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Abstract. Estimating blood volume of the left ventricle (LV) in the
end-diastolic and end-systolic phases is important in diagnosing cardio-
vascular diseases. Proper estimation of the volume requires knowledge of
which MRI slice contains the topmost basal region of the LV. Automatic
basal slice detection has proved challenging; as a result, basal slice detec-
tion remains a manual task which is prone to inter-observer variability.
This paper presents a novel method that is able to track the basal slice
over the whole cardiac cycle. The method was tested on 56 healthy and
pathological cases and was able to identify the basal slices similar to
experts’ selection for 80% and 85% of the cases for end-diastole and end-
systole, respectively. This provides a significant improvement over the
leading state-of-the-art approach that obtained 59% and 44% agreement
with experts on the same input.
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1 Introduction and Related Work

Analysis of the cardiac function is routinely performed using magnetic resonance
imaging (MRI). In a standard cardiovascular MRI scan, three different views of
the heart are acquired: a single two-chamber view, a four-chamber view, and a
stack of 12-15 short-axis slices covering the whole left ventricle (LV). Important
cardiac pathology determinants are stroke volume (SV), ejection fraction (EF),
and LV mass which are measured by finding the volume of the LV in the end-
systolic and the end-diastolic phases of the cardiac cycle. In order to compute
the LV volume, significant progress has been made in developing short-axis seg-
mentation algorithms (e.g. [1]). While these methods give good segmentation
accuracy, given the cardiac motion, they often ignore the basal slices which do
not have full myocardium around the blood pool. In order to provide an accurate
estimate of the LV volume, the most basal slice in the LV must be specified. This
can be an issue since manual basal slice specification has been found prone to
inter- and intra-observer variability which significantly impacts measured clinical
parameters [2, 3].



2 Mahsa Paknezhad, Michael S. Brown, and Stephanie Marchesseau

Efforts have been made for automatic basal slice detection. In a recent study,
Tufvesson et al. [4] proposed a method to automatically segment the basal short-
axis slices considering the long-axis motion of the heart. The approach works by
segmenting the basal short-axis slices by considering 24 circumferential sectors
over the LV which are analysed individually and removed in case no myocardium
is detected. This method is motivated by recently published guidelines by the
society for cardiovascular magnetic resonance [5] which indicate that the basal
slice is the topmost short-axis slice that has more than 50% myocardium around
the blood cavity. In this approach, the long-axis motion of the heart is also
estimated by deforming an LV model based on the segmentations helping to find
a more accurate estimation of the volume in the end-systole and end-diastole
according to the same guidelines. The algorithm is implemented in the freely
available cardiac image analysis software Segment [6] and represents the current
state-of-the-art for basal slice detection.

Other methods often exploit the availability of the long-axis views. Notable
examples include Lu and Jolly [7] and Mahapatra [8], who proposed methods
that train a model by intensity, texture, and contextual features extracted from
a bounding box around manually annotated landmarks around the mitral valve
in the long-axis view. These methods, however, need further improvement to
provide a reliable estimation. There are also trained models of the heart in the
literature for segmentation of the left ventricle from different views including
the two-chamber view such as the works by Zhuang et al. [9] and Paknezhad et
al. [10]. However, these models usually need considerable amounts of training
data.

This paper presents a model-free method that relies on the long-axis view to
find the basal slice. The long-axis view was chosen as it provides useful infor-
mation about the base of the LV given the poor quality of the short-axis slices
around the base due to heavy blood flow in this area. The proposed approach
works by segmenting the LV walls in each slice of the long-axis view and using
this segmentation to estimate the basal slice. Consequently, the method is able
to provide basal slice identification and long-axis motion estimation over the
entire cardiac cycle.

2 Segmenting the Base of the Left Ventricle

The proposed method works by segmenting the basal myocardium walls for the
whole time-sequence in the two-chamber view. This is achieved via a two-pass
segmentation approach. The first pass is a multi-phase level set that provides
an initial segmentation. From the level-set segmentation, seed points are ex-
tracted that are used in a random-walk segmentation. The results from these
two segmentations are fused to obtain the final basal myocardium wall segmen-
tation. This information is then used to determine the basal slice as described
in Section 3. The two-pass segmentation approach is described in the following.

User-input and pre-processing The long-axis two-chamber view is se-
lected for segmentation as it provides the clearest view of the LV walls around
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Fig. 1. Steps taken before and after applying the multiphase level set segmentation
algorithm on the user-annotated two-chamber view image of the LV.

the base. The user is asked to locate the LV walls on an arbitrary two-chamber
CINE image by drawing two lines on the LV walls. A 101×101 box is considered
around the LV and the histogram of each CINE image is adjusted to a reference
image sequence to normalize the contrast.

