probability of the restored imageI. Then,
the objective function we want to optimize becomes:

argmax
I

P (I ∣B,k)

= argmax
I

P (B,k∣I)P (I)

= argmin
I

−L(B, k∣I)− L(I)

= argmin
I

∑

x∈I

(g(x)−B(x) ln(g(x)) + �R(I(x)), (14)

where L(⋅) = ln(P (⋅)), R(I) = − 1
�L(I) is the regularization

term and� is the relative weight between the data term and
the regularization term in Equation (14). Computing the first
derivative of Equation (14) with respect toI(x) and setting it
equal to zero, we get:
∑

y∈k

B(y)
∑

z∈k It(z)k(y − z)
k(y − x) = 1− �∇R(I(x)), (15)

where∇R(I(x)) is the first derivative ofR(I(x)) with respect to
I(x). In order for the RL algorithm to converge, we needIt+1

It = 1

as t → ∞. Hence, the regularized RL algorithm becomes:

It+1(x) =
It(x)

1− �∇R(It(x))

∑

y∈k

B(y)k(y − x)
∑

z∈k It(z)k(y − z)
, (16)

and

It+1 =
It

1− �∇R(It)
× k̃ ⊗

B

k ⊗ It
. (17)

Similarly, for our projective motion RL algorithm, we can derive
from Equation (16) to get a regularized version of the update rule:

It+1(x) =
It(x)

1− �∇R(It)
×

1

N

N
∑

i=1

Et(H−1
i x). (18)

In the following, we describe several regularization approaches
commonly used with motion deblurring.
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Fig. 7. Convergence rates of our projective motion RL algorithm. The first and the fourth rows show the plot ofIt+1/It, the second and the fifth rows
show the plot of RMS errors against number of iterations and the input motion blur image for our basic algorithm, regularized algorithm with fixed weight
(� = 0.5), and regularized algorithm with decreasing weight (linearly from1 to 0) as the number of iterations increase. Note that the motion blur are different
for the two test cases. The third and the sixth row show the input motion blur image and intermediate results at the 20th, 50th, 100th, 500th and 5000th
iterations for the basic algorithm.

Total variation regularization Toal variation (TV) regularization
has been demonstrated by Chan and Wong [6] and Deyet

al. [10]. The purpose of introducing this regularization is to
suppress image noise amplified during the deconvolution process
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by minimizing the magnitude of gradients in the deblurred image:

RTV (I) =

∫

√

∣∣∇I(x)∣∣2dx (19)

where ∇I(x) is the first order derivative ofI(x) (in x and y

direction). Substituting this regularization term into Equation (18),
we get:

It+1(x) =
It(x)

1− �∇RTV (I)
×

1

N

N
∑

i=1

Et(H−1
i x) (20)

where∇RTV (I) = −∇ ∇It

∣∇It∣
. As reported in [10],� = 0.0023 is

used in their experiments.

Laplacian regularization The Laplacian regularization, some-
times called the sparsity regularization, asserts that for natural
images the histogram of the gradient magnitudes should follow
a heavy-tailed distribution that can be modeled by a Laplacian
distribution. The Laplacian regularization, suggested by [16],
takes the following form:

RL(I) = exp(−
1

�
∣∇I ∣d), (21)

whered is a parameter controlling the shape of distribution, and
the term� = 0.005 (according to [16]) is the variance of the
image noise. In [16],d is set to0.8. In our implementation and
the source code provided4 we follow the same parameter settings.
The effect of Laplacian regularization is also to suppress noise
and to reduce small ringing artifacts.

Adding this regularization into our projective motion RL algo-
rithm, we obtain another set of update rules:

It+1(x) =
It(x)

1− �∇RL(I)
×

1

N

N
∑

i=1

Et(H−1
i x) (22)

where

∇RL(I) = −
1

�
exp(−

1

�
∣∇I ∣d)∣∇I ∣d−1∇2I. (23)

A typical value for� (according to the implementation of [16])
is between0.001 to 0.004. We note that in the implementation
of [16] a slightly different formulation is used:

∇RL(I) = −
1

∣∇I ∣d−2
∇2I. (24)

The effects of the two regularization schemes in Equation (23)
and Equation (24), however, are similar with larger regularization
weight given to smaller gradient and vice versa. In our imple-
mentation, we use the method in Equation (23).

