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Abstract

We investigate projective estimation under model inade-
quacies, i.e., when the underpinning assumptions of the pro-
jective model are not fully satisfied by the data. We focus
on the task of image stitching which is customarily solved
by estimating a projective warp — a model that is justified
when the scene is planar or when the views differ purely
by rotation. Such conditions are easily violated in practice,
and this yields stitching results with ghosting artefacts that
necessitate the usage of deghosting algorithms. To this end
we propose as-projective-as-possible warps, i.e., warps that
aim to be globally projective, yet allow local non-projective
deviations to account for violations to the assumed imaging
conditions. Based on a novel estimation technique called
Moving Direct Linear Transformation (Moving DLT), our
method seamlessly bridges image regions that are inconsis-
tent with the projective model. The result is highly accurate
image stitching, with significantly reduced ghosting effects,
thus lowering the dependency on post hoc deghosting.

1. Introduction

Remember that all models are wrong; the practical question
is how wrong do they have to be to not be useful.

George E. P. Box

This famous advice by an eminent statistician rings true
in many scientific disciplines, including computer vision.
In this paper, we are primarily concerned with model in-
adequacies in projective estimation. More specifically, we
consider situations where the enabling assumptions for the
projective model are not fully met by the data, thus funda-
mentally limiting the achievable goodness of fit.

We focus on image stitching, though we envision our
methods to be more widely applicable, e.g., in video sta-
bilisation. Image stitching is typically solved by estimat-
ing 2D projective warps to bring images into alignment.
Parametrised by 3 × 3 homographies, 2D projective warps
are justified if the scene is planar or if the views differ purely
by rotation [17]. In reality, in the hands of the casual user

the conditions will unlikely be fully satisfied. Thus the pro-
jective model cannot adequately characterise the required
warp, causing misalignments or ghosting effects. Note that
such errors are due to inherent deficiencies in the model and
not just noise perturbations; Fig. 1(a) illustrates.

Many commercial stitching software like Autostitch and
Photosynth (specifically the panorama tool) use projective
warps1, arguably for their simplicity. When the requi-
site imaging conditions are not met, their success relies on
deghosting algorithms to remove unwanted artefacts [17].
Here, we offer a different strategy: instead of relying on
a projective model (which is often inadequate) and then fix
the resulting errors, we adjust the model based on the data to
improve the fit. We achieve this by our novel as-projective-
as-possible warps, i.e., warps that aim to be globally pro-
jective, yet allow local deviations to account for model in-
adequacy; Fig. 1(c) illustrates. Our method significantly re-
duces alignment errors, yet is able to maintain overall geo-
metric plausibility. Fig. 3 shows a sample result.

Note that our aim is not to perform image stitching for
arbitrary camera motions (e.g., [12]). Rather, our aim is to
tweak the projective model to fit the data as accurately as
possible. It is also not our goal to dispense with deghosting
algorithms, which are still useful if there are serious mis-
alignments or moving objects. However, we argue that a
good initial stitch is very desirable since it imposes a much
lower requirement on subsequent deghosting and postpro-
cessing; the result in Fig. 3, for example, was composited
using simple pixel averaging with little noticeable ghosting.

More fundamentally, we learn the proposed warp based
on a novel estimation technique called Moving DLT. It is
inspired by the Moving Least Squares (MLS) method [2] for
image manipulation [14], but our method applies projective
regularisation instead of rigid or affine regularisation. This
is essential to ensure that the warp extrapolates correctly
beyond the image overlap (interpolation) region to maintain
perceptual realism. Figs. 1(b) and 1(c) contrast warps from

1Both tools require the camera to rotate about a point, or that the photos
be taken from the same spot and with the same focal length. See:
- http://www.cs.bath.ac.uk/brown/autostitch/autostitch.html#FAQ
- http://photosynth.net/faq.aspx
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(a) Projective warp.
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(b) As-affine-as-possible warp.
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(c) As-projective-as-possible warp.