Multi-phase Level Set We obtain an initial segmentation using the multi-
phase level set algorithm proposed by Li et al. [11]. This segmentation method is
deployed since it is capable of following highly varying structures while capturing
detailed edges within the image. The algorithm takes intensity inhomogeneity,
typical of MRI scans, into account by modeling the relationship between a real-
world image I and the true image J as I = bJ + n in which b is a slow-varying
bias field that accounts for the intensity inhomogeneities, and n is an additive
noise. The final segmentation partitions the true image into N disjoint regions
Ω1, Ω2, · · · , ΩN . To estimate the bias field, a circular neighborhood around each
pixel y (specified as Oy) is considered. Due to the slow-varying property assumed
for the bias field b, the value b(x) for each pixel x ∈ Oy is approximated to
b(y). Since segmentation of the whole image domain Ω into multiple regions
{Ωi}Ni=1 partitions the neighborhood Oy, the intensities in the neighborhood of
Oy were classified into N clusters with centers b(y)ci by minimizing the following
clustering criterion:

εy =

N∑
i=1

∫
Ωi∩Oy

K(y − x)|I(x)− b(y)ci|2 dx, (1)

The N disjoint regions take N constant values c1, c2, · · · , cN that minimize the
energy function. K(y − x) was chosen to be a truncated gaussian function with
scale parameter of σ and K(y − x) = 0 for x /∈ Oy. Consequently, The best
segmentation was one such that the clustering criterion εy was minimized for
all y ∈ Ω. The energy function for the level set was defined as the sum of the
clustering criterion εy and two regularization terms with µ as the coefficient for
the distance regularization term. The algorithm is applied on the user annotated
image and the final segments are labeled as left or right wall depending on
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Fig. 2. Selection of seeds for initialization of the random-walk segmentation algorithm
by applying k-means color quantization on each wall from the level set segmentation
result. The final result is the combination of both segmentation results.

the user annotation. From this information, the blood cavity of the LV can
be estimated and segments that have an average intensity close to the average
intensity of the blood cavity are removed. Figure 1 overviews the user annotation
and level set segmentation.

Random Walk Segmentation While the level set segmentation provides
a good starting point, we found that it is necessary to further refine the segmen-
tation by integrating the results with the random-walk segmentation algorithm
proposed by Grady [12]. The random-walk segmentation algorithm is able to
improve the segmentation by subdividing the level set segmentation result into
areas with similar intensities and weak edges. This is mainly because the random-
walk segmentation is robust to noise and low contrast or absent of boundaries,
which make up many of the regions for which level set fails. The drawback of
random walk is that it requires user-defined seeds which assign unlabeled pixels
to one of the m regions in the image. To this end, we leverage the initial level set
results. In particular, the extracted segments from the level set segmentation are
smooth and k seed colors are estimated using the color quantization proposed
by Verevka [13] as shown in Figure 2. Areas with similar intensity values are
sampled uniformly and assigned the same labels. Samples from the cluster with
cluster center close to zero, if any, are assigned similar label as the label for the
areas out of the region of interest.

Random walk segmentation works by assigning a label to an unlabeled pixel
as the one most likely reached first if a random walker starts from a labeled
pixel. This can be treated as a graph problem where the random walker path is
biased by assigning weights to the edges which connect the nodes in the graph
using the gaussian weighting function wij = exp(−β(gi− gj)2), where wij is the
weight defined for the edge eij which connects the nodes vi and vj and gi is the
image intensity at pixel i. The intensity-related weights prevents the random
walker from crossing sharp intensity gradients while moving from one node to
the other. This algorithm is applied to the two-chamber view image using the
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Fig. 3. The segmentation result for the user-annotated (ith) phase is registered to
the (i + 1)th phase ((i − 1)th phase) and used as a mask to select segments from the
segmentation result for that phase. The registered mask in the (i+1)th phase ((i−1)th
phase) is then registered to the (i + 2)nd phase ((i− 1)nd phase) and so on.

assigned labels and the segments which touched the user’s annotations were
selected and regarded as the final segmentation for the user-annotated image.

Segmentation Propagation Once the two-pass segmentation is obtained
for the user-annotated image, the result is propagated to the other slices in the
two-chamber view for segment selection. This is done by using b-spline regis-
tration [14] of the initial image to the other images. Segmentation for the other
frames is carried out using the same two-pass segmentation approach, however,
the warped initial segmentation by the b-spline is used instead of user annota-
tion. This procedure is shown in Figure 3. The segmentation for each frame is
later corrected by incorporating the segmentation results from the two frames
before and after the current frame. This temporal consideration helps ameliorate
the effects of the noisy segmentation. The top row in Figure 4 shows the final
LV segmentation after this procedure.

3 Estimating the Basal Slice and the Long-axis Motion

Having segmented the two-chamber view image sequence, the SCMR guide-
lines [5] are used for basal slice selection. Considering the facts that the line
connecting the mitral valve points may not be parallel to the short-axis slices
and that multiple short-axis slices may intersect this line, the slice featured by
the SCMR guidelines can be approximated to be the topmost short-axis slice
below the middle of the line connecting the mitral valve points in the long-axis
view. This is mainly because the two-chamber view provides an overview of two
opposite walls of LV which are close to the center of the blood cavity. The long-
axis motion is also estimated by tracking the relative movement of the mitral
valve points along the LV. The bottom row in Figure 4 shows the position of the
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Fig. 4. (Left) intersections lines between the two-chamber view slice and the short-axis
view slices. (Top right) final segmentation results after correction for a few phases in
the cardiac cycle. (Bottom right) basal slice for each phase.

basal short-axis slices (dashed lines), the line connecting the mitral valve points
(black solid line), and the basal slice (blue line) for several phases for a sample
LV. Once the end-diastolic and end-systolic phases are known, the basal slice for
those phases can be retrieved and the long-axis motion can be estimated.