Bilateral regularization In order to suppress visual artifacts
while preserving sharp edges, Yuanet al. [33] proposed an edge-
preserving bilateral regularization cost:

RB(I) =
∑

x

∑

y∈N(x)

g1(∣∣x−y∣∣2)(1−g2(∣∣I(x)−I(y)∣∣2)), (25)

where N(x) is local neighborhood ofx, g1(⋅), g2(⋅) are two
Gaussian functions with zero mean and variance of�2

s , �2
r

respectively. In [33], the deblurring process is performed in a

3This is a weight for image intensity between 0 and 1. For image intensity
between 0 and 255, a normalized weight should be equal to0.002× 255 =
0.51.

4http://yuwing.kaist.ac.kr/projects/projectivedeblur/index.htm

multi-scale fashion with the spatial variance of Gaussian blur
kernel from one level to another set to be�2

s = 0.5. The term�2
r

is the range variance and it is set to be0.01×∣max(I)−min(I)∣.
The size of local neighborhoodN(x) is determined by�s.

In [33], visual artifacts are progressively suppressed by both
inter-scale and intra-scale regularization. The bilateral regulariza-
tion corresponds to the inter-scale regularization. Our iterative
update rule with the bilateral regularization term are derived
as [33]:

It+1(x) =
It(x)

1− �∇RB(I)
×

1

N

N
∑

i=1

Et(H−1
i x), (26)

where

∇RB(I) =
∑

y∈N(x)

(Idy − IdyDy), (27)

Idy (x) = g1(∣∣x− y∣∣2)g2(∣∣I(x)− I(y)∣∣2)
(I(x)− I(y))

�r
.(28)

The term Dy is a displacement operator which shifts the
entire imageIdy by the displacement vector(y − x), and � (as
reported in [33]) is set to be a decay function whose weight
decreases as the number of iterations increases. The effect of this
bilateral regularization is similar to the effect of the Laplacian
regularization5, however, we found that the bilateral regularization
tends to produce a smoother result not only because its use of a
Gaussian distribution forg2(⋅), but also because the larger local
neighborhood sizeN(x). In our implementation, we also include
a regularization whereg2(⋅) follows a Laplacian distribution. We
call this a “Bilateral Laplacian” regularization. In our implemen-
tation, the parameters ofg2(⋅) is set to be the same as that used
in [16].

Implementation Details One major challenge in many deblurring
approaches is the need for parameter tuning. In our case, the
most important parameter is the term� which adjusts the relative
weight between the data term and the regularization term. If� is
too large, details in the deblurred results can be overly smoothed.
On the other hand, if� is too small, deconvolution artifacts cannot
be suppressed.

In our experiments, we found that having a large initial� that is
progressively decreased as the number of iterations are increased
produces the best results. This implementation scheme has been
used in [24], [33]. In regards to its effectiveness, [17] analysis of
this approach noted that this scheme allows the energy function to
converge to a local minima, but this local minima is closer to the
ground truth image than its global minima. In our implementation,
we divided the iterations into five sets each containing 100
iterations. The� are set to be1.0, 0.5, 0.25, 0.125, 0.0 in each set.
We ran our deblurring algorithm starting from the largest� to the
smallest�. One interesting observation we found is that under this
implementation scheme the total variation regularization produces
the best results in terms of root-mean-square (RMS) error6. One
explanation is that the Laplacian and Bilateral regularization tend
to protect false edges that arise from deconvolution artifacts.

The visual appearance of our deblurred results with different
regularization are similar and all of the previously discussed

5Laplacian and bilateral regularization are essentially the same ifN(x) is
the first order neighborhood andg2(⋅) is a Laplacian function.

6TheRMS error measured for image intensity between 0 to 255.
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noise variance(�2) = 2 noise variance(�2) = 5 noise variance(�2) = 10 noise variance(�2) = 20 noise variance(�2) = 40

RMS = 27.3467 RMS = 47.7026 RMS = 63.9226 RMS = 77.2053 RMS = 89.5259

RMS = 21.6051 RMS = 32.2848 RMS = 47.6842 RMS = 70.5292 RMS = 87.3484

Fig. 8. Evaluation on the robustness of our algorithm by adding different amount of noise in blurred images. Top row: noisy blurred image, the amplitude
of noise is determined by the noise variance (�2). Second row: Deblurring results with our basic projective motion RL algorithm. Third row: Deblurring
results with total variation regularization. In the presence of image noise, our deblurring algorithm amplified the image noise in deblurred results. The effects
of regularization hence become significant in suppressing amplified image noise.

regularization schemes can successfully improve the visual quality
of the deblurred image. One important thing to note is that in the
last set of iterations, we do not impose any regularization but
we start with a very good initialization that is produced from
the regularized deblurring algorithm. We found that even without
regularization, having a good initialization can effectively reduce
ringing and noise amplification.