Figure 1. A 1D analogy of image stitching, with a set of 1D correspondences {xi,x
′
i}Ni=1 generated by projecting a 2D point cloud onto

two 1D image “planes”. The two views differ by a rotation and translation, and the data are not corrupted by noise. (a) A 1D projective
warp, parametrised by a 2×2 homography, is unable to model the local deviations of the data. Note that these deviations are caused purely
by model inadequacy since there is no noise in the data. (b) An as-affine-as-possible warp, estimated based on [14], can interpolate the local
deviations better, but fails to impose global projectivity. This causes incorrect extrapolation in regions without correspondences. (c) Our
as-projective-as-possible warp interpolates the local deviations flexibly and extrapolates correctly following a global projective trend.

Moving DLT and MLS. Being able to interpolate flexibly
to minimise ghosting and extrapolate corectly to maintain
geometric consistency are vital qualities for image stitching.

Closer to our method is the surface approximation work
of [6], where spheres are fitted using algebraic MLS onto
point clouds. Our work is different in that we fit projective
functions instead of geometric surfaces. Further, function
extrapolation is a crucial aspect that was not stressed in [6].

The rest of the paper is organised as follows: Sec. 1.1
surveys related work. Secs. 2 and 3 introduce the proposed
warp and its efficient learning for image stitching. Results
are presented in Sec. 4, and we conclude in Sec. 5.

1.1. Related work

While the fundamentals of image stitching are well stud-
ied (see [17] for an excellent survey), how to produce good
results when the data is noisy or uncooperative is an open
problem. In our context, we categorise previous works into
two groups: (1) methods that reduce ghosting by construct-
ing better alignment functions, and (2) methods that reduce
ghosting after alignment using advanced methods in com-
positing, pixel selection or blending. In the second group,
seam cutting [1, 3] and Poisson blending [13] are influen-
tial. Since our approach belongs to the first group, we re-
view such methods in the following. Ideally, methods from
both groups should be jointly used for best results.

Shum and Szeliski [15] first perform bundle adjustment
to optimise the rotations and focal lengths of all views. For
each feature, the average of the backprojected rays from
each view is taken, which is subsequently projected again
onto each view to yield the revised feature positions in 2D.
The function of the remaining registration errors are then
modelled with bilinear kernels, and used in the final align-
ment. While a very principled method, the backprojection
requires camera intrinsics which may not be available.

In the context of video stabilisation, Liu et al. [10] pro-
posed content preserving warps. Given matching features

between the original and target image frames, the novel
view is synthesised by warping the original image using an
as-similar-as-possible warp [8] that jointly minimises the
registration error and preserves the rigidity of the scene.
The method also pre-warps the original image with a ho-
mography, thus effectively yielding a smoothly interpolat-
ing projective warp. Imposing scene rigidity minimises the
dreaded “wobbling” effect in the smoothed video. However,
as we show in Sec. 4, in image stitching where there can be
large rotational and translational difference between views,
their method does not interpolate flexibly enough due to the
rigidity constraints. This may not be an issue in [10] since
the original and smoothed camera paths are close (see Sec. 4
in [10]), i.e., the views to align are close to begin with.

A recent work proposed smoothly varying affine warps
for image stitching [9]. The basis of their idea is the point-
set registration method based on motion coherence [11].
An interesting innovation of [9] is an affine initialisation of
the registration function, which is then deformed locally to
minimise registration errors while maintaining global affin-
ity. Fundamentally, using affine regularisation may be sub-
optimal, since an affinity does not contain sufficient de-
grees of freedom to achieve a fully perspective warp [17],
e.g., an affine warp may counterproductively preserve par-
allelism. Indeed, as Figs. 4 and 5 (second row) show, while
the method can interpolate flexibly, it produces highly dis-
torted results in the extrapolation region, where there are no
data to guide the local deformation and the warp reverts to
global affinity; Fig. 1(b) provides a 1D analogy.

By assuming that the scene contains a ground plane and
a distant plane, Gao et al. [4] proposed dual homography
warps for image stitching. Essentially theirs is a special
case of a piece-wise projective warp, which is more flexible
than using a single homography. While it performs well
if the required setting is true, it may be difficult to extend
the method for an arbitrary scene, e.g., how to estimate the
number of required homographies and their parameters.



2. As-Projective-As-Possible Warps
We first review the estimation of projective transforma-

tions customarily used in image stitching, and then describe
the proposed as-projective-as-possible warp.