4 Evaluation and Results

The method was applied to clinical data from 56 cases, including 30 MRI scans of
patients with degenerative mitral valve regurgitation acquired on a Siemens 3T
Biograph mMR scanner, 19 MRI scans of healthy subjects acquired on a Siemens
3T Magnetom Trio, and 7 MRI scans of patients with myocardial infarction
acquired on a Siemens 3T Magnetom Prisma scanner. The two-chamber cine
CMR sequences comprised of 25 phases and the images were 256×232, 192×192,
256× 216 pixels in size respectively with resolutions in the range of 1.32 - 1.56
mm. All 25 images of the two-chamber view were segmented using the proposed
method. The number of iterations for the level set segmentation algorithm was
set to 10, with scale parameter (σ) of 4, and distance regularization coefficient
(µ) of 1. For k-means color quantization, k was set to 5 for all test cases. The
weighting parameter (β) for the random-walk segmentation algorithm was set
to 30. For images with 1.56 mm resolution, 1.5 times more seeds were sampled
for random-walk segmentation. Three hierarchical levels were defined for the
b-spline registration algorithm and the mesh window size was set to 10.

For each test case, the basal slice for the end-systole and the end-diastole were
retrieved and the long-axis motion was estimated. The results were compared
to the manual selections done by consensus between two experts prior to this
work. The automatic basal slice selections and long-axis motion estimations by
the Segment software [6], as the state-of-the-art approach, were also compared
to the manual selections. In order to compare accuracy of the long-axis motion
estimation, the short-axis slices for each test case were segmented using the Seg-
ment software [6] and EF, SV, and LV mass were extracted for each case. While
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Table 1. Comparison of the measured EF, SV and LV mass (LVM) by the Segment
tool, our experts and the proposed algorithm. Mean difference error and Pearson’s R2
correlation between the two methods and the experts results are also shown. Stars (*)
indicate significant differences (p-value<0.001).

Segment Experts Proposed Alg.

EF
mean ± std (%) 62.5 ± 6.8 65.5 ± 6.0 65.2 ± 6.8
mean diff. error ± std -2.96 ± 4.55 -0.22 ± 2.66 ∗
R2 corr. 0.515 0.702

SV
mean ± std 89.7 ± 25.1 96.4 ± 25.3 95.6 ± 27.8
mean diff. error ± std -6.63 ± 7.83 -0.75 ± 6.25 ∗
R2 corr. 0.855 0.929

LVM
mean ± std 85.4 ± 25.0 84.1 ± 24.6 84.3 ± 24.6
mean diff. error ± std 1.34 ± 1.27 0.15 ± 1.10 ∗
R2 corr. 0.904 0.975

using the same short-axis slice segmentations, experts’ estimated long-axis mo-
tion was input to the Segment manually, so was the long-axis motion measured
by the proposed algorithm and the ED, SV, and LV mass were extracted.

From the 56 tested MRI scans, 80% and 85% of basal slice selections were
found to be identical to the experts’ selections for end-diastole and end-systole,
respectively. This is while the Segment tool [6] selected the same basal slices
as the experts’ selected slices for 59% of the cases in end-diastole and 44%
of the cases in end-systole. The EF, SV, and the LV mass for the proposed
algorithm and the Segment tool were compared with those of experts’ results
using Pearson’s R2 correlation parameter. Table 1 shows the mean and standard
deviation for the analysis done by the proposed approach, the Segment tool, and
our experts. As can be seen, the mean values for the measured EF, SV, and LV
mass by the proposed algorithm are closer to those of experts’ measurements. It
also shows the Pearson’s R2 correlation values for both methods. For all three
parameters, the proposed algorithm provided more similar results to experts’
analysis results. The average execution time for the proposed algorithm was 30
seconds for a non-optimized Matlab code with user input time of 9 seconds.

5 Discussion and Conclusion

Due to the high anatomical variability of the heart as well as the resolution and
contrast limitations of MR scans, landmark-based approaches have not been able
to accurately distinguish and locate mitral valve points using feature extrac-
tion methods. Model-based segmentation approaches also require considerable
amount of training data. Consequently, an image-driven segmentation approach
for basal LV segmentation was proposed in this paper providing accurate seg-
mentation of the area around the mitral valve points. The proposed method does
not require model training. The proposed approach is able to detect the basal
slice through the whole cardiac cycle as well as estimate the long-axis motion of
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the heart which are essential to provide a robust and accurate method for car-
diac analysis. Although our method is semi-automatic, the required user input
has minimum influence on the final results since it only guides selection of the
cluster of segments to include for volume measurement. Future work will remove
the currently required user input.
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