VI. M OTION ESTIMATION

Although the focus of this paper is the derivation of our
projective motion path blur model and its associated deblurring
algorithm, for completeness we describe some promising methods
to compute the projective motion within the exposure time. Gen-
eral algorithms for motion estimation is part of future research.

Auxiliary Hardware or Imaging Modifications A direct method
to estimate camera motion in terms of homographies during the
exposure is to use a hybrid camera [4], [28] that captures an
auxiliary high-frame-rate low-resolution video. From the auxiliary
video, motion trajectory at each pixel (i.e. optical flow) can be

computed as done in [28] and sequence of homographies can
be fitted to each frame. Another promising hardware coupling
is the use of accelerometers and inertial sensors for estimating
the cameras motion as demonstrated in [12] and [14]. Recently,
Tai et al. [29] showed how a coded exposure could be used to
capture an image containing a motion blurred moving object.
Through the analysis of motion discontinuities protected by the
coded exposure, homographies describing the motion path could
be computed.

Uniform Motion Assumption If the motion blur is caused by a
constant motion path over the exposure time, then the path can
be described asℎ1 = ℎ2 = ⋅ ⋅ ⋅ = ℎN . According to the definition
of Hi =

∏i
j=1 ℎj , we can get

ℎi =
N
√

HN 1 ≤ i ≤ N. (29)

Thus, we can obtainℎi by computing theN-th matrix root [5]
of HN , and the estimation of the series ofℎi is reduced to the
estimation ofHN . The easiest technique to estimate this uniform
motion is described by Shanet al. [25] which relies on the user
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noise variance(�2) = 2 noise variance(�2) = 5 noise variance(�2) = 10 noise variance(�2) = 20 noise variance(�2) = 40

RMS = 55.7114 RMS = 70.9970 RMS = 92.3391 RMS = 113.7238 RMS = 128.9554

RMS = 58.8623 RMS = 65.6026 RMS = 81.4583 RMS = 106.0478 RMS = 126.0776

Fig. 9. Evaluation on the robustness of our algorithm by adding different amount of noise in blurred images. Top row: noisy blurred image, the amplitude
of noise is determined by the noise variance (�2). Second row: Deblurring results with our basic projective motion RL algorithm. Third row: Deblurring
results with total variation regularization. In the presence of image noise, our deblurring algorithm amplified the image noise in deblurred results. The effects
of regularization hence become significant in suppressing amplified image noise.

to supply image correspondences to establish the transformation.
Another highly promising technique is that proposed by Dai and
Wu [8] that uses the blurred objects alpha matte to estimateHN .
In our experiments, we use a former approach in [25]. Recently,
Li et al. [19] proposed a method to estimate a global homography
between successful video images to perform mosaicing. The
frames could also be deblurred using a motion path model similar
to that proposed in this paper.

Recently, Whyteet al. [31] use a variational Bayesian approach
to estimate the weight of quantized rotation parameters without
the need for auxiliary hardware or a uniform assumption. Their
estimation of the motion PSF, however, is not sufficiently accurate
leading to deconvolution artifacts in the deblurred result. This
work concurrently showed a method to estimate the spatially
varying PSF using blurred and noisy image pairs.

VII. E XPERIMENT RESULTS

In this section, we empirically examine our algorithm’s conver-
gence properties by plotting the RMS error against the number of

iterations. Robustness is analyzed by comparing the results with
different amounts of additive noise. We also evaluate the quality
of our projective motion RL with and without regularization by
creating a set synthetic test cases. Our results are also compared
against spatially invariant deblurring method, e.g. [16], with syn-
thetic test cases that resemble real motion blurred images caused
by camera shake. Finally, we show results on real images for
which the projective motion paths were estimated using methods
described in Section VI.