2.1. The projective warp

Let x = [x y]T and x′ = [x′ y′]T be matching points
across overlapping images I and I ′. A projective warp or
homography aims to map x to x′ following the relation

x̃′ = Hx̃, (1)

where x̃ is x in homogeneous coordinates, and H ∈ R3×3

defines the homography. In inhomogeneous coordinates,

x′ =
hT1 [x y 1]T

hT3 [x y 1]T
and y′ =

hT2 [x y 1]T

hT3 [x y 1]T
, (2)

where hTj is the j-th row of H. The divisions in (2) cause
the warp to be non-linear, as Fig. 1(a) shows for the 1D case.

DLT is a basic method to estimate H from a set of noisy
point matches {xi,x′i}Ni=1 across I and I ′. Eq. (1) is rewrit-
ten as the implicit condition 03×1 = x̃′×Hx̃ and linearised

03×1 =

 01×3 −x̃T y′x̃T

x̃T 01×3 −x′x̃T
−y′x̃T x′x̃T 01×3

h, h =

h1

h2

h3

 . (3)

Only two of the rows are linearly independent. Let ai ∈
R2×9 be the first-two rows of (3) computed for the i-th da-
tum {xi,x′i}. DLT estimates the nine elements of H as

ĥ = argmin
h

N∑
i=1

‖aih‖2 = argmin
h
‖Ah‖2 (4)

with the constraint ‖h‖ = 1, where matrix A ∈ R2N×9 is
obtained by stacking vertically ai for all i. The solution is
simply the least significant right singular vector of A.

Given the estimated H (reshaped from ĥ), to align the
images, an arbitrary pixel at position x∗ in the source image
I is warped to the position x′∗ in the target image I ′ by

x̃′∗ = Hx̃∗. (5)

To avoid issues with numerical precision, prior to DLT the
data can first be normalised in the manner of [7], with the
estimated H then denormalised before executing (5).

2.2. Moving DLT

When the views I and I ′ do not differ purely by rota-
tion or are not of a planar scene, using a basic projective
warp inevitably yields ghosting effects in the alignment. To
alleviate this problem, our idea is to warp each x∗ using a
location dependent homography

x̃′∗ = H∗x̃∗, (6)

where H∗ is estimated from the weighted problem

h∗ = argmin
h

N∑
i=1

‖wi∗aih‖2 (7)

subject to ‖h‖ = 1. The scalar weights {wi∗}Ni=1 change
according to x∗ and are calculated as

wi∗ = exp(−‖x∗ − xi‖2/σ2). (8)

Here, σ is a scale parameter, and xi is the coordinate in the
source image I of one-half of the i-th point match {xi,x′i}.

Intuitively, since (8) assigns higher weights to data closer
to x∗, the projective warp H∗ better respects the local struc-
ture around x∗. Contrast this to (5) which uses a single
and global projective warp H for all x∗. Moreover, as
x∗ is moved continuously in its domain I , the warp H∗
also varies smoothly. This produces an overall warp that
adapts flexibly to the data, yet attempts to be as-projective-
as-possible. Figs. 1(c) and 3(c) illustrate such a warp in 1D
and 2D. We call this estimation procedure Moving DLT.

The problem in (7) can be written in the matrix form

h∗ = argmin
h
‖W∗Ah‖2, (9)

where the weight matrix W∗ ∈ R2N×2N is composed as

W∗ = diag([ w1
∗ w

1
∗ . . . w

N
∗ wN∗ ]) (10)

and diag() creates a diagonal matrix given a vector. This
is a weighted SVD (WSVD) problem, and the solution is
simply the least significant right singular vector of W∗A.

Problem (9) may be unstable when many of the weights
are insignificant, e.g., when x∗ is in a data poor or extrapo-
lation region. To prevent numerical issues in the estimation,
we offset the weights with a small value γ ∈ [0 1]

wi∗ = max
(
exp(−‖x∗ − xi‖2/σ2), γ

)
. (11)

This also serves to regularise the warp, whereby a high γ
reduces the warp complexity; in fact as γ → 1 the warp
reduces to the global projective warp. Fig. 2 depicts results
from MDLT without regularisation, while Fig. 1(c) shows
results on the same data with regularisation.