A. Convergence Analysis

While the conventional RL algorithm guarantees convergence,
in this section, we empirically examine the convergence of our
projective motion RL algorithm. At each iteration, we compute
the log ratio log(It+1/It) and the RMS error of the current
result against the ground truth image. We run our algorithm for a
total of 5,000 iterations for each case. The convergence rates of
our basic projective motion RL, regularized algorithm with fixed
regularization weight (� = 0.5, for intensity range between0

9



0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Input

Basic

Reg.

Test case

R
M

S
 E

rr
o

rs

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Input

Basic

Reg.

R
M

S
 E

rr
o

rs

Test case

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Input

Basic

Reg.

Test case

R
M

S
 E

rr
o

rs

Mandrill Lena Cameraman

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Input

Basic

Reg.

Test case

R
M

S
 E

rr
o

rs

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Input

Basic

Reg.

Test case

R
M

S
 E

rr
o

rs

Input Output

Fruits PAMI

Fig. 10. RMS pixel errors for different examples and test cases in our synthetic trials. We compare theRMS of the input blur image (blue), the deblurred
image using basic projective motion RL (red) and the deblurred image using projective motion RL with (Total Variation) regularization (green).All tested
images and results are available in the supplemental materials. An example (input and output) from these results are shown here.

and255) and regularized algorithm with decreasing regularization
weight (linearly from1 to 0) are compared. Plotted is theRMS

error with respect to the ground truth image. Figure 7 shows the
graphs plotting RMS errors against the number of iterations.

Typically, our method converges within 300 to 400 iterations
for both the basic algorithm and regularized algorithm with fixed
regularization weight. As the number of iterations increases,
the difference ofRMS errors between successive iterations
decreases, however, after 500 iterations the visual improvement
in the deblurred result is unnoticeable as shown in some inter-
mediate results in Figure 7. We found that the algorithm with
regularization producedRMS errors that are higher than the basic
algorithm. The main reason is that the test cases demonstrated
here are noise-free, and the regularization tends to smooth out
high frequency details resulting in higherRMS error. However,
as we will show in the next subsection, when noise is present in
the image, incorporating regularization becomes effective. Using
the decreasing regularization weight scheme we still observe a
decrease inRMS errors even at5000 iterations. This approach
also achievesRMS errors lower than both the basic algorithm
and regularized algorithm using a fixed regularization weight.
This convergence study confirms the effectiveness of this scheme
observed by [24], [33].

B. Noise Analysis

To test for the robustness of our algorithm, we added different
amounts of zero-mean Gaussian noise to the synthetic blur
images. To simulate sensor noise, the added image noise does
not undergo the convolution process, and is independent of the
motion blur effect.

Figure 8 and Figure 9 show our deblurring results with different
amounts of Gaussian noise7 added. We show results of our
algorithm with and without regularization. For this experiment,

7The noise variance�2 of Gaussian noise added are with respect to intensity
range between 0 and 255.

we use the Poisson noise model with total variation regularization.
The test pattern is a resolution chart. As expected, our deblurring
results without regularization amplifies image noise like other
deblurring algorithms. The quality of our deblurring algorithm
degrades as the amount of noise increases. In addition, larger
motions tend to produce noisier results. In such cases, the added
noise in the image around the center of rotation becomes less
apparent than those in image regions with larger motion blur
(i.e. the image boundaries). In the presence of image noise,
the regularization term becomes important to improve the visual
quality of the results. Better results can be achieved by increasing
the regularization weight as the noise level increased. However,
for fairness of comparisons, we use the same regularization weight
as discussed in Section V. The difference between the regularized
and un-regularized results are significant both in terms of visual
quality and RMS errors. However, when the amount of image
noise added is very large, e.g.�2 ≥ 20, the regularization term
cannot suppress image noise effectively.

C. Qualitative and Quantitative Analysis

Figure 1 has already shown a synthetic example of spatially
varying motion blur with knownℎi. To further evaluate our algo-
rithm quantitatively, we have created a test set consisting of fifteen
test cases and five test images:Mandrill, Lena, Cameraman,
Fruits andPAMI. TheMandrill example contains significant high
frequency details in the hair regions. TheLena example contains
both high frequency details, smooth regions and also step edges.
TheCameraman image is a monotone image but with noise added
independently to each RGB channel. TheFruits example also
contains high frequency details and smooth regions. Lastly, the
PAMI example is a text-based binary image (i.e. black and white).
For each test case, we add additional Gaussian noise (�2 = 2)
to simulate camera sensor noise. The parameters setting are the
same for all test cases and the values we used are the same as in
the implementation of [16].

10



Fig. 11. Top row: Ground truth PSF from [17]. Bottom row: Our approxi-
mated PSF using projective motion paths.

We show theRMS of the input motion blurred image, the
RMS of deblurred image using our basic projective motion RL al-
gorithm and theRMS of the deblurred image with regularization
(total variation) are provided. Figure 10 shows our results. Our
projective motion RL is effective, especially when regularization
is used with our suggested implementation scheme. These test
cases also demonstrate that our approach is effective in recovering
spatially varying motion blur that satisfied our projective motion
blur assumption. We note that in some test cases, e.g. examples
from the Fruits test case, theRMS errors of the deblurred
results are larger than theRMS errors of input motion blurred
images. This is due to the effects of amplified noise. After noise
suppression with regularization, theRMS errors of the deblurred
results are smaller than theRMS errors of input motion blurred
images.

D. Comparisons with spatially invariant method

To evaluate our projective motion blur model for the motion
blur effects caused by camera shake, another test set was cre-
ated to simulate blur from camera shake motion. Our rests are
compared against results obtained using a spatially invariant blur
model based on the deblurring algorithm in [16].

This test set consists of 8 test cases and 5 images:Doll,
Einstein, Lotus, Tower andPalace. For each test case, we first use
homographies to approximate the shape and intensity variation of
“real” motion blur kernels. The real kernels are from the ground
truth kernels in the data provided by Levinet al. [17]. Figure 11
shows their ground truth kernels and our approximated kernels
using homographies to describe the projective motion path. Since
Levin et al. locked theZ-axis rotation handle of tripod when they
captured the images, their data does not contain any rotation.
However, real camera shake usually contains small amount of
rotation. We added1 degree of rotation in total to the overall
motion path to simulate the effects of in-plane rotation of camera
shake as shown in Figure 12. Although the motion blur of this
test set contains rotation, the effect of rotation is almost invisible
from the motion blurred images itself since the translational
motion dominates the effects of motion blur. However, when we
apply spatially invariant motion deblurring algorithm [16] to these
images, the effects of rotation is obvious. Similar to the previous
test set, we also added Gaussian noise (�2 = 2) to simulate
camera sensor noise.

Figure 13 shows theRMS errors of our results (with TV
regularization) compared with results from [16] using nine dif-
ferent PSFs sampled at different locations of the image. We use
the source code provided by [16] with parameter� = 0.001 to
obtain the results for comparison. Our results consistently produce
smallerRMS errors and less visual artifacts when compared to
the results from [16]. These test cases also show the insufficiency
of conventional spatially invariant motion to model camera shake.
The results of [16] obtain good results around local regions where

Fig. 12. Our simulated spatially varying motion blur PSF for camera shake.
From the approximated kernels in Figure 11, we included1 degree of rotation
(in total) in the motion path. This is done by first estimating the PSF using
homographies (Figure 11) and then introducing a rotation in the motion path
of a single degree distributed over the whole range of motion. To demonstrate
the effect of this rotation, we reconstructed the PSFs at nine different positions
in the image. These reconstructed PSFs will be used by a spatially invariant
motion deblurring algorithm [16] for comparison. With only1 degree of
rotation we can see a significant change to the camera shake PSFs in different
regions of the image. Rotational motion for real camera shake (e.g. as shown
in Figure 2) would be larger than shown here.

the PSF is sampled, however, visual artifacts become increasingly
noticeable as we move farther away from the sampled point of
the PSF used for deconvolution.

E. Real Examples

Figure 14 shows an example of global motion blur obtained
from our previous work using a hybrid-camera system [28].
To obtain the motion path homographies, we use the motion
vectors between in the low-resolution high-framerate camera as
a set of point correspondences and fit a global homography
per low-resolution frames. We also show the effectiveness of
our regularization compared with previous results. Our approach
achieves comparable result with [28], however we do not use the
low-resolution images for regularization as done in [28].