Conceptually, Moving DLT can be seen as the projective
version of MLS [2]. In the context of warping points in 2D
for image manipulation [14], MLS estimates for each x∗ an
affine transformation defined by a matrix F∗ ∈ R2×3

x′∗ = F∗

[
x∗
1

]
, F∗ = argmin

F

N∑
i=1

∥∥∥∥wi∗(F [xi1
]
− x′i

)∥∥∥∥2 .
Including nonstationary weights {wi∗}Ni=1 produces flexi-
ble warps, but such warps are ultimately only as-affine-as-
possible; see Fig. 1(b) for a 1D analogy. Moreover, the con-
cern in [14] is on further limiting the overall flexibility of
the warp, in order to avoid undesired shearing of shapes.
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Figure 2. Results from Moving DLT without regularisation for a
1D projective estimation problem on synthetic data.

3. Efficient Learning for Image Stitching
Here we describe an efficient algorithm for image stitch-

ing based on the proposed warp. We first remove the mis-
matches among {xi,x′i}Ni=1 using RANSAC [17] with DLT
as the minimal solver for a global homography. One might
argue against RANSAC since we consider cases where the
inliers may deviate from the projective model. In practice,
the error of the outliers is orders of magnitude larger than
the inlier deviations, thus RANSAC can be effectively used.

Partitioning into cells. Solving (9) for all pixel positions
x∗ in the source image I is wasteful, since neighbouring
positions yield practically the same estimates of H∗. Fol-
lowing [14], we partition the source image I into a grid of
C1×C2 cells. For each cell, the centre coordinate is chosen
as x∗, and all pixels within the same cell are warped using
the same H∗. We thus reduce the number of instances of
WSVD to C1 × C2. Fig. 3(c) illustrates a warp learnt with
100× 100 cells for a 1500× 2000-pixel image pair.

In addition, observe that the WSVD for all cells can be
solved independently. Thus a straightforward approach for
speedup is to solve the multiple instances of WSVD in par-
allel. Note that, even without parallel computations, learn-
ing the warp in Fig. 3 with 100 × 100 cells and N = 2100
keypoint matches (A is of size 4200 × 9) takes less than a
minute on a Pentium i7 2.2GHz Quad Core machine.

Updating weighted SVDs. Further speedups are possible
if we realise that, for most cells, due to the offsetting (11)
many of the weights do not differ from the offset γ. Based
on the images in Figs. 3(a) and 3(b), Fig. 3(d) histograms
across all cells the number of weights that differ from γ
(here, γ = 0.0025). A vast majority of cells (> 40%) have
fewer than 20 weights (out of 2100) that differ from γ.

To exploit this observation a WSVD can be updated from
a previous solution instead of being computed from scratch.
Defining Wγ = γI, let the columns of V be the right sin-
gular vectors of WγA. Define the eigendecomposition

ATWT
γWγA = VDVT (12)

as the base solution. Let W̃ equal Wγ except the i-th diag-
onal element that has value w̃i. The eigendecomposition of

(a) Target image I′. (b) Source image I with 100×100
cells (only 25×25 drawn for clarity).

(c) Aligned images with transformed cells overlaid to visualise the
warp. Observe that the warp is globally projective for extrapolation,
but adapts flexibly in the overlap region for better alignment.
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Figure 3. Demonstrating image stitching with our method. The in-
put images correspond to views that differ by rotation and transla-
tion. The images are both of size 1500×2000 pixels. The number
of SIFT matches {xi,x

′
i}Ni=1 (not shown) after RANSAC is 2100.

ATW̃TW̃A can be obtained as the rank-one update

ATW̃TW̃A = VDVT + ρrir
T
i = V(D + ρr̄ir̄

T
i )VT ,

where ρ = (w̃2
i /γ

2 − 1), ri is the i-th row of A, and r̄i =
VT ri. The diagonalisation of the updated diagonal matrix

D + ρr̄ir̄
T
i = C̃D̃C̃T ∈ Rm×m (13)

can be done efficiently using secular equations [16]. Multi-
plying VC̃ yields the right singular vectors of W̃A. This
can be done efficiently by exploiting the Cauchy structure in
C̃ [16]. The cost of this rank-one update is O(m2 log2m).

The WSVD for each cell can thus be obtained via a small
number of rank-one updates to the base solution, each cost-
ing O(m2 log2m). Overall this is cheaper than computing
from scratch, where for W∗A of size n×m, would take
O(4nm2 + 8m3) even if we just compute the right singular
vectors [5]. Note that in (9), (n = 2N)� (m = 9).



4. Results

We compare our as-projective-as-possible (APAP) warp
against other warp improvement methods for image stitch-
ing, namely, content preserving warps (CPW) [10], dual ho-
mography warps (DHW) [4], and smoothly varying affine
(SVA) [9]. To cogently differentiate the methods, we avoid
sophisticated postprocessing like seam cutting and straight-
ening such as in [4], and simply blend the aligned images
by intensity averaging such that any misalignments remain
obvious. We also compare against Autostitch and Photo-
synth’s panorama tool. For Photosynth the final postpro-
cessed results are used since the raw alignment is not given.

We select testing images which correspond to views that
differ by more than a pure rotation. While a number of im-
ages have been tested (including those used elsewhere) with
convincing results, only a few can be included in this paper;
refer to the supplementary material for more results.

Preprocessing and parameter settings. Given a pair of
input images, we first detect and match SIFT keypoints us-
ing the VLFeat library [18]. We then run RANSAC as de-
scribed in Sec. 3 to remove mismatches, and the remaining
inliers were given to CPW, DHW, SVA and APAP. The good
performance of these methods depend on having the correct
parameters. For CPW, DHW and SVA, we tuned the re-
quired parameters for best results2; refer to the respective
papers for the list of required parameters. For APAP, we
varied the scale σ within the range [8 12] for images of sizes
1024 × 768 to 1500 × 2000 pixels. The offset γ was cho-
sen from [0.0025 0.025]. The grid sizes C1 and C2 were
both taken from the range [50 100]; on each image pair, the
same grid resolution was also used in the CPW grid. In ad-
dition, following [10], for CPW we pre-warp the source im-
age with the global homography estimated via DLT on the
inliers returned by RANSAC. For Photosynth and Autos-
titch the original input images (with EXIF tags) were given.

4.1. Qualitative comparisons

Figs. 4 and 5 depict results on the railtracks and tem-
ple image pairs. The former is our own data, while the
latter was contributed by the authors of [4]. The baseline
warp (global homography via DLT on inliers) is clearly un-
able to satisfactorily align the images since the views do
not differ purely by rotation. SVA, DHW and Autostitch
are marginally better, but significant ghosting remains. Fur-
ther, note the highly distorted warp produced by SVA, es-
pecially in the extrapolation regions. The errors made by
Photosynth seem less “ghostly”, suggesting the usage of ad-
vanced blending or pixel selection [17] to conceal the mis-
alignments. Nonetheless it is clear that the postprocessing

2Through personal communication, we have verified the correctness of
our implementation of CPW, DHW and SVA and their parameter settings.

was not completely successful; observe the misaligned rail
tracks and tiles on the ground. Contrast the above methods
with APAP, which cleanly aligned the two images with few
artefacts. This reduces the burden on postprocessing; we
have confirmed that pyramid blending [17] is sufficient to
account for exposure differences and to smoothen the blend.

While CPW with pre-warping is able to produce good
results, the rigidity constraints (a grid like in Fig. 3(b) is
defined and discouraged from deforming) may counterpro-
ductively limit the flexibility of the warp (observe the only
slightly nonlinear outlines of the warped images3). Thus al-
though the rail tracks and tiles are aligned correctly (more
keypoint matches exist in these relatively texture-rich areas
to influence the warp), ghosting occurs in regions near the
skyline. Note that although APAP introduces a grid, it is for
computational efficiency and not to impose rigidity.

Run time information. For DHW, CPW, SVA and APAP
(without WSVD updating), we record the total duration for
warp estimation (plus any data structure preparation time),
pixel warping and blending. All methods were run in MAT-
LAB with C Mex acceleration for warping and blending.
DHW runs in the order of seconds, While CPW and APAP
typically take tens of seconds. In contrast, SVA scales badly
with image size (since larger images yield more keypoint
matches). While 8 mins was reported in [9] for 500 × 500
images, in our experiments SVA takes 15 mins for temple
(1024× 768) and 1 hour for railtracks (1500× 2000).