Figure 15 and Figure 16 show more real examples with
zoomed-in motion8 and rotational motion respectively. These
input images was obtained with a long exposure time with low
ISO setting. The motion blurred matrixHN is obtained by
fitting the transformation matrix with user markup as shown in
Figure 15(a) and Figure 16(a) respectively. Eachℎi is computed
by assuming the motion is a uniform. We show the deblurred
results from our algorithm without and with regularization in (b)
and (c). The ground truth image is shown in (d) for comparisons.
We note that our real examples contain more visual artifacts than
the synthetic examples. This is due to estimation errors inℎi. The
effects of image noise in our real examples are not as significant
as in our synthetic test case due to the long exposure time. We
also note that the motions in our real examples are not as large
as in our synthetic example.

VIII. D ISCUSSION ANDCONCLUSION

This paper has introduced two contributions for addressing
image blur due to camera ego motion. The first is a formulation
of the motion blur as an integration of the scene that has under-
gone a motion path described by a sequence of homographies.
The advantage of this motion blur model is that it can better
parameterize camera ego motion than the conventional approaches
that rely on a uniform blur kernel. In addition, this “kernel

8The approach in [25] only discusses how to estimate rotational motion,
but the estimation for zoom motion can be derived using a similar method.
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Fig. 13. We compare our results with the spatially invariant motion deblurring algorithm in [16]. TheRMS pixel errors for different examples and test
cases are shown. For the results of [16], we sampled the PSF at nine different locations in the images and therefore obtain nine different PSFs for deblurring.
Our results are compared to the results from [16] using all nine PSFs. Our approach consistently produces smallerRMS errors in all examples for all test
cases.

free” formulation more closely models the physical phenomena
causing the blur. Our second contribution is an extension to the
RL deblurring algorithm to incorporate our motion blur model
in a correction algorithm. We have outlined the basic algorithm
as well as details on incorporating state-of-the-art regularization.
Experimental results has demonstrated the effectiveness of our
approach on a variety of examples.

The following discusses issues and limitations of this blur
model, as well as a discussion on convergence, running time,
and future work.

A. Conventional PSF representation versus projective model blur
model

While this paper advocates a new blur model for camera ego
motion to replace the conventional kernel-based approach, we
note that the conventional representation has several advantages.
First, the kernel-based PSF provides an easy to understand and
intuitive represents of “point spread” about a point. Second,
the kernel-based model can include other global blurring effects
(e.g. defocus) and motion blur in a unified representation, while
our representation only targets motion blur from camera motion.
Third, by assuming the motion blur is globally the same, image
deconvolution can be done in the frequency domain, while
our projective motion RL algorithm can only be done in the
spatial domain. As demonstrated several times in this paper, the
conventional representation, however, is not suitable for dealing
with spatially varying motion blur. For such cases, our projective
motion RL formulation becomes advantageous.

B. Limitations

Our projective motion RL algorithm has several limitations
similar to other deblurring algorithms. A fundamental limitation
to our algorithm is that the high frequency details that have
been lost during the motion blur process cannot be recovered.

Our algorithm can only recover the hidden details that remain
inside the motion blur images. Another limitation is that our
approach does not deal with moving or deformable objects or
scenes with occlusion and/or disocclusion or with significant
depth variation. Figure 17, for instance, shows an object with out-
of-plane rotational motion and large variation in relative depth
captured with a coded exposure camera. Here, we assume the
motion to be strictly horizontal, and estimate the motion PSF
using only local observations around the (b) mouth, (c) ear, and
(d) chair. Our deblurring results accurately recovered scene details
only for the local regions used for PSF estimation; other regions
are distorted by the incorrect PSF. Better results could potentially
be obtained by first segmenting the image into different regions
that each satisfies the projective motion model, and then applying
our motion deblurring algorithm on each region separately. The
problem with occlusions, disocclusions and depth variations is
common to existing deblurring techniques, since the exhibited
image blur cannot be adequately represented by a PSF in such
cases. Other limitations of our approach include the problem of
pixel color saturations and severe image noise as demonstrated in
our experimental.

C. Running Time Analysis

Our current implementation takes about 15 minutes to run
500 iterations on an image size512 × 512 with an Intel(R)CPU
L2400@1.66Ghz and 512MB of RAM. The running time of our
algorithm depends on several factors, including image size∣I ∣,
number of discrete samplingN (number of homographies) and the
number of iterationsT . Hence, the running time of our algorithm
is O(∣I ∣NT ). Comparing our running time to approaches which
reconstruct pre-pixel PSF for deblurring (e.g. [28]), their running
time is O(∣I ∣MT ) whereM is window size of the square blur
kernel used to represent the PSF. Our approach has a significant
advantage withN << M . In our experiments, we found that
N = 50 is sufficient to model very large variations over the
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(a) (b)

(c) (d)

Fig. 14. Image deblurring using globally invariant kernels. (a) Input from
a hybrid camera (courtesy of [28]) where the high-frame-rate low-resolution
images are also shown; (b) Result generated by [3](Standard RL algorithm
from Matlab); (c) Result from our projective motion RL with regularization.
(d) The ground truth sharp image. Close-up views and the estimated global
blur kernels are also shown.

projective motion path. However, a conventional PSF kernel size
M can be as large as31 × 31 = 961 for small to mid-range
motion. We also note that the majority of our running time is spent
in the bicubic interpolation process necessary when applying
the homographies. Significant speed-ups could undoubtedly be
obtained with better implementation exploiting a GPU to perform
the image warping.

D. Future Directions

There are several future directions of this work. One is to ex-
plore other existing algorithms and hardware (e.g. coded exposure
and coded aperture) that can use our projective motion path blur
formulation. Another important direction is to consider how our
framework can be used to perform blind-deconvolution where the
camera’s motion path is unknown. Promising preliminary work
by Whyte et al. [31] has already been performed in the case
of rotation about the camera’s optical center both in a blind
estimation scenario and via image pairs.
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Fig. 15. (a) Blurred input image and user markups for motion estimation;
(b) Our result from using the basic projective motion RL algorithm; (c) Our
result including regularization; (d) Ground truth image.
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APPENDIX

Under Gaussian noise distribution If we assume that the
image statistics follows a Gaussian distribution instead of a
Poisson distribution, we can model the likelihood probability

(a) (b)

(c) (d)

Fig. 17. Case of non-projective motion (Images from [29]). (a) Input. (b-d)
Deblurring results with different motion PSFs estimated from different areas
of the face.

P (B,k∣I) as follow:

argmax
I

P (B,k∣I),

= argmax
I

∏

x∈I

exp(−
∣∣g(x)−B(x)∣∣2

�2
g

),

= argmin
I

∑

x∈I

∣∣g(x)−B(x)∣∣2, (30)

where g(x) =
∑

y∈k I(y)k(x − y) is defined in Equation (5),
and �2

g is the variance of a Gaussian distribution. To solve
Equation (30), we can derive an additive update rules based on
the gradient-descent method as follow:

It+1(x) = It(x) +
∑

y∈k

(

B(y)−
∑

z∈k

It(z)k(y − z)

)

k(y − x),

It+1 = It + k̃ ⊗ (B − k ⊗ It). (31)

Similarly, for our projective motion blur model, we can obtain:

It+1 = It +
1

N

N
∑

i=1

E′t(H−1
i x), (32)

whereE′t(x) = B(x) − 1
N

∑N
i=1 I

t(Hix) is the residual error
obtained by pixel-wise subtraction.

If we introduce regularization as a prior modelP (I), we now
have to maximize a posterior probabilityP (I ∣B,k). After some
mathematical rearrangement, we can obtain the following energy
function for minimization:

argmax
I

P (I ∣B,k),

= argmax
I

P (B,k∣I)P (I),

= argmin
I

∑

x∈I

∣∣g(x)−B(x)∣∣2 + �R(I), (33)
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where ∣∣g(x) − B(x)∣∣2 is the data term, andR(I) =

−
�2
g

� log(P (I)) is the regularization term.
Computing the derivative of Equation (33), we can obtain

another set of iterative update rule based on gradient-decent
method:

It+1 = It + k̃ ⊗ (B − k ⊗ It) + �∇R(It), (34)

and

It+1 = It +
1

N

N
∑

i=1

E′t(H−1
i x) + �∇R(It), (35)

for the conventional motion blur model and our projective motion
blur model respectively. Note that the regularization terms studied
in Section V for the Poisson noise model can also be used for
the Gaussian noise model, as well as the same implementation
scheme for the adjustment of�.
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