Constructing full panoramas. Given more than two im-
ages, we first choose a central image to initialise the
panorama. We then incrementally warp the other images via
APAP onto the panorama. Refer to the supplementary ma-
terial for the outcomes, where we simply blend with pixel
averaging to highlight the accuracy of the proposed warp.
While a simultaneous alignment of all images [17] is possi-
ble with our APAP method, we leave this as future work.

4.2. Quantitative benchmarking

To quantify the alignment accuracy of an estimated warp
f : R2 7→ R2, we compute the root mean squared error
(RMSE) of f on a set of keypoint matches {xi,x′i}Ni=1, i.e.,

RMSE(f) =
√

1
N

∑N
i=1 ‖f(xi)− x′i‖2. Further, for an

image pair we randomly partitioned the available SIFT key-
point matches into a “training” and “testing” set. The train-
ing set is used to learn a warp, and the RMSE is evaluated
over both sets. Table 1 depicts the average RMSE (over 20
repetitions) of the different methods on 5 challenging real
image pairs, 4 of which were used in [4, 9]. It is clear that
APAP consistently outperformed the others. Refer to the
supplementary material for qualitative comparisons.

3As explained in Sec. 1.1, imposing warp rigidity is essential to prevent
wobbling in video stabilisation, which is the original aim of [10].



Image pair Baseline DHW SVA CPW APAP
railtracks -TR 13.91 14.09 7.48 6.69 4.51

-TE 13.95 14.12 7.30 6.77 4.66
temple -TR 2.66 6.64 12.30 2.48 1.36
(from [4]) -TE 2.90 6.84 12.21 2.54 2.04
carpark -TR 4.77 4.36 4.19 3.60 1.38
(from [4]) -TE 4.85 5.67 4.05 3.86 1.67
chess/girl -TR 7.92 10.72 21.28 9.45 2.96
(from [9]) -TE 8.01 12.38 20.78 9.77 4.21
rooftops -TR 2.90 4.80 3.96 3.16 1.92
(from [9]) -TE 3.48 4.95 4.11 3.45 2.82

Table 1. Average RMSE (in pixels) over 20 repetitions for 5 meth-
ods on 5 image pairs. TR = training error, TE = testing error.
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Figure 6. Average RMSE on (top) the training set and (bottom) the
testing set as a function of inter-camera translational distance.

To further investigate, we produce synthetic 2D images
by projecting randomly generated 3D point clouds onto two
cameras. In each instance, 200 points are created, where
the 3D coordinates and camera intrinsics are controlled such
that the projections fit within 200× 200-pixel images. This
permits the direct application of the various warp estimation
methods. For each point cloud, we fix the relative rotation
between the cameras at 60◦, but vary the distance between
the camera centres along a fixed direction. As before, we
partition the point matches into a training and testing set.

Fig. 6 shows the average RMSE (over 50 repetitions)
plotted against distance. Expectedly, all methods deterio-
rate with the increase in distance. However, observe that
the errors of SVA and CPW do not reduce to zero as the
translation tends to zero. For SVA this is most likely due to
its affine instead of projective regularisation; cf. Fig. 1(b).
Additionally, for CPW, it appears that enforcing rigidity has
perturbed the effects of the pre-warping by a global homog-
raphy. In contrast, APAP reduces gracefully to a global ho-
mography as the camera centres coincide, and provides the
most accurate alignment as the translation increases.

5. Conclusion
We have proposed an as-projective-as-possible estima-

tion method for 2D warping functions. The results on image
stitching showed encouraging results, where our method
was able to accurately align images that differ by more than
a pure rotation. The experiments also demonstrated that the
proposed warp reduces gracefully to a global homography
as the camera translation tends to zero, but adapts flexibly to
account for model inadequacy as the translation increases.
This yields a highly accurate image stitching technique.
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Figure 4. Qualitative comparisons (best viewed on screen) on the railtracks image pair. Red circles highlight errors. List of acronyms
and initialisms: SVA-Smoothly Varying Affine, DHW-Dual Homography Warps, CPW-Content Preserving Warps, APAP-As Projective
As Possible Warps.



Figure 5. Qualitative comparisons (best viewed on screen) on the temple image pair. Red circles highlight errors. List of acronyms and
initialisms: SVA-Smoothly Varying Affine, DHW-Dual Homography Warps, CPW-Content Preserving Warps, APAP-As Projective As
Possible Warps